Chapter (10)

Flow in conduits

SUMMARY

Dr. MUNZER EBAID

 MECH. ENG. DEPT.
Laminar Flow and Turbulent Flow

Identification of Flow is based on Reynolds Number

Re $\leq 2000 \rightarrow$ Laminar
$\operatorname{Re} \geq 3000 \longrightarrow$ Turbulent

$$
2000<\mathrm{Re}<3000 \longrightarrow \text { Unpredictable }
$$

There are several equations for calculating Reynolds number in a pipe.

$$
\operatorname{Re}=\frac{V D}{\nu}=\frac{\rho V D}{\mu}=\frac{4 Q}{\pi D v}=\frac{4 \dot{m}}{\pi \bar{D} \mu}
$$

Developing Flow and Fully Developed Flow

Developing flow is the region whereby the velocity profile is changing, hence wall shear stress changes as well. Flow non-uniform.

Developed flow is the region whereby the velocity profile is constant, hence wall shear stress remain constant. Flow uniform.

Shear Stress Distribution in a Pipe Flow

1. Shear distribution is Linear.
2. Velocity distribution is Parabolic.

Velocity Profile In A Laminar Flow

$$
\begin{equation*}
V=\frac{r_{0}^{2}-r^{2}}{4 \mu}\left[-\frac{d}{d s}(p+\gamma z)\right]=-\left(\frac{r_{0}^{2}-r^{2}}{4 \mu}\right)\left(\frac{\gamma \Delta l}{\Delta L}\right) \tag{A}
\end{equation*}
$$

The maximum velocity occurs at $r=r_{0}$

$$
\begin{equation*}
V_{\mathrm{trax}}=-\left(\frac{r_{0}^{2}}{4 \mu}\right)\left(\frac{\gamma \Delta h}{\Delta L}\right) \tag{B}
\end{equation*}
$$

Combining Eqn. (A) and Eqn. (B), we have:

$$
V(r)=-\left(\frac{r_{0}^{2}-r^{2}}{4 \mu}\right)\left(\frac{\gamma \Delta h}{\Delta L}\right)=V_{\max }\left(1-\left(\frac{r}{r_{0}}\right)^{2}\right)
$$

Volume Flow $\quad Q=\frac{\pi r_{0}^{4}}{8 \mu}\left[-\frac{d}{d s}(p+\gamma z)\right]$

Head Loss In A Laminar Flow

Here the bar over the V has been omitted to conform to the standard practice of denoting the mean velocity in one-dimensional flow analyses by V without the bar.

Equation above shows that Head Loss in Laminar Flow varies Linearly with Velocity

Head Loss in Laminar Flow is influenced by:

1. Viscosity.
2. Pipe length.
3. Specific weight.
4. Pipe diameter.

Velocity Distribution in a Smooth Pipe for Turbulent Flow

The time-average velocity distribution is often described using an equation called the power-law formula.

$$
\frac{u(r)}{u_{\text {max }}}=\left(\frac{r_{0}-r}{r_{0}}\right)^{m}
$$

2. Turbulent Boundary Layer, Logarithmic Velocity

 Equations$$
\frac{\frac{u}{u_{*}}=2.44 \operatorname{In} \frac{u_{*}\left(r-r_{0}\right)}{v}+5.56}{100<\frac{u_{*}\left(r-r_{0}\right)}{v}<500}
$$

Velocity Distribution in a Rough Pipe for Turbulent Flow

$$
\begin{equation*}
\frac{u}{u_{*}}=5.75 \log \frac{y}{k}+B \tag{10.25}
\end{equation*}
$$

```
Y = Distance from rough wall.
K = Height of the roughness.
B = Function of type, concentration and size variation of the
roughness.
```

Nikusadse carried out a number of tests on flow in pipes that were roughened with uniform sized sand grain. The results were plotted graphically as shown in the next slide

Nikusadse found out from these tests on flow in pipes that $(B=8.5)$

Friction Factor, (f) for Rough Pipes

Nikuradse' Curve

The results from Nikusadse's graph shows the followings:

Table 10.3 EFFECTS OF WALL ROUGHNESS

Type of Flow	Parameter Ranges		Influence of Parameters on f
Laminar Flow	$\operatorname{Re}<2000$	NA	f depends on Reynolds number
			f is independent of wall roughness $\left(k_{s} / D\right)$
			f depends on Reynolds number
Turbulent Flow, Smooth Tube	$\mathrm{Re}>3000$	$\left(\frac{k_{s}}{D}\right) \operatorname{Re}<10$	f is independent of wall roughness $\left(k_{s} / D\right)$
			f depends on Reynolds number
Transitional Turbulent Flow	$\mathrm{Re}>3000$	$10<\left(\frac{k_{3}}{D}\right) \operatorname{Re}<$	f depends on wall roughness (k_{s} / D)
			f is independent of Reynolds number
Fully Rough Turbulent Flow	$\mathrm{Re}>3000$	$\left(\frac{k_{s}}{D}\right) \operatorname{Re}>1000$	f depends on wall roughness (k_{s} / D)

Head Loss in Pipes

Combined (total) Head Loss

Combined (total) Head Loss

Pipe Head Loss (major) + Component Head Loss minor)
Component head loss: is associated with flow through devices such as devices, bends, and tees and is called Minor Head Loss.

Pipe head loss: is associated with fully developed flow in conduits and is called major head loss. This loss is predicted with the Darcy-Weisbach equation.

Darcy-Weisbach Equation

Assumptions: Fully developed, steady flow in a round pipe.

$$
h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}
$$

1. The flow should be Fully developed and steady.
2. Applies for Laminar \& Turbulent flow.
3. Applies for either round pipes or non round pipes.

Friction factor

$$
f \equiv \frac{\left(4-\tau_{0}\right)}{\left(\rho V^{2} / 2\right)} \approx \frac{\text { shear stress acting at the wall }}{\text { kinetic pressure }}
$$

When (V) is not known and only $\left(h_{t}\right)\left(\frac{K_{s}}{D}\right)$ are known, Hence $\left(R_{e} \sqrt{f}\right),\left(\frac{K_{s}}{D}\right)$ plot in Moody's diagram is used.

From the previous slide, the problems for uniform flow in a pipe can be summarized as shown in the table below:

What to Calculate	Given Values	Calculated Values in order	Values read from Moody's diagram	Final Value required
Case (A)	$K_{S}, D, L,{ }^{\text {d }}$	$V,{ }_{R}, \frac{K_{s}}{D}$	f	h_{f}
Case (B) Flow Rate	K_{s}, D, L, h_{f}	$\frac{K_{S}}{D}, \frac{D^{3 / 2}}{v}\left(\frac{2 g h_{t}}{L}\right)^{1 / 2}$	f, R_{e}	$\stackrel{V}{V}, \mathcal{R}, \mathcal{Q}$
Case (C)	$K_{S,} h_{f}, Q \in L$	$\begin{aligned} & \text { Assume a value for }(D) \\ & \text { then calculatie }\left[\frac{K_{s}}{D}\right), V, R_{e} \end{aligned}$		D

$$
h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g}
$$

Explicit Equations for Head Loss h_{f},Discharge (Q) and Diameter (D) as an alternative to Moody's Diagrams

Case (A) Given

$$
K_{S}, D, L, Q \circ r n h_{\infty}=?
$$

Swamee \& J ain

 Formula$$
\begin{equation*}
f=\frac{0.25}{\left[\log _{10}\left(\frac{k_{s}}{3.7 D}+\frac{5.74}{\mathrm{Re}^{0}}\right)^{2}\right.} \rightarrow h_{f}=f \frac{L}{D} \frac{V^{2}}{2 g} \tag{26}
\end{equation*}
$$

Case (B)

Given K_{s}, D, L, h_{f}
$Q=?$

$$
\begin{equation*}
Q=-2.22 D^{5 / 2} \sqrt{g h_{f} / L} \log \left(\frac{k_{s}}{3.7 D}+\frac{1.78 \nu}{D^{3 / 2} \sqrt{g h_{f} / L}}\right) \tag{10.27}
\end{equation*}
$$

Case (C) Given $K_{S,} h_{f}, \&, L \quad D=$?

Streeter \& Wile

$$
D=0.66\left[k_{s}^{1.25}\left(\frac{L Q^{2}}{g h_{f}}\right)^{4.75}+\nu Q^{9.4}\left(\frac{L}{g h_{f}}\right)^{5.2}\right]^{0.04}
$$

Minor Losses from Flow in Pipe Inlets and Fittings

Minor Loss Equation

Separation Zone where streamlines converges and velocity increases, hence pressure decreases, hence Losses Occurs

GRADE LINES

Dr. Munzer Ebaid

ENERGY PRI NCI PLE

1. The height of the

line is called the Hydraulic Grade Line (HGL)
2. The height of the $\left[\frac{p}{\gamma}+\alpha \frac{V^{2}}{2 g}\right]$ line is called the Energy Grade Line (HGL
3. EGL is above HGL by a distance $\left[\alpha \frac{V^{2}}{2 g}\right]$
4. For a lake or a reservoir, EGL and HGL will Coincide because the velocity is zero.
5. Head loss for a flow in a pipe as shown in the Figure always means that the EGL will slope downwards in the direction of flow. (i.e in the direction of decreasing pressure head)
6. For a steady flow in a pipe where the diameter, roughness and shape is the same, the slope $\left[\frac{\Delta h}{\Delta L}\right]$ is constant

Pipe Systems

Simple Pump in a Pipe Systems

$$
h_{p}=\left(z_{2}-z_{1}\right)+\frac{V^{2}}{2 g}\left(1++\sum K_{L}+\frac{f L}{D}\right) \quad h_{p}=\left(z_{2}-z_{1}\right)+\frac{Q^{\not} / A^{2}}{2 g}\left(1++\sum K_{L}+\frac{f L}{D}\right)
$$

$$
h_{p}=f(\&) \operatorname{Pr} \text { ovided other parameter are given }
$$

The Eqn. Above shows that for any Given Discharge, a certain Head must be supplied to maintain that flow.

Pipe in Parallel

Head Loss $=h_{L}=\left(\frac{p_{1}}{\gamma}+z_{1}\right)-\left(\frac{p_{2}}{\gamma}+z_{2}\right)$
Eqn.(10.16), page (373)

$$
\begin{gathered}
h_{L_{1}}=h_{L_{2}} \\
f_{1} \frac{L_{1}}{D_{1}} \frac{V_{1}^{2}}{2 g}=f_{2} \frac{L_{2}}{D_{2}} \frac{V_{2}^{2}}{2 g}
\end{gathered}
$$

Then

$$
\left(\frac{V_{1}}{V_{2}}\right)^{2}=\frac{f_{2}}{f_{1}} \frac{L_{2}}{L_{1}} \frac{D_{1}}{D_{2}} \quad \text { or } \quad \frac{V_{1}}{V_{2}}=\left(\frac{f_{2}}{f_{1}} \frac{L_{2}}{L_{1}} \frac{D_{1}}{D_{2}}\right)^{1 / 2}
$$

Pipe Networks

$$
\begin{aligned}
& \text { S = Sources } \\
& \mathbf{L}=\text { Loads }
\end{aligned}
$$

The requirements of the pipe networks design are:

1. Layout of the pipes.
2. Pipe sizes.
3. Future loads.

Water Distribution System

The objective of the Pipe Network Design is to arrive at a network of pipes that will deliver the Desion Flow at the Desion Pressure for Minimum Cost

Cost will include (materials and construction, maintenance and operating cost)

Pipe Networks

For the design of the Pipe Networks, two conditions must be satisfied:

1. Continuity must be satisfied.
2. Head loss between any two junctions must be the same regardless of the path.

The algebraic sum of the head losses around a given loop must be equal to zero

Condition (1)

$$
\mathscr{C}_{1}^{\&}=\mathscr{Q}_{2}^{\alpha}+\mathscr{Q}_{3}^{x} \quad \text { Junction (B) }
$$

Condition (2)

$$
h_{A B}+h_{B C}=h_{A D}+h_{D C}
$$

END OF SUMMARY

