COMPRESSIBLE FLOW SUMMARY

CHAPTER (12)

DR. MUNZER EBAID MECH. DEPT.

Application of Compressible Flows

- a) <u>High speed flight</u> through air. (Concorde plane)
- b) Flow of air through a **<u>Compressor</u>**.
- c) Flow of steam through a **<u>Turbine</u>**.
- d) Natural gas piped from producer to consumer.
- e) Compressed gas tanks.

Speed of Sound (Sonic Velocity)

Section of a Pressure Wave Propagate at a Velocity (c)

Definition of Speed of Sound

1. The process of compression of gases layers at a finite velocity is called sonic velocity.

2. The process of compression is like a wave traveling through the medium is called sonic velocity.

Sound Waves by definition can be regarded as:

1) Reversible.

2) Adiabatic.

Reversible and Adiabatic means Isentropic Process, therefore

$$c^{2} = \frac{\partial p}{\partial \rho}\Big|_{s}$$
(12.8)

To reiterate, the speed of sound is the speed at which an infinitesimal pressure disturbance travels through a fluid. Waves of finite strength (finite pressure change across the wave) travel faster than sound waves. Sound speed is the *minimum* speed at which a pressure wave can propagate through a fluid.

$$c = \sqrt{kRT}$$

Mach Number

- **1)** M < 1 Subsonic Flow: V < C
- 2) M = 1 Transonic Flow or Sonic flow: V = C
- 3) M > 1 Supersonic Flow: V > C

Mach Number

Mach Number Relationships Summary

(1) **Temperature**
$$T_t = T \left(1 + \frac{k-1}{2} M^2 \right)$$

(2) Pressure

The total pressure in a compressible flow is defined as

$$p_t = p \left(1 + \frac{k - 1}{2} M^2 \right)^{k/(k - 1)}$$
(12.27)

(3) Density

$$\rho_t = \rho \left(1 + \frac{k-1}{2} M^2 \right)^{1/(k-1)}$$

Tables can be used to find the above properties

Adiabatic Flow

<u>Total Pressure</u> at upstream and downstream <u>are not the same</u> across a shock wave in an <u>Adiabatic</u> flow.

<u>Total Density at upstream and downstream are not the same</u> across a shock wave in an <u>Adiabatic</u> flow.

<u>Total Temperature</u> at upstream and downstream are the same across a shock wave as the process is <u>Adiabatic</u>.

Isentropic Flow

Total Pressure, Total Density and Total Temperature at upstream and downstream are the same across a shock wave in an **Isentropic** flow.

Kinetic Pressure

By definition

The kinetic pressure,
$$q = \rho V^2/2$$

$$q = \left(\frac{1}{2}\frac{PV^2}{RT}\right) = \left(\frac{1}{2}kP\frac{V^2}{kRT}\right) = \frac{k}{2}PM^2$$

Validation of Bernoulli's Equation for Compressible Flow

Thus applying Bernoulli equation would have led one to say that the flow was <u>Supersonic</u>, whereas the flow was actually <u>Subsonic</u>.

In the limit of low velocities $p_t/p \rightarrow 1$ the Bernoulli equation is valid for very low (M<<1) Mach numbers

Normal ShockWaves (NSW)

(NSW) are wave fronts normal to the flow across which a supersonic flow (M>1) is decelerated to subsonic flow (M<1) with an increase in static temp., pressure and density.

Control volume enclosing a normal shock wave in <u>Inviscid, Adiabatic,</u> <u>Steady Flow</u>

$$\frac{\mathbf{M}_{1}}{1+k\mathbf{M}_{1}^{2}} \left(1+\frac{k-1}{2}\mathbf{M}_{1}^{2}\right)^{1/2} = \frac{\mathbf{M}_{2}}{1+k\mathbf{M}_{2}^{2}} \left(1+\frac{k-1}{2}\mathbf{M}_{2}^{2}\right)^{1/2}$$

Then, solving this equation for M_2 as a function of M_1 , we obtain two solutions. One solution is trivial, $M_1 = M_2$, which corresponds to no shock wave in the control volume. The other solution gives the Mach number downstream of the shock wave:

$$M_2^2 = \frac{(k-1)M_1^2 + 2}{2kM_1^2 - (k-1)}$$
(12.41)

For
$$M_1 = M_2 = 1$$
 means we have a **Sound Wave** and in this case, no change
in pressure and temperature as the change by definition is
Infinitesimal.

Values of Mach Numbers can also be found from tables

Total pressure at upstream and downstream

<u>Total Pressure</u> at upstream and downstream <u>are not the same</u> across a shock wave in an <u>Adiabatic</u> flow.

<u>Total Density at upstream and downstream</u> <u>are not the same</u> across a shock wave in an <u>Adiabatic</u> flow.

Total Temperature at upstream and downstream are the same across a shock wave as the process is **Adiabatic**.

Laval Nozzle (Swedish Engineer)

The Laval nozzle is a duct of varying area that produces <u>Supersonic Flow</u>

Flow in Laval nozzle is assumed to be **ISENTROPIC**, hence <u>Total Temperature</u>, <u>Total</u> <u>Pressure and Total</u> <u>Density</u> are constant throughout the nozzle.

Area Ratio in Laval Nozzle

$$\frac{A}{A*} = \frac{1}{M} \left\{ \frac{1 + \left[(k-1)/2 \right] M^2}{(k+1)/2} \right\}^{(k+1)/2(k-1)}$$

Area Ratio in Laval Nozzle can be found from tables for both subsonic and supersonic flows.

Mass Flow Rate Through Laval Nozzle

$$\dot{m} = 0.685 \frac{p_t A_*}{\sqrt{RT_t}} \tag{12.59}$$

and for gases with k = 1.67,

$$\dot{m} = 0.727 \frac{p_t A_*}{\sqrt{RT_t}}$$
(12.60)

Classification of Nozzle Flow by Exit Condition

Distribution of Static Pressure and Mach Number in a Laval nozzle

09/10/2019

Dr. Munzer Ebaid

Critical pressure ratio at the throat

The Static Pressure to Total Pressure at the Throat is given as

which for air with k = 1.4 is

Critical Pressure ratio =
$$\frac{p_{\star}}{p_t} = 0.528$$

Classification of Nozzle Flow by Exit Conditions

<u>Back Pressure</u> is the pressure outside the Nozzle

Back Pressure = Exit Pressure (Ideally Expanded)

Example (12.11)

The Laval nozzle shown in the figure has an expansion ratio of 4 (exit area/ throat area). Air flows through the nozzle, and a normal shock wave occurs where the area ratio is 2. The total pressure upstream of the shock is 1 MPa. Determine the static pressure at the exit.

Truncated Nozzle

- <u>A Truncated Nozzle</u> is a <u>Laval Nozzle</u> <u>Cut Off</u> at the throat as shown in the figure.
- It is important to engineers because it is used as a Flow metering device for Compressible flow.

Mass Flow through a Truncated Nozzle

For gases with a ratio of specific heats of 1.4,

$$\dot{m} = 0.685 \frac{p_f A_*}{\sqrt{\text{RT}_f}}$$

For gases with k = 1.67,

$$\dot{m} = 0.727 \frac{p_f A_*}{\sqrt{\text{RT}_f}}$$

Dr. Munzer Ebaid

1. If $p_b/p_t < p_*/p_t$, the exit pressure is higher than the back pressure, so the exit flow must be sonic. Pressure equilibration is achieved after exit by a series of expansion waves. The mass flow is calculated using Eq. (12.58), where A_{*} is the area at the truncated station.

2. If $p_b/p_t > p_*/p_t$, the flow exits subsonically. If we were to irrationally assume that the flow exited at the speed of sound, then the exit pressure p_* would be less than p_b . There can be no shock waves in a sonic flow (only sound waves) to raise the exit pressure to the back pressure. Therefore, the flow adjusts itself to the back pressure by exiting subsonically.

Case (1):

$$If \frac{p_b}{p_t} < \frac{p_*}{p_t} \text{ means that } p_b < p_* \rightarrow M_b > M_* = 1 \rightarrow \text{leads that sonic conditions at exit}$$
Case (2):

$$If \frac{p_b}{p_t} > \frac{p_*}{p_t} \text{ means that } p_b > p_* \rightarrow M_b < M_* = 1 \rightarrow \text{leads that Subsonic conditions at exit}$$

END OF SUMMARY