The Critical Section
Problem



Algorithm 3.1: Critical section problem

global variables

P q
local variables local variables
loop forever loop forever
non-critical section non-critical section
preprotocol preprotocol
critical section critical section
postprotocol postprotocol
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Any solution to the critical section (CS)
problem must satisfy three requirements:

e Mutual exclusion (ME)
e Freedom from deadlock

e Freedom from starvation



Mutual exclusion: The critical section statements must
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Mutual exclusion: The critical section statements must
not be interleaved.

Deadlock free: If some processes are trying to enter
their CS’s, then one must eventually succeed.

(dp | tryingToEnterCS(p) : entersCS(p))

Starvation free: If any process tries to enter its CS, then
that process must succeed.

(Vp | tryingToEnterCS(p) : entersCS(p))
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Mutual exclusion:
A safety property. Always no interleaving in CS.

Deadlock free:
A liveness property. Eventually one of several process
must enter CS.

Starvation free:
A liveness property. Eventually a particular process must
enter CS.
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deadlock-free.
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Deadlock vs Starvation

Starvation-free is a stronger requirement than
deadlock-free.

(Vp | tryingToEnterCS(p) : entersCS(p))
implies
(dp | tryingToEnterCS(p) : entersCS(p))

9.20.2) (dx|: R)= (Vx| R: P)= (x| R: P))



General analysis assumptions

Once a process starts executing statements in its CS, it
must eventually terminate (leave its CS).

The non-critical sections need not terminate.

No variables in the protocols are outside the protocols
and vice versa.

The operating system scheduler is weakly fair.



First attempt

The preprotocol is a single atomic “await” statement.

The postprotocol is a single atomic assignment
statement.

The processes take turns accessing their critical
sections.



Algorithm 3.2: First attempt

integer turn « 1

p q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn « 2 q4: turn «< 1
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Variable turn does not appear in the non-critical
section or the critical section.

Algorithm 3.2: First attempt
integer turn « 1
P q

loop forever loop forever
pl: non-critical section ql: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn « 2 q4: turn «< 1
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Spin lock

A technique for implementing the await statement with
a loop.

await turn = |
is implemented as

while (turn != 1) ; // Do nothing



Spin lock
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Spin lock

How many critical references are in the spin lock?

while (turn != 1) ; // Do nothing

One!

S50, as long as the other statements in our solution have
at most one critical reference, the program satisfies

LCR.We can analyze it as if all the statements are
atomic.



Class exercise

Construct the first part of the state transition diagram

from (pl,ql, I) to (p2, g2, |).
(Label each transition with the process that executes.)

Algorithm 3.2: First attempt

integer turn « 1

P q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn <« 2 q4: turn «< 1




First States of the State Diagram
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State Diagram for the First Attempt
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Analysis of mutual exclusion

Do either of the states (p3,q3, |) or (p3, g3, 2) appear
in the state transition diagram!?
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Analysis of mutual exclusion

Do either of the states (p3,q3, |) or (p3, g3, 2) appear
in the state transition diagram!?

No!

Conclusion:We have ME.



Problem

There are too many states to examine.



Problem

There are too many states to examine.

Solution

Omit statements pl and p3, as they do not matter in
the analysis anyway.



Algorithm 3.5: First attempt (abbreviated)

integer turn « 1

p q
loop forever loop forever
pl: await turn = 1 ql: await turn = 2
p2: turn « 2 q2: turn « 1
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Class exercise

Construct the state transition diagram.

Algorithm 3.5: First attempt (abbreviated)

integer turn « 1

P q
loop forever loop forever
pl: await turn = 1 ql: await turn = 2
p2: turn « 2 q2: turn <« 1




State Diagram for the Abbreviated First Attempt

pl: await turn=1,
ql: await turn=2,
turn = 2

Y

pl: await turn=1,
q2: turn<1,
turn = 2

5

pl: await turn=1,
gl: await turn=2,
turn = 1

Y

p2: turn<2,
gl: await turn=2,
turn = 1
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Analysis of deadlock

Deadlock free: If some try to enter, one must succeed.

Question: In what state are p and q both trying to
enter?

Answer: In states (pl,ql, ) and (pl, ql, 2).

Analysis: Deduce what must happen from one of these
states, say (pl, ql, 2).



(pl,q1,2)

gl: await turn=2,

pl: await turn=1,

turn = 2

pl: await turn=1,
g2: turn<1,
turn = 2

i

pl: await turn=1,
gql: await turn=2,
turn = 1

p2: turn<2,
ql: await turn=2,
turn = 1




=

i

pl: await turn=1, pl: await turn=1,
gl: await turn=2, gql: await turn=2,
turn = 2 turn = 1

Y A

pl: await turn=1, p2
g2: turn<1, ql: await turn=2,
turn = 2 turn = 1

y

D turn<2,
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pl: await turn=1,
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turn = 2

Y
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turn = 2
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i

pl: await turn=1,
gql: await turn=2,
turn = 1

A

p2
ql: await turn=2,
turn = 1

y

D turn<2,

= (g selected by weak fairness)
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i

pl: await turn=1,

gql: await turn=2,
turn = 1

Y Y

pl: await turn=1, p2: turn<2,
g2: turn<1, ql: await turn=2,
turn = 2 turn = 1

pl: await turn=1,
gql: await turn=2,
turn = 2
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(pl,q1,2)
= (g selected by weak fairness)

(p1,42,2)
= (g must complete CS, selected by weak fairness)

(pl,q1,1)



Analysis of deadlock

Analysis starting with state (pl, ql, |) is similar.
If some try to enter, one must succeed.

Conclusion: Deadlock-free.



Analysis of starvation

Starvation free: If any tries to enter; it must succeed.

Analysis: See state (p2, ql, 2) in the non-abbreviated
state diagram.
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Algorithm 3.2: First attempt

integer turn « 1

p

q

loop forever

non-critical section
await turn = 1
critical section

turn « 2

ql:

q3:
qé:

loop forever

non-critical section e

await turn = 2

critical section

turn <« 1

p is trying to enter CS.

q is in non-CS.

q need not make progress.

So, p is starved.




Analysis of starvation

Conclusion: The first attempt is not starvation-free.



Demo alg-3-2.cm

Demo as written. = It appears to work.VWe have ME.

Change one process to loop 5 times. = We have

starvation.



alg-3-2.cm

int n = 0;
int turn = 1;

void r() {

int temp, 1i;

for (1 = 0; 1 < 10; i++) {
// non-critical section
cout << "r.i = " << i << endl;
// preprotocol
while (turn != 1)
// critical section
temp = n;
n = temp + 1;
// postprotocol
turn = 2;



alg-3-2.cm, continued

void q()

int temp, 1i;

for (1 = 0; 1 < 10; i++) {
// non-critical section
cout << "g.1 = " << i << endl;
// preprotocol
while (turn != 2)
// critical section
temp = n;
n = temp + 1;
// postprotocol

turn = 1;
}
}
void main() {
cobegin { r(); 4a(); }
cout << "The value of n is " << n << "\n";



Demo A1g0302.java

Each process has its own processor ID initialized in the
constructor.



Alg0302.java

class Al1lg0302 extends Thread {
static volatile int n = 0;
static volatile int turn = 1;
int processID;

Al1g0302(int pID) {
processID = pID;
}



Alg0302.java, continued

public void run() {
int temp, delay;
for (int 1 = 0; 1 < 10; i++) {
try {
// non-critical section
System.out.println("p" + processID + ".i = " + 1);
// preprotocol
while (turn != processID)
// critical section
delay = (int) (100 * Math.random());
Thread.sleep(delay);
temp = n;
delay = (int) (100 * Math.random());
Thread.sleep(delay);
n = temp + 1;
// postprotocol
turn = (processID == 1) ? 2 : 1;
} catch (InterruptedException e) {
}



Alg0302.java, continued

public static void main(String[] args) {
Alg0302 pl = new Alg0302(1);
Alg0302 p2 = new Alg0302(2);
pl.start();
p2.start();
try {
pl.join();
p2.join();
} catch (InterruptedException e) {
}

System.out.println("The value of n is " + n);



Second attempt

P announces its intent to enter its critical section by
setting wantp to true.

q waits until p does not want to enter before g
announces q’s intent to enter q’s CS.

When p exits its CS, p sets wantp to false,as p no
longer wants to enter.



Algorithm 3.6: Second attempt
boolean wantp « false, wantq « false
p q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: await wantq = false q2: await wantp = false
p3: wantp <« true q3: wantq <« true
p4: critical section q4: critical section
p5: wantp « false q5: wantq « false
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Suppose p is stuck at pl, that is, not making progress,

Analysis of starvation

with wantp and wantq both false.

Algorithm 3.6: Second attempt

boolean wantp « false, wantq « false

p

q

loop forever
non-critical section
await wantq = false
wantp « true
critical section
wantp « false

<

loop forever
non-critical section
await wantp = false
wantq <« true
critical section
wantq « false




Analysis of starvation

The following scenario is still possible:
ql,q2,q3,q4,95,ql,q92,q3, g4, q5,ql,q2,q3, ...



Analysis of starvation

The following scenario is still possible:
ql,q2,q3,q4,95,ql,q92,q3, g4, q5,ql,q2,q3, ...

Conclusion: Second attempt is starvation-free.



Analysis of mutual exclusion

Consider the abbreviated algorithm.

Algorithm 3.7: Second attempt (abbreviated)

boolean wantp « false, wantq « false

P q
loop forever loop forever
pl: await wantq = false ql: await wantp = false
p2: wantp « true q2: wantq « true
p3: wantp « false q3: wantq « false




Analysis of mutual exclusion

Class exercise: Starting at state (pl, ql, F F), show state
transitions that get to state (p3,q3, , ).



Fragment of the State Diagram for the Second Attempt

pl: await !lwantq, > p2: wantp<true, p2: wantp<«true,
ql: await Iwantp, ql: await !lwantp, g2: wantq<«true,
falsefalse false false false false
Y
p3: wantp<«false, p3: wantp<«false,
q3: wantq<false, q2: wantq<true,
true,true true false
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Analysis of mutual exclusion

Conclusion: Second attempt does not enforce ME.



Third attempt

Switch the order of p2 and p3 from the second attempt
to get mutual exclusion.

Algorithm 3.8: Third attempt
boolean wantp « false, wantq « false
p q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: wantp « true q2: wantq « true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp « false q5: wantq « false




Analysis of deadlock

Class exercise: Starting at state (pl, ql, F F), show state
transitions that get to state (p3,q3,T,T) with no
possibility of progress.



Fragment of the State Diagram Showing Deadlock

p2: wantp<«true, ‘> p3: await !wantq, p3: await !wantq,
g2: wantq<true, g2: wantq<true, q3: await !wantp,
false false true false true,true ' >
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Analysis of deadlock

Conclusion: Third attempt is not deadlock-free.



Fourth attempt

P announces intent to enter by setting wantp to true.

In a loop, checks if g wants to enter. If so, they are
wanting to enter at the same time.

In the body, p sets wantp to false and then back to true,
allowing interleaving between them. p is temporarily
relinquishing its attempt to enter if at first unsuccessful.



Algorithm 3.9: Fourth attempt

boolean wantp « false, wantq « false

p

loop forever

non-critical section
wantp <« true
while wantq
wantp « false
wantp <« true
critical section
wantp « false

loop forever

non-critical section
wantq <« true
while wantp
wantq « false
wantq <« true
critical section
wantq « false
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Fourth attempt

Mutual exclusion:Yes (Proof omitted.)
Deadlock-free: Yes (Proof omitted.)

Starvation-free: No
There is a perfect interleaving that starves both.



Cycle in the State Diagram for the Fourth Attempt

!

. while Wanﬂ
. while wantp,

. wantp<«false,
. wantqg<false,

p3: while wan%
q4: wantq<«false,

true,true true,true true,true
A
Y
pb: wantp<true, \ p5: wantp<true, \ p4: wantp<«false,
q3: while wantp, g5: wantqg<«true, gb: wantqg<«true,
false,true false false true false
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Dekker’s algorithm

A combination of the first and fourth attempts.

The turn variable means whose turn it is to insist on
entering if they both want to enter at the same time.



Algorithm 3.10: Dekker’s algorithm

boolean wantp « false, wantq « false

integer turn « 1

p q

loop forever loop forever

pl: non-critical section ql: non-critical section
p2: wantp « true q2: wantq < true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn =1
p5: wantp « false q5: wantq < false
p6: await turn = 1 q6: await turn = 2
p7: wantp « true q7: wantq « true
p8: critical section q8: critical section
pO: turn <« 2 q9: turn <« 1
pl0:  wantp « false ql0o:  wantq « false
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Dekker’s algorithm

In process p, if

* wantq = true

® turn = 2

then q will enter its CS.

Proof of correctness is in Chapter 4.



Test-and-set statements

If high-level programming languages had atomic test-
and-set statements, the critical section problem would

be trivial.

test-and-set (common, local) {
local & common

common + |

J

The test-and-set is guaranteed atomic, i.e., no
interleaving between its two internal statements.



CS algorithm with test-and-set

Initialize common to O.

Preprotocol: Repeatedly test-and-set until local is O. If
common is initially 0, local will be set to 0 and common
to | in one atomic operation, and process will enter CS.

Postprotocol: Set common to 0, so the next process will
be able to enter its CS.



Algorithm 3.11: Ciritical section problem with test-and-set

integer common « 0

p q

integer locall integer local2

loop forever loop forever
pl: non-critical section ql: non-critical section

repeat repeat
p2: test-and-set( q2: test-and-set(
common, locall) common, local2)

p3: until locall = 0 q3: until local2 = 0
p4: critical section q4: critical section
p5: common <« 0 q5: common < 0
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Exchange statements

If high-level programming languages had atomic
exchange statements, the critical section problem would

be trivial.

exchange (a, b) {
iInteger temp
temp < a
a+b
b « temp

J

The exchange is guaranteed atomic, i.e., no interleaving
between its three internal statements.



CS algorithm with exchange

Initialize common to | and local to 0.

Preprotocol: Repeatedly exchange until local is 1. If
common is initially 1, local will be set to | and common

to 0 in one atomic operation, and process will enter CS.

Postprotocol: Exchange common and local back again,
so the next process will be able to enter its CS.



Algorithm 3.12: Ciritical section problem with exchange

Integer common « 1

p

q

integer locall < 0
loop forever

pl: non-critical section
repeat
p2: exchange(common, locall)
p3: until locall =1
p4: critical section
p5:  exchange(common, locall)

integer local2 < 0
loop forever
non-critical section
repeat
exchange(common, local2)
until local2 =1
critical section
exchange(common, local2)
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Test-and-set at the machine level - Intel

|nte|® INSTRUCTION SET REFERENCE

BTS —Bit Test and Set

Opcode Instruction Description

OF AB BTS r/m16,r16 Store selected bit in CF flag and set
OF AB BTS r/m32,r32 Store selected bit in CF flag and set
OF BA/5 ib BTS r/m16,imm8 Store selected bit in CF flag and set
OF BA/5ib BTS r/m32,imm8 Store selected bit in CF flag and set

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

CF « Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) « 1;



Exchange at the machine level - ARM

4.35 SWP - Swap

Syntax:

SWP{<cond>} <Rd>, <Rm>, [<Rn>]

RTL:

if(cond)
temp < [RN]
[Rn] € Rm
Rd €« temp

Flags updated:
None

Encoding:

31130129]28|27]26(25

19

18|17

16

15

14|13

12

11

10|19

(@)

Ul

cond 0(0|0

Rn

Rd

SBZ




