
Parsing

2301373 Chapter 4 Parsing 2

Outline

Top-down v.s. Bottom-up

Top-down parsing

 Recursive-descent
parsing

 LL(1) parsing

 LL(1) parsing
algorithm

 First and follow sets

 Constructing LL(1)
parsing table

 Error recovery

Bottom-up parsing

 Shift-reduce parsers

 LR(0) parsing

 LR(0) items

 Finite automata of items

 LR(0) parsing algorithm

 LR(0) grammar

 SLR(1) parsing

 SLR(1) parsing algorithm

 SLR(1) grammar

 Parsing conflict

2301373 Chapter 4 Parsing 3

Introduction

Parsing is a process that constructs a
syntactic structure (i.e. parse tree) from the
stream of tokens.

We already learn how to describe the
syntactic structure of a language using
(context-free) grammar.

So, a parser only need to do this?

Stream of tokens

Context-free grammar
Parser Parse tree

2301373 Chapter 4 Parsing 4

Top–Down Parsing Bottom–Up Parsing

A parse tree is created
from root to leaves

The traversal of parse
trees is a preorder
traversal

Tracing leftmost
derivation

Two types:

 Backtracking parser

 Predictive parser

A parse tree is created
from leaves to root

The traversal of parse
trees is a reversal of
postorder traversal

Tracing rightmost
derivation

More powerful than
top-down parsing

Try different structures and

backtrack if it does not matched

the input

Guess the structure of the parse tree

from the next input

2301373 Chapter 4 Parsing 5

Parse Trees and Derivations

E  E + E
 id + E
 id + E * E
 id + id * E
 id + id * id

E  E + E
 E + E * E
 E + E * id
 E + id * id
 id + id * id

Top-down parsing

Bottom-up parsing

id

E *E

id

id

+

E

E E

+

*

id

E

E

id

E

E

id

E

2301373 Chapter 4 Parsing 6

Top-down Parsing

What does a parser need to decide?

 Which production rule is to be used at each point
of time ?

How to guess?

What is the guess based on?

 What is the next token?

 Reserved word if, open parentheses, etc.

 What is the structure to be built?

 If statement, expression, etc.

2301373 Chapter 4 Parsing 7

Top-down Parsing

Why is it difficult?

 Cannot decide until later

 Next token: if Structure to be built: St
 St  MatchedSt | UnmatchedSt

 UnmatchedSt 

if (E) St| if (E) MatchedSt else UnmatchedSt

 MatchedSt  if (E) MatchedSt else MatchedSt |...

 Production with empty string

 Next token: id Structure to be built: par
 par  parList | 

 parList  exp , parList | exp

2301373 Chapter 4 Parsing 8

Recursive-Descent

Write one procedure for each set of
productions with the same nonterminal in
the LHS

Each procedure recognizes a structure
described by a nonterminal.

A procedure calls other procedures if it need
to recognize other structures.

A procedure calls match procedure if it need
to recognize a terminal.

2301373 Chapter 4 Parsing 9

Recursive-Descent: Example

E  E O F | F

O  + | -

F  (E) | id

procedure F

{ switch token

{ case (: match(‘(‘);

E;

match(‘)’);

case id: match(id);

default: error;

}

}

For this grammar:
 We cannot decide which

rule to use for E, and
 If we choose E  E O F,

it leads to infinitely
recursive loops.

Rewrite the grammar
into EBNF

procedure E

{ F;

while (token=+ or token=-)

{ O; F; }

}

procedure E
{ E; O; F; }

E ::= F {O F}

O ::= + | -
F ::= (E) | id

2301373 Chapter 4 Parsing 10

Match procedure

procedure match(expTok)

{ if (token==expTok)

then getToken

else error

}

The token is not consumed until getToken

is executed.

2301373 Chapter 4 Parsing 11

Problems in Recursive-Descent

Difficult to convert grammars into EBNF

Cannot decide which production to use at
each point

Cannot decide when to use -production
A

2301373 Chapter 4 Parsing 12

LL(1) Parsing

LL(1)

 Read input from (L) left to right

 Simulate (L) leftmost derivation

 1 lookahead symbol

Use stack to simulate leftmost derivation

 Part of sentential form produced in the leftmost
derivation is stored in the stack.

 Top of stack is the leftmost nonterminal symbol
in the fragment of sentential form.

2301373 Chapter 4 Parsing 13

Concept of LL(1) Parsing

Simulate leftmost derivation of the input.

Keep part of sentential form in the stack.

If the symbol on the top of stack is a
terminal, try to match it with the next input
token and pop it out of stack.

If the symbol on the top of stack is a
nonterminal X, replace it with Y if we have a
production rule X  Y.
 Which production will be chosen, if there are

both X  Y and X  Z ?

2301373 Chapter 4 Parsing 14

Example of LL(1) Parsing

(n + (n)) * n $

$

E

ETX

XATX | 
A + | -
TFN

NMFN | 
M *
F (E) | n

T

X

F

N

)

E

(T

X

F

N

n A

T

X

+ F

N

(

E

)

T

X

F

N

n

M

F

N

*

n

Finished

E TX
FNX
(E)NX
(TX)NX
(FNX)NX
(nNX)NX
(nX)NX
(nATX)NX
(n+TX)NX
(n+FNX)NX
(n+(E)NX)NX
(n+(TX)NX)NX
(n+(FNX)NX)NX
(n+(nNX)NX)NX
(n+(nX)NX)NX
(n+(n)NX)NX
(n+(n)X)NX
(n+(n))NX
(n+(n))MFNX
(n+(n))*FNX
(n+(n))*nNX
(n+(n))*nX
(n+(n))*n

2301373 Chapter 4 Parsing 15

LL(1) Parsing Algorithm

Push the start symbol into the stack

WHILE stack is not empty ($ is not on top of stack) and the
stream of tokens is not empty (the next input token is not $)

SWITCH (Top of stack, next token)

CASE (terminal a, a):

Pop stack; Get next token

CASE (nonterminal A, terminal a):

IF the parsing table entry M[A, a] is not empty THEN

Get A X1 X2 ... Xn from the parsing table entry M[A,
a] Pop stack;

Push Xn ... X2 X1 into stack in that order

ELSE Error

CASE ($,$): Accept

OTHER: Error

2301373 Chapter 4 Parsing 16

LL(1) Parsing Table

If the nonterminal N is on
the top of stack and the
next token is t, which
production rule to use?

Choose a rule N  X
such that

 X * tY or

 X *  and S * WNtY

N

Q

t … … …

X Y

t

Y

t

N X

2301373 Chapter 4 Parsing 17

First Set

Let X be  or be in V or T.

First(X) is the set of the first terminal in any
sentential form derived from X.

 If X is a terminal or , then First(X) ={X }.

 If X is a nonterminal and X X1 X2 ... Xn is a
rule, then

 First(X1) -{} is a subset of First(X)

 First(Xi)-{} is a subset of First(X) if for all j<i
First(Xj) contains {}

  is in First(X) if for all j≤n First(Xj)contains 

2301373 Chapter 4 Parsing 18

Examples of First Set

exp  exp addop term |

term

addop  + | -

term  term mulop factor |
factor

mulop  *

factor  (exp) | num

First(addop) = {+, -}

First(mulop) = {*}

First(factor) = {(, num}

First(term) = {(, num}

First(exp) = {(, num}

st  ifst | other
ifst  if (exp) st elsepart
elsepart  else st | 
exp  0 | 1

First(exp) = {0,1}

First(elsepart) = {else, }

First(ifst) = {if}

First(st) = {if, other}

2301373 Chapter 4 Parsing 19

Algorithm for finding First(A)

For all terminals a, First(a) = {a}

For all nonterminals A, First(A) := {}

While there are changes to any First(A)

For each rule A  X1 X2 ... Xn

For each Xi in {X1, X2, …, Xn }

If for all j<i First(Xj) contains
,

Then

add First(Xi)-{} to First(A)

If  is in First(X1), First(X2), ...,
and First(Xn)

Then add  to First(A)

If A is a terminal or ,
then First(A) = {A}.

If A is a nonterminal,
then for each rule A
X1 X2 ... Xn, First(A)
contains First(X1) - {}.

If also for some i<n,
First(X1), First(X2), ...,
and First(Xi) contain ,
then First(A) contains
First(Xi+1)-{}.

If First(X1), First(X2), ...,
and First(Xn) contain ,
then First(A) also
contains .

2301373 Chapter 4 Parsing 20

Finding First Set: An Example

exp  term exp’

exp’  addop term exp’ | 

addop  + | -

term  factor term’

term’  mulop factor term’ | 

mulop  *

factor  (exp) | num

First

exp

exp’

addop

term

term’

mulop

factor



+ -



*

(num

+ -

(num

*

(num

2301373 Chapter 4 Parsing 21

Follow Set

Let $ denote the end of input tokens

If A is the start symbol, then $ is in
Follow(A).

If there is a rule B  X A Y, then First(Y) -
{} is in Follow(A).

If there is production B  X A Y and  is in
First(Y), then Follow(A) contains Follow(B).

2301373 Chapter 4 Parsing 22

Algorithm for Finding Follow(A)

Follow(S) = {$}

FOR each A in V-{S}

Follow(A)={}

WHILE change is made to some Follow sets

FOR each production A  X1 X2 ... Xn,

FOR each nonterminal Xi

Add First(Xi+1 Xi+2...Xn)-{}

into Follow(Xi).

(NOTE: If i=n, Xi+1 Xi+2...Xn= )

IF  is in First(Xi+1 Xi+2...Xn) THEN

Add Follow(A) to Follow(Xi)

If A is the start
symbol, then $ is
in Follow(A).

If there is a rule A 
Y X Z, then
First(Z) - {} is in
Follow(X).

If there is production
B  X A Y and 
is in First(Y), then
Follow(A) contains
Follow(B).

2301373 Chapter 4 Parsing 23

Finding Follow Set: An Example

exp  term exp’

exp’  addop term exp’ | 

addop  + | -

term  factor term’

term’  mulop factor term’ |

mulop  *

factor  (exp) | num

First

exp

exp’

addop

term

term’

mulop

factor



+ -



*

(num

+ -

(num

*

(num

Follow
)

+ -

$(num

(num

+ -

*

$

(num

$

*

+ -

$

$+ - $

))

)

))

)

2301373 Chapter 4 Parsing 24

Constructing LL(1) Parsing Tables

FOR each nonterminal A and a production A  X

FOR each token a in First(X)

A  X is in M(A, a)

IF  is in First(X) THEN

FOR each element a in Follow(A)

Add A  X to M(A, a)

2301373 Chapter 4 Parsing 25

Example: Constructing LL(1) Parsing Table

First Follow
exp {(, num} {$,)}
exp’ {+,-, } {$,)}
addop {+,-} {(,num}
term {(,num} {+,-,),$}
term’ {*, } {+,-,),$}
mulop {*} {(,num}
factor {(, num} {*,+,-,),$}

1 exp  term exp’
2 exp’  addop term exp’
3 exp’  
4 addop  +
5 addop  -
6 term  factor term’
7 term’  mulop factor term’
8 term’  
9 mulop  *
10 factor  (exp)
11 factor  num

() + - * n $

exp

exp’

addop

term

term’

mulop

factor

1 1

2 23 3

4 5

6 6

78 8 8 8

9

10 11

2301373 Chapter 4 Parsing 26

LL(1) Grammar

A grammar is an LL(1) grammar if its LL(1)

parsing table has at most one production in
each table entry.

2301373 Chapter 4 Parsing 27

LL(1) Parsing Table for non-LL(1) Grammar

1 exp  exp addop term
2 exp  term
3 term  term mulop factor
4 term  factor
5 factor  (exp)
6 factor  num
7 addop  +
8 addop  -
9 mulop  *

First(exp) = { (, num }
First(term) = { (, num }
First(factor) = { (, num }
First(addop) = { +, - }
First(mulop) = { * }

() + - * num $
exp 1,2 1,2

term 3,4 3,4
factor 5 6

addop 7 8

mulop 9

2301373 Chapter 4 Parsing 28

Causes of Non-LL(1) Grammar

What causes grammar being non-LL(1)?

 Left-recursion

 Left factor

2301373 Chapter 4 Parsing 29

Left Recursion

Immediate left
recursion

 A  A X | Y

 A  A X1 | A X2 |…| A Xn

| Y1 | Y2 |... | Ym

General left recursion

 A => X =>* A Y

Can be removed very
easily

 A  Y A’, A’  X A’| 

 A  Y1 A’ | Y2 A’ |...| Ym A’,
A’  X1 A’| X2 A’|…| Xn A’| 

Can be removed when
there is no empty-string
production and no cycle
in the grammar

A=Y X*

A={Y1, Y2,…, Ym} {X1, X2, …, Xn}*

2301373 Chapter 4 Parsing 30

Removal of Immediate Left Recursion

exp  exp + term | exp - term | term

term  term * factor | factor

factor  (exp) | num

Remove left recursion

exp  term exp’

exp’  + term exp’ | - term exp’ | 

term  factor term’

term’  * factor term’ | 

factor  (exp) | num

exp = term ( term)*

term = factor (* factor)*

2301373 Chapter 4 Parsing 31

General Left Recursion

Bad News!

 Can only be removed when there is no empty-
string production and no cycle in the grammar.

Good News!!!!

 Never seen in grammars of any programming
languages

2301373 Chapter 4 Parsing 32

Left Factoring

Left factor causes non-LL(1)

 Given A  X Y | X Z. Both A  X Y and A  X Z
can be chosen when A is on top of stack and a
token in First(X) is the next token.

A  X Y | X Z

can be left-factored as

A  X A’ and A’  Y | Z

2301373 Chapter 4 Parsing 33

Example of Left Factor

ifSt  if (exp) st else st | if (exp) st

can be left-factored as

ifSt  if (exp) st elsePart

elsePart  else st | 

seq  st ; seq | st

can be left-factored as

seq  st seq’

seq’ ; seq | 

