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while (ip < z)

++1p;
T While ( T Ident < T Ident ) ++ T Ident
ip Z ip
whli[l|e ([i]p] [< z|) \n\t/+][+]i]p

while (ip < z)
++1ip;



do[for] = new O;

W 0| ;

do|[|f|lo|r]|] = n e ;

do[for]

new 0;



T For ]

T_New T_IntConst

0

do[for] = new O;
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Scanning a Source File

(11 3 7 < i ) \n\t + +

The piece of the original program
fromwhich we made the token is

called a lexeme.

T While

This is called a token. You can
think of it as an enumerated type
representing what logical entity we

read out of the source code.
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Scanning a Source File

h i1l e (11 3 7 < i ) \n\t + +

Sometimes we will discard a lexeme

T While rather than storing it for later use.

Here, we ignore whitespace, since it

has no bearing on the meaning of

the program.




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While




Scanning a Source File

1

e

.1

T While

3

7

<

i

)

\n

\'t

+




Scanning a Source File

1

e

.1

T While

3

7

<

i

)

\n

\'t

+




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While




Scanning a Source File

1

e

(

1

3

7

<

i

)

\n

\'t

+

T_While
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Scanning a Source File
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Some tokens can have
attributes that store

: extra information about
T While ( T IntConst

/ the token. Here we
137 store which integer is

represented.




Goals of Lexical Analysis

Convert from physical description of a program
into sequence of of tokens.

- Each token represents one logical piece of the source
file -a keyword, the name of a variable, etc.

Each token is associated with a lexeme.
 The actual text of the token: “137,” “int,” etc.
Each token may have optional attributes.

- Extra information derived from the text - perhaps a
numeric value.

The token sequence will be used in the parser to
recover the program structure.



Choosing Tokens



What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;
}
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for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;
}

for
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What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;
}

for
int
<L

(

)
ot

'—'I—IA‘O‘W"FH

Identifier
IntegerConstant



Choosing Good Tokens

. Very much dependent on the language.
. Typically:

* Give keywords their own tokens.

- Give different punctuation symbols their own
tokens.

- Group lexemes representing identifiers,
numeric constants, strings, etc. into their own
groups.

- Discard irrelevant information (whitespace,
comments)



Scanning is Hard

- FORTRAN: Whitespace is irrelevant

DO 5 I
DO 5 I

1,25
1.25

Thanks to Prof. Alex Aiken
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- FORTRAN: Whitespace is irrelevant

DO 5 I
DOST
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Scanning is Hard

- FORTRAN: Whitespace is irrelevant

DO 5 I
DOST

1,25
1.25

- Can be difficult to tell when to partition
input.

Thanks to Prof. Alex Aiken



Scanning is Hard

* C++: Nested template declarations

vector<vector<int>> myVector

Thanks to Prof. Alex Aiken



Scanning is Hard

* C++: Nested template declarations

vector < vector < int >> myVector

Thanks to Prof. Alex Aiken



Scanning is Hard

* C++: Nested template declarations

(vector < (vector < (int >> myVector)))

Thanks to Prof. Alex Aiken



Scanning is Hard

* C++: Nested template declarations

(vector < (vector < (int >> myVector)))

- Again, can be difficult to determine
where to split.

Thanks to Prof. Alex Aiken
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- PL/1: Keywords can be used as
identifiers.
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Scanning is Hard

- PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

 Can be difficult to determine how to label
lexemes.

Thanks to Prof. Alex Aiken



Challenges in Scanning

- How do we determine which lexemes are

associated with each token?

* When there are multiple ways we could
scan the input, how do we know which
one to pick?

- How do we address these concerns

efficiently?



Associating Lexemes with Tokens



Lexemes and Tokens

* Tokens give a way to categorize lexemes by
what information they provide.

* Some tokens might be associated with only a
single lexeme:

. Tokens for keywords like if and whileprobably
only match those lexemes exactly.

- Some tokens might be associated with lots of
different lexemes:

- All variable names, all possible numbers, all
possible strings, etc.



Sets of Lexemes

- Jdea: Associate a set of lexemes with each

token.

* We might associate the “number” token
with theset{ 0,1, 2,.., 10,11,12, .. }

* We might associate the “string” token
Wlth the set { " n, nan’ "b", "C", }

* We might associate the token for the
keyword while with the set { while }.



How do we describe which (potentially
infinite) set of lexemes is associated with
each token type?



Formal Languages

- A formal language is a set of strings.

- Many infinite languages have finite descriptions:
. Define the language using an automaton.

. Define the language using a grammar.

- Define the language using a regular expression.

- We can use these compact descriptions of the
language to define sets of strings.

* Over the course of this class, we will use all of
these approaches.



Regular Expressions

- Regular expressions are a family of
descriptions that can be used to capture
certain languages (the regular
languages).

* Often provide a compact and human-
readable description of the language.

- Used as the basis for numerous software

systems, including the £lex tool we will
use in this course.



Atomic Regular Expressions

- The regular expressions we will use in

this course begin with two simple
building blocks.

- The symbol € is a regular expression
matches the empty string.

- For any symbol a, the symbol a is a
regular expression that just matches a.



Compound Regular Expressions

. If R, and R, are regular expressions, R,R, is a regular
expression represents the concatenation of the
languages of R, and R,,.

. If R, and R, are regular expressions, R, |R, is a regular
expression representing the union of R, and R,.

- If R is a regular expression, R* is a regular expression for
the Kleene closure ofR.

- If R is a regular expression, (R) is a regular expression
with the same meaning as R.



Operator Precedence

- Regular expression operator precedence
1S

(R)
R*
RIRZ
Rl | RZ
* So ab*c|d is parsed as ((a(b*))c)|d



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

- Here is a regular expression for strings containing

00 as a substring:

(0] 1)*00(0 | 1)*
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Simple Regular Expressions

- Suppose the only characters are 0 and 1.

- Here is a regular expression for strings containing

00 as a substring:

(0] 1)*00(0 | 1)*

11011100101
0000




Simple Regular Expressions

- Suppose the only characters are 0 and 1.

- Here is a regular expression for strings containing

00 as a substring:

(0] 1)*00(0 | 1)*

11011100101
0000
11111011110011111




Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length

exactly four:
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Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length

exactly four:

(011)(0]11)(011)(0]1)



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length

exactly four:

(011)(0]11)(011)(0]1)

0000
1010
1111
1000
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- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length

exactly four:

(011)(0]11)(011)(0]1)

0000
1010
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Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length
exactly four:

(01114}

0000
1010
1111
1000



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings of length
exactly four:

(01114}

0000
1010
1111

1000



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:

1*(0 | €)1*



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:

1*(0 | €)1~



Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:

1*(0 | €)1~

11110111
111111
0111
0
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- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:

1*(0 | €)1~

11110111
111111

0111
0




Simple Regular Expressions

- Suppose the only characters are 0 and 1.

* Here is a regular expression for strings that

contain at most one zero:

1*0?1*"

11110111
111111
0111
0




Applied Regular Expressions

- Suppose our alphabetis a, @, and ., where a
represents “some letter.”

- A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*
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csl43@cs.stanford.edu
first.middle.last@mail.site.org
parack.obama@whitehouse.qov
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Applied Regular Expressions

- Suppose our alphabetis a, ®, and ., where a
represents “some letter.”

- A regular expression for email addresses is
a* (.aa*)* @ aa*.aa* (.aa*)*
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- Suppose our alphabetis a, ®, and ., where a
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Applied Regular Expressions

- Suppose our alphabetis a, ®, and ., where a
represents “some letter.”

- A regular expression for email addresses is
ar (a)y @ at (.a")*
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Applied Regular Expressions

- Suppose our alphabetis a, ®, and ., where a
represents “some letter.”

- A regular expression for email addresses is
ar(.ar)*@a*(.a*)*

csl43@cs.stanford.edu
first.middle.last@mail.site.org
pbarack.obama@whitehouse.qov
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Applied Regular Expressions

* Suppose that our alphabet is all ASCII
characters.

- A regular expression for even numbers is

(+1-)?(0[1]2]3|4]5[6]7[8]9)*(0[2|4|6]8)



Applied Regular Expressions

* Suppose that our alphabet is all ASCII
characters.

- A regular expression for even numbers is
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42
+1370
-3248

-9999912



Applied Regular Expressions

* Suppose that our alphabet is all ASCII
characters.

- A regular expression for even numbers is
(+1-)?(0]1]2]3]4[5]6]7]8]9)*(0[2|4]6]8)

42
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Applied Regular Expressions

* Suppose that our alphabet is all ASCII
characters.

- A regular expression for even numbers is
(+]-)?[0123456789]*[02468]

42
+1370
-3248

-9999912



Applied Regular Expressions

* Suppose that our alphabet is all ASCII
characters.

- A regular expression for even numbers is
(+]-)?[0-9]*[02468]

42
+1370
-3248

-9999912



Matching Regular Expressions



Implementing Regular Expressions

* Regular expressions can be implemented
using finite automata.

« There are two main kinds of finite
automata:

- NFAs (nondeterministic finite automata),
which we'll see in a second, and

- DFAs (deterministic finite automata), which
we'll see later.

- Automata are best explained by example...



A Simple Automaton

A,B,C,.., %



A Simple Automaton

Each circle I1Is a state of the
auto mato n. T he automaton's

configuration is determined

by what state(s) it is in.




A Simple Automaton

(A} LA}

These arrows are called
transitions. The automaton

changes which state(s) it is in

by following transitions.




A Simple Automaton
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A Simple Automaton

A,B,C,.., %

A

YA A

The automaton takes a string

as input and decides whether

to accept or reject the string.
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A Simple Automaton

A

E.

Y

A

A

The double circle indicates that this
state is an accepting state. The
automaton accepts the string if it

ends in an accepting state.




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton

A,B,C,.., %

A A A A A A




A Simple Automaton
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here, so the automaton
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A Simple Automaton

A

This is not an accepting
state, so the automaton

rejects.




A More Complex Automaton




A More Complex Automaton

Notice that there are multiple transitions
defined here on 0 and 1 |f we read a
O or 1 here, we follow both transitions

and enter multiple states.
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A More Complex Automaton

Since we are Iin at least
one accepting state, the

automaton accepts.



An Even More Cobmplex Automaton
a1




An Even More Cobmplex Automaton
a1

These are called €-transitions. These
transitions are followed automatically and
without consuming any input.
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Simulating an NFA

- Keep track of a set of states, initially the start
state and everything reachable by e-moves.
- For each character in the input:
. Maintain a set of next states, initially empty.
. For each current state:

- Follow all transitions labeled with the current letter.

- Add these states to the set of new states.
* Add every state reachable by an e-move to the set of
next states.

- Complexity: O(mn?) for strings of length m and
automata with n states.



From Regular Expressions to NFAs

* There is a (beautiful!) procedure from converting a
regular expression to an NFA.

- Associate each regular expression with an NFA with
the following properties:

There is exactly one accepting state.

There are no transitions out of the accepting state.

There are no transitions into the starting state.

These restrictions are stronger than necessary, but make the
construction easier.




Base Cases

start C € @

Automaton for €

start G a @

Automaton for single character a
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Overall Result

- Any regular expression of length n can
be converted into an NFA with O(n)
states.

« Can determine whether a string of length
m matches a regular expression of length
n in time O(mn?).

- We'll see how to make this O(m) later
(this is independent of the complexity of
the regular expression!)



Challenges in Scanning

- How do we determine which lexemes are

associated with each token?

* When there are multiple ways we could
scan the input, how do we know which
one to pick?

- How do we address these concerns

efficiently?
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Conflict Resolution

- Assume all tokens are specified as
regular expressions.

- Algorithm: Left-to-right scan.
- Tiebreaking rule one: Maximal munch.

* Always match the longest possible prefix of
the remaining text.
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Implementing Maximal Munch

* Given a set of regular expressions, how
can we use them to implement maximum
munch?

- [dea:

- Convert expressions to NFAs.

* Run all NFAs in parallel, keeping track of the
last match.

* When all automata get stuck, report the last
match and restart the search at that point.



Implementing Maximal Munch

T Do do
T Double double
T Mystery |A-Za—-2z]
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A Minor Simplification

Build a single automaton
that runs all the matching

automata in parallel.
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A Minor Simplification

Annotate each accepting
state with which automaton

It came from.
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More Tiebreaking

- When two regular expressions apply,
choose the one with the greater
“priority.”

- Simple priority system: pick the rule
that was defined first.
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Other Conflicts

T_Do
T Double

do

double

"

T Identifier [A-Za-z ][A-Za-z0-9 ]*

d
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U

b

€

Why isn't
this a
problem?



One Last Detail...

» We know what to do if multiple rules
match.

- What if nothing matches?

» Trick: Add a “catch-all” rule that matches
any character and reports an error.



Summary of Conflict Resolution

* Construct an automaton for each regular
expression.

* Merge them into one automaton by
adding a new start state.

* Scan the input, keeping track of the last
known match.

- Break ties by choosing higher-
precedence matches.

- Have a catch-all rule to handle errors.



Challenges in Scanning

- How do we determine which lexemes are

associated with each token?

- When there are multiple ways we could
scan the input, how do we know which
one to pick?

- How do we address these concerns

efficiently?
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DFAs

- The automata we've seen so far have all
been NFAs.

- A DFA islike an NFA, but with tighter
restrictions:

- Every state must have exactly one
transition defined for every letter.

« £€-moves are not allowed.
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A Sample DFA

@ 1 A.
0 o 0 o B.

\ C.
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Code for DFAs

int kTransitionTable[kNumStates] [kNumSymbols] = {
{Os O! 1! 3! 7! 1! }!

s

bool kAcceptTable[kNumStates] = {
false,
true,
true,

s

bool simulateDFA(string input) {
int state = O;
for (char ch: input)
state = kTransitionTable[state][ch];
return kAcceptTable[state];



Code for DFAs

int kTransitionTable[kNumStates] [kNumSymbols] = {
{Os O! 1! 3! 7! 1! }!

s
bool kAcceptTable[kNumStates] = {
false, _ _
true, Runs in time O(/m)
true, on a string of
length m.
}; J

bool simulateDFA(string input) {
int state = 0;
for (char ch: input)
state = kTransitionTable[state][ch];
return kAcceptTable[state];



Speeding up Matching

* In the worst-case, an NFA with n states
takes time O(mn?) to match a string of

length m.

- DFAs, on the other hand, take only O(m).

- There is another (beautiful!) algorithm to

convert NFAs to DFAs.

Lexical
Specification

Regular
Expressions

NFA

DFA

Table-Driven
DFA




Subset Construction

* NFAs can be in many states at once, while
DFAs can only be in a single state at a time.

- Key idea: Make the DFA simulatethe
NFA.

- Have the states of the DFA correspond to
the sets of states of the NFA.

« Transitions between states of DFA

correspond to transitions between sets of
states in the NFA.
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Modified Subset Construction

* Instead of marking whether a state is
accepting, remember which token type it
matches.

- Break ties with priorities.

- When using DFA as a scanner, consider
the DFA “stuck” if it enters the state
corresponding to the empty set.



Performance Concerns

- The NFA-to-DFA construction can

introduce exponentially many states.

- Time/memory tradeoft:
. Low-memory NFA has higher scan time.

. High-memory DFA has lower scan time.

* Could use a hybrid approach by
simplifying NFA before generating code.



Real-World Scanning: Python



w h il e (i p < z ) \n\t+ + i p ;

while (ip < z)
++1p;




Python Blocks

- Scoping handled by whitespace:

1f w == z:
a = b
c = d

else:

e = ¢

g = h

- What does that mean for the scanner?



Whitespace Tokens

- Special tokens inserted to indicate changes in
levels of indentation.

- NEWLINE marks the end of aline.

- INDENT indicates an increasein

indentation.

- DEDENT indicates a decrease inindentation.
« Note that INDENT and DEDENT encode

change in indentation, not the total amount of
indentation.



Scanning Python

1f w == z:
a = b
c = d

else:

I
Hh



1f w == z:

Q Q@
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O
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Scanning Python




1f w == z:
a = b;

Scanning Python

{ -.-.I_
_.I._
.I._
(DEDENT | else : | NEWLINE
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_.I._




1f w == z:
a = b;

Scanning Python

{ -.-.I
_.I._
.I._
S} else o
_.I._
_.I._




Where to INDENT/DEDENT?

- Scanner maintains a stack of line indentations
keeping track of all indented contexts so far.

- Initially, this stack contains 0, since initially the
contents of the file aren't indented.
- On a newline:
. See how much whitespace is at the start of the line.

. If this value exceeds the top of the stack:

— Push the value onto the stack.
-~ Emit an INDENT token.

* Otherwise, while the value is less than the top of the stack:

- Pop the stack.
- Emit a DEDENT token.

Source: http://docs.python.org/reference/lexical analysis.html



http://docs.python.org/reference/lexical_analysis.html

Interesting Observation

- Normally, more text on a line translates
into more tokens.

« With DEDENT, less text on a line often

means more tokens:

1f condl:
1f condZ?:
1f cond3:
1f cond4:
1f condbs:
statementl

statement’?



Summary

- Lexical analysis splits input text into tokens
holding a lexeme and an attribute.

* Lexemes are sets of strings often defined
with regular expressions.

- Regular expressions can be converted to
NFAs and from there to DFASs.

- Maximal-munch using an automaton allows
for fast scanning.

- Not all tokens come directly from the source
code.
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