CHAPTER (9)

SURFACE RESISTANCE

HOMEWORK (1)

9.6, 9.21, 9.37, 9.73

Problem (9.6)

$$u = \frac{y}{L}U_{\text{max}}$$

$$t_{s} = m \frac{u}{L} = \frac{F_{s}}{A}$$

PROBLEM 9.6

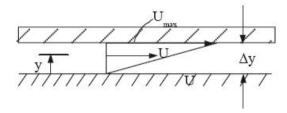
Situation: A plate being pulled over oil is described in the problem statement.

Find: (a) Express the velocity mathematically in terms of the coordinate system shown.

- (b) Whether flow is rotation or irrotational.
- (c) Whether continuity is satisfied.
- (d) Force required to produce plate motion.

ANALYSIS

By similar triangles $u/y = u_{\text{max}}/\Delta t$



or

See (Ch. 4) page 109 $u = (u_{\text{max}}/\Delta y)y$ u = (0.3/0.002)y m/su = 150 y m/s

> For flow to be irrotational $\partial u/\partial y=\partial V/\partial x$ here $\partial u/\partial y=150$ and $\partial V/\partial x=0$. The equation is not satisfied; flow is rotational

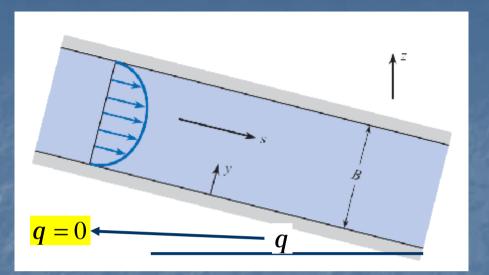
 $\partial u/\partial x + \partial v/\partial y = 0$ (continuity equation) $\partial u/\partial x = 0$ and $\partial v/\partial y = 0$ so continuity is satisfied.

Use the same formula as developed for solution to Prob. 9-1, but $W \sin \theta = F_{\text{shear}}$. Then

$$F_s = A\mu V/t$$

 $F_s = 0.3 \times (1 \times 0.3) \times 4/0.002$
 $F_s = 180 \text{ N}$

Problem (9.21)



<u>Situation</u>: Flow occurs between two plates-additional details are provided in the problem statement.

<u>Find</u>: Shear (drag) force on lower plate.

ANALYSIS

$$u = -(\gamma/2\mu)(By - y^2)dh/ds$$

 u_{max} occurs at y = B/2 so

$$u_{\text{max}} = -(\gamma/2\mu)(B^2/2 - B^2/4)dh/ds = -(\gamma/2\mu)(B^2/4)dh/ds$$

From problem statement dp/ds = -1200 Pa/m and $dh/ds = (1/\gamma)dp/ds$. Also B = 2 mm= 0.002 m and $\mu = 10^{-1} \text{N} \cdot \text{s/m}^2$. Then

$$u_{\text{max}} = -(\gamma/2\mu)(B^2/4)((1/\gamma)(-1, 200))$$

 $= (B^2/8\mu)(1, 200)$
 $= (0.002^2/(8 \times 0.1))(1, 200)$
 $= 0.006 \text{ m/s}$
 $u_{\text{max}} = 6.0 \text{ mm/s}$
 $F_s = \tau A = \mu(du/dy) \times 2 \times 1.5$
 $\tau = \mu \times [-(\gamma/2\mu)(B - 2y)dh/ds]$

but τ_{plate} occurs at y = 0. So

$$F_s = -\mu \times (\gamma/2\mu) \times B \times (-1, 200/\gamma) \times 3 = (B/2) \times 1, 200 \times 3$$

= $(0.002/2) \times 1, 200 \times 3$
 $F_s = 3.6 \text{ N}$

4

Problem (9.37)

$$d = \frac{5x}{\sqrt{\text{Re}_x}} \qquad t_0 = 0.332 \, m \frac{U_0}{x} \sqrt{\text{Re}_x}$$

<u>Situation</u>: A thin plate is held stationary in a stream of water-additional details are provided in the problem statement.

Find: (a) Thickness of boundary layer.

- (b) Distance from leading edge.
- (c) Shear stress.

APPROACH

Find Reynolds number. Then, calcuate the boundary layer thickness and shear stress with the appropriate correlations

Problem (9.37)

$$d = \frac{5x}{\sqrt{\text{Re}_x}}$$

$$d = \frac{5x}{\sqrt{\text{Re}_x}} \qquad t_0 = 0.332 \, m \frac{U_0}{x} \sqrt{\text{Re}_x}$$

ANALYSIS

Reynolds number

Re =
$$U_0 x / \nu$$

 $x = \text{Re } \nu / U_0$
= $500,000 \times 1.22 \times 10^{-5} / 5$
 $x = 1.22 \text{ ft}$

Boundary layer thickness correlation

$$\delta = 5x/\text{Re}_x^{1/2} \text{ (laminar flow)}$$

= $5 \times 1.22/(500,000)^{1/2}$
= 0.0086 ft
 $\delta = 0.103 \text{ in.}$

Local shear stress correlation

$$\tau_0 = 0.332 \mu(U_0/x) \operatorname{Re}_x^{1/2}$$

$$= 0.332 \times 2.36 \times 10^{-5} (5/1.22) \times (500,000)^{1/2}$$

$$\tau_0 = 0.0227 \operatorname{lbf/ft^2}$$

Problem (9.73)

PROBLEM 9.73

<u>Situation</u>: A boundary layer next to the smooth hull of a ship is described in the problem statement.

<u>Find</u>: (a) Thickness of boundary layer at x = 100 ft.

- (b) Velocity of water at y/δ = 0.5.
- (c) Shear stress on hull at $x = 100 \,\text{ft}$. $g = 32.2 \,\text{ft/s}^2$

Properties: Table A.5 (water at 60 °F): $\rho = 1.94 \, \mathrm{slug} / \, \mathrm{ft}^3$, $\gamma = 62.37 \, \mathrm{lbf} / \, \mathrm{ft}^3$, $\mu = 2.36 \times 10^{-5} \, \mathrm{lbf} \cdot \, \mathrm{s} / \, \mathrm{ft}^2$, $\nu = 1.22 \times 10^{-5} \, \mathrm{ft}^2 / \, \mathrm{s}$.

ANALYSIS

Reynolds number

$$Re_x = \frac{Ux}{\nu}$$

$$= \frac{(45)(100)}{1.22 \times 10^{-5}} = 3.689 \times 10^8$$

Local shear stress coefficient

$$c_f = \frac{0.455}{\ln^2(0.06 \,\mathrm{Re}_x)} = \frac{0.455}{\ln^2(0.06 * 3.689 \times 10^8)}$$

= 0.001591

Local shear stress

$$\tau_0 = c_f \left(\frac{\rho U_0^2}{2}\right)$$

$$= (0.001591) \left(\frac{1.94 \times 45^2}{2}\right)$$

$$\tau_0 = 3.13 \text{ lbf/ft}^2 \text{ (c)}$$

Shear velocity

$$u_* = (\tau_0/\rho)^{0.5}$$

= $(3.13/1.94)^{0.5}$
= 1.270 ft/s

Boundary layer thickness (turbulent flow)

$$\delta/x = 0.16 \,\mathrm{Re}_x^{-1/7} = 0.16 \, \left(3.689 \times 10^8\right)^{-1/7}$$

$$= 0.009556$$

$$\delta = (0.009556)(100)$$

$$\delta = 0.956 \,\mathrm{ft} \,\,(\mathrm{a})$$

$$\delta/2 = 0.48 \,\,\mathrm{ft}$$

From Fig. 9-12 at
$$y/\delta = 0.50$$
, $(U_0 - u)/u_* \approx 3$ Then

$$(45 - u)/1.27 = 3$$

$$u(y = \delta/2) = 41.2 \text{ ft/s (b)}$$

THE END