Parsing

Outline

& Top-down v.s. Bottom-up

& Top-down parsing

2301373

Recursive-descent
parsing
LL(1) parsing

LL(1) parsing
algorithm

First and follow sets

Constructing LL(1)
parsing table

Error recovery

Chapter 4

& Bottom-up parsing

Shift-reduce parsers

LR(0) parsing
LR(0) items
Finite automata of items
LR(0) parsing algorithm
LR(0) grammar

SLR(1) parsing
SLR(1) parsing algorithm
SLR(1) grammar
Parsing conflict

Parsing

Introduction

& Parsing is a process that constructs a
syntactic structure (i.e. parse tree) from the
stream of tokens.

& We already learn how to describe the
syntactic structure of a language using
(context-free) grammar.

% So, a parser only need to do this?

Stream of tokens

> Parse tree
> Parser >

Context-free grammar

2301373 Chapter 4 Parsing

Top—Down Parsing Bottom-Up Parsing

& A parse tree is created & A parse tree is created

from root to leaves from leaves to root
& The traversal of parse & The traversal of parse
trees is a preorder trees is a reversal of
traversal postorder traversal
& Tracing leftmost & Tracing rightmost
derivation derivation
% Two types: Try different structures and
Backtracking parser backtrack if it does not matched
Predictive parser the input

Guess the structure of the parse tree
from the next input ng 4

Parse Trees and Derivations

E
E/|\E E=E+E
; id + E
d 5 ™ =id + E * E
L (= id + id * E
Top-down parsing =id +id * id

2301373 Chapter 4 Parsing

Top-down Parsing

& What does a parser need to decide?
Which production rule is to be used at each point
of time ?

% How to guess?

& What is the guess based on?

What is the next token?
Reserved word if, open parentheses, etc.

What is the structure to be built?
If statement, expression, etc.

2301373 Chapter 4 Parsing 6

Top-down Parsing

¢ Why is it difficult?

Cannot decide until later

Next token: if Structure to be built; St
St — MatchedSt | UnmatchedSt

UnmatchedSt —
if (E) St| if (E) MatchedSt else UnmatchedSt
MatchedSt — if (E) MatchedSt else MatchedSt |...

Production with empty string

Next token: id Structure to be built: par
par — parlList | A
parList — exp , parList | exp

2301373 Chapter 4 Parsing

Recursive-Descent

& Write one procedure for each set of
productions with the same nonterminal in
the LHS

& Each procedure recognizes a structure
described by a nonterminal.

& A procedure calls other procedures if it need
to recognize other structures.

& A procedure calls match procedure if it need
to recognize a terminal.

2301373 Chapter 4 Parsing

Recursive-Descent: Example

ES>EOF|F g.._
O_>+|' O = |
F—>(E)|ld F.=(E)]|id

procedure F procedure E

{ switch token
{ case (: match(‘(");
E;
match(‘)’);
case id: match(id);
default: error:;

2301373

{ E;O; F

Chapter 4 Parsing

& For this grammar:

We cannot decide which
rule to use for E, and

If we choose E - EOF,
it leads to infinitely

.} recursive loops.

¢ Rewrite the grammar
into EBNF

procedure E

{ F
while (token=+ or token=-)
{ O/F }

}

Match procedure

procedure match (expTok)

{ if (token==expTok)
then getToken
else error

}

¢ The token is not consumed until getToken
iS executed.

2301373 Chapter 4 Parsing

10

Problems in Recursive-Descent

¢ Difficult to convert grammars into EBNF

& Cannot decide which production to use at
each point

& Cannot decide when to use A-production
A— A

2301373 Chapter 4 Parsing 11

LL(1) Parsing

s LL(1)
Read input from (L) left to right
Simulate (L) leftmost derivation
1 lookahead symbol

% Use stack to simulate leftmost derivation

Part of sentential form produced in the leftmost
derivation is stored in the stack.

Top of stack is the leftmost nonterminal symbol
in the fragment of sentential form.

2301373 Chapter 4 Parsing 12

Concept of LL(1) Parsing

& Simulate leftmost derivation of the input.
& Keep part of sentential form in the stack.

& If the symbol on the top of stack is a
terminal, try to match it with the next input
token and pop it out of stack.

& If the symbol on the top of stack is a
nonterminal X, replace it with Y if we have a
production rule X — Y.

Which production will be chosen, if there are
both X > Yand X - Z7?

2301373 Chapter 4 Parsing 13

E =>TX

—=>FNX

— (E)NX

— (TX) NX

FNX) NX

nNX) NX

nX) NX
nATX) NX
n+TX) NX
n+FNX) NX

n+ (E) NX) NX
TX) NX) NX
FNX) NX) NX
nNX) NX) NX
nX)NX)NX

JUJUdUduddudidiiduiiy

oy Re e B S e Bie Ro Re R e

=
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
= (

(
(
(
(
(
(
(
(
(
(
(
(

SO

2301373

g_'Zsz::s

-
=
M

L{nNZS

Example of LL(1) Parsing

)

Q.

ter 4 Parsing

(n{)]) *n
)
ES>TX
X—>ATX|A
A—>+|-

T—>FN
N->MFN|A
Mo+

F—>E) | n

14

LL(1) Parsing Algorithm

Push the start symbol into the stack

WHILE stack is not empty ($ is not on top of stack) and the
stream of tokens is not empty (the next input token is not $)

SWITCH (Top of stack, next token)
CASE (terminal a, a):
Pop stack; Get next token
CASE (nonterminal A, terminal a):
IF the parsing table entry M[A, a] is not empty THEN

Get A »>X, X, ... X, from the parsing table entry M[A,
a] Pop stack;

Push X, ... X, X, Into stack in that order
ELSE Error
CASE ($,$): Accept

_ _
2301373 Chapter 4 Parsing 15

LL(1) Parsing Table

If the nonterminal NVis on
the top of stack and the
next token is £ which

production rule to use?

% Choosearule N> X t
such that Y
X=* tY or Q

ct

X=*\A and S=* WNtY

2301373 Chapter 4 Parsing

16

First Set

% Let XbeAorbein Vor 7.

& First(X') is the set of the first terminal in any
sentential form derived from X.

If X'is a terminal or A, then First(X) ={X}.

If Xis a nonterminal and X —> X, X,... X, is a
rule, then
First(X,) -{\} is a subset of First(X)

First(X;)-{\} is a subset of First(X) if for all j</
First(X)) contains {}

A is in First(X) if for all /<n First(X)contains A

2301373 Chapter 4 Parsing 17

exp — exp addop term |
term

addop — + | -

term — term mulop factor |
factor

mulop — *

factor — (exp) | num

First(addop) = {+, -}
First(mulop) = {*}
First(factor) = {(, num}
First(term) = {(, num}
First(exp) = {(, num}

2301373

Chapter 4 Parsing

Examples of First Set

st — ifst | other

ifst — if (exp) st elsepart
elsepart — else st | A

exp —> 011

First(exp) ={0,1}
First(elsepart) = {else, A}
First(ifst) = {if}

First(st) = {if, other}

18

Algorithm for finding First(A)

For all terminals a, First(a) = {a If A'is a terminal or A,
 First(a) = {a} <3 ™ then First(A) = {A}.

For all nonterminals A, First(A) := {} If A is a nonterminal,
While there are changes to any First(A) then for each rule A
—X4 X, ... X, First(A)
ForeachruleA— X, X, ... X, contains First(X,) - {A}.
i If also for some i<n,
For each X, .In. {)9,) ST & } o (X:), First' -
If for all j<i First(X) contams;/ and First(X.) contain A,
A, then First(A) contains
First(Xi,)-{A}.
Then If First(X,), First(X,), ...,
' AW ' and First(X,,) contain A,
 add First(X)-{Ap o RirsgA] g PR <o
If A is in First(X,), First(X,), ..., contains A.
and First(X,)

2301373Therl add }" to FirSt(A)hapter4 Parsing 19

Finding First Set: An Example

exp — term exp’

exp’ — addop term exp’ | A
addop — + | -

term — factor term’

term” — mulop factor term’ | A
mulop — *

factor — (exp) | num

2301373 Chapter 4 Parsing

First
exp
exp’ A
addop |* -
term | (num
term’ |2
mulop | *
factor |(num

Follow Set

% Let $ denote the end of input tokens

& If A is the start symbol, then $ is in
Follow(A).

& If thereisarule B —- X AY, then First(Y) -
{\} is in Follow(A).

& If there is production B - X AY and A is in
First(Y), then Follow(A) contains Follow(B).

2301373 Chapter 4 Parsing 21

Algorithm for Finding Follow(A)

Follow(S) ={$} <« — ~1If Ais the start
FOR each A in V-{S} symbol, then $ is
Follow(A)=(} in Follow(A).
WHILE change is made to some Follow sets It t\:\;rez 'Sjcr?equu'e A
FOR each productionA — X; X, ... X, First(Z) - {3} is in
FOR each nonterminal X, e Follow(X).
Add First(X;,q Xi...X)-{A} If there is production
into Follow(X). B> XAYandx
(NOTE: If i=n, X;,q X:\0..X.= A) is in First(Y), then
IF A is in First(X.., X.,,...X) THEN Follow(A) contains

Add Follow(A) to Follow(X) Follow(B).

2301373 Chapter 4 Parsing 22

Finding Follow Set: An Example

exp — term exp’ First | Follow

exp’ — addop term exp’ | A

(num | $)
addop — + | - <Xp

term — factor term’ exp Aot $)

term’ — mulop factor term’ |1|addop |* -

mulop — * term |[(numf- $)
factor > (exp) | num term’ |A*
mulop | *

factor |(num

2301373 Chapter 4 Parsing

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production A — X
FOR each token a in First(X)
A — Xisin M(A, a)
IF A is in First(X) THEN
FOR each element a in Follow(A)
Add A — X to M(A, a)

2301373 Chapter 4 Parsing

24

Example: Constructing LL(1) Parsing Table

First $Ifollow (D " S
exp {(, num} {5.)} + |- n
exp’ {+,-, A} {31
addop {+,-} {(,;num} | €Xp 1 1
term {(,num} {+,-,), 9} —
term’ {*, A} {+ ,,),$} exp 3 1212 3
mulop {*) {(,num}
factor {(, num} {*,+,-,),8pddop 4 |5
1exp - term exp’
2 exp’ —> addop term exp’ term 6 6
4 addop - +
a ’
5 addoB - - term 8 8 |8 / 8
g :erm,—> factlor t(i-:;m;, , ,
actor term
Btorm > mulop 9
?orr}ulc%gre *(exp)
ac
11 factor j) nump factor 10 11
Wm B Chaptemarsing B 25

LL(1) Grammar

& A grammar is an LL(1) grammar if its LL(1)
parsing table has at most one production in
each table entry.

2301373 Chapter 4 Parsing

26

LL(1) Parsing Table for non-LL(1) Grammar

1 exp — exp addop term

2 exp — term

3 term — term mulop factor
4 term — factor

5 factor — (exp) (|)|+]|-/*|num $

6 factor - num exp | 1,2 1,2

7 addop — + ¢ 34 34

8 addop — - erm : ’

9 mulop —> * factor | 5 6
addop 78

First(exp) = { (, num } mulop 9

First(term) = { (, num }
First(factor) = { (, num }
First(addop) = { +, - }
First(mulop) = { * }

2301373 Chapter 4 Parsing 27

Causes of Non-LL(1) Grammar

& What causes grammar being non-LL(1)?
_eft-recursion
_eft factor

2301373 Chapter 4 Parsing

28

Left Recursion

¢ Immediate left & Can be removed very
recursion easily
A>AX|Y A=Y X* A>YA AN XA
A->AX | AX .| AX, A Y A|Y,A YA,
RARAAA A - X A X, A X A A

A={Y1, Yz,..., Ym} {Xll Xz, Iy Xn}*

% General left recursion & Can be removed when
A=>X=>*%AY there is no empty-string
production and no cycle
in the grammar

2301373 Chapter 4 Parsing 29

Removal of Immediate Left Recursion

exp — exp + term | exp - term | term

term — term * factor | factor

factor - (exp) | num

.

exp — term exp’ exp = term (£ term)*
exp’ — + term exp’ | - term exp’ | A

term — factor term’ term = factor (* factor)*
term’ — * factor term’ | A

factor - (exp) | num

2301373 Chapter 4 Parsing 30

General Left Recursion

4% Bad News!

Can only be removed when there is no empty-
string production and no cycle in the grammar.

% Good News!!!!

Never seen in grammars of any programming
languages

2301373 Chapter 4 Parsing 31

Left Factoring

& Left factor causes non-LL(1)

Given A > XY | XZ.BothA—- XYand A - XZ
can be chosen when A is on top of stack and a
token in First(X) is the next token.

A XY|XZ

A—->XAandA' ->Y |/Z

2301373 Chapter 4 Parsing 32

Example of Left Factor

ifSt > iIf (exp) stelsest | if (exp)st

ifSt — if (exp) st elsePart
elsePart — else st | A

seq — st ; seq | st

seq — st seq’
seq’ —;seq | A

2301373 Chapter 4 Parsing

33

