
CHAPTER (11)

DRAG & LIFT

HOMEWORK (3)

11.10, 11.21, 11.28, 11.49, 11.68

Problem (11.10)

Situation: Wind acts on a cooling tower. Height is $H = 350 \, \text{ft}$.

Average diameter is $D = 250 \, \text{ft}$. Wind speed is $V_o = 200 \, \text{mph} = 293.3 \, \text{ft/s}$.

<u>Find</u>: Drag (F_D) acting on the cooling tower.

Properties: Air at 60 °F (Table A.3) has properties of $\rho = 0.00237 \text{ slugs/ft}^3$; $\nu = 1.58 \times 10^{-4} \text{ ft}^2/\text{s}$.

Assumptions: 1.) Assume the coefficient of drag of the tower is similar to the coefficient of drag for a circular cylinder of infinite length (see Fig. 11.5).

2.) Assume the coefficient of drag for a cylinder is constant at high Reynolds numbers.

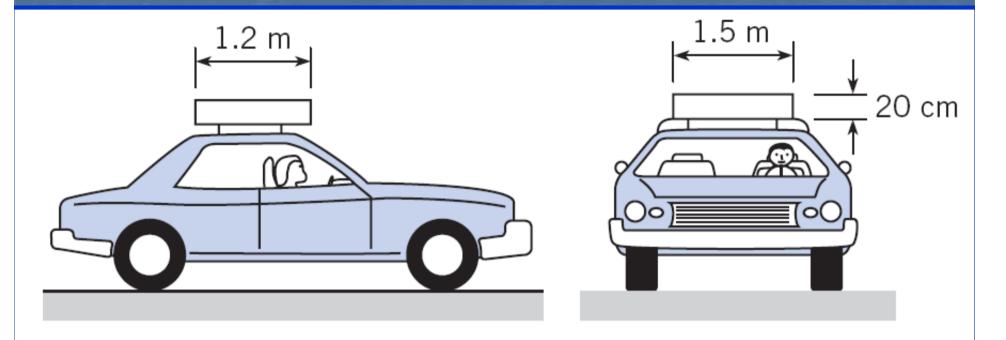
Problem (11.10)

Reynolds number

Re =
$$\frac{V_o D}{\nu}$$

= $\frac{293.3 \times 250}{1.58 \times 10^{-4}}$
= 4.641×10^8

From Fig. 11-5 (extrapolated) $C_D \approx 0.70$. The drag force is given by


$$F_D = C_D A_{\text{Ref}} \frac{\rho V^2}{2}$$

$$= 0.70 \times (250 \,\text{ft} \times 350 \,\text{ft}) \frac{(0.00237 \,\text{slugs/ft}^3) (293.3 \,\text{ft/s})^2}{2}$$

$$= 6.244 \times 10^6 \frac{\text{slug} \cdot \text{ft}}{\text{s}^2}$$

$$F_D = 6.24 \times 10^6 \, \mathrm{lbf}$$

Problem (11.21)

Find: Additional power required due to the carrier.

Assumptions: Density, $\rho = 1.20 \text{ kg/m}^3$. C_D will be like that for a rectangular plate: $\ell/b = 1.5/0.2 = 7.5$

Problem (11.21)

ANALYSIS

From Table 11-1

$$C_D \approx 1.25$$

The air speed (relative to the car) is

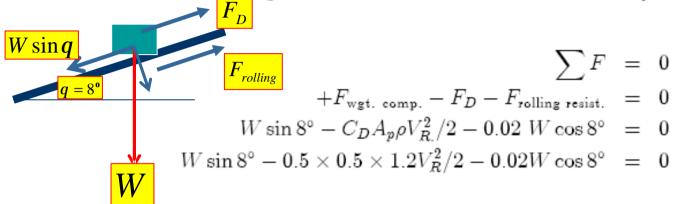
$$V = 100 \text{ km/hr}$$

= 27.78 m/s

The additional power is

$$\Delta P = F_D V$$

$$V_{car} = 80 \, km/h$$


Substituting drag force

$$\Delta P = C_D A_p (\rho V^2/2) V$$

= 1.25 × 1.5 × 0.2 × 1.20 × 27.78²/2 × 80000/3600
= 3.86 kW

Problem (11.28)

ANALYSIS

Consider a force balance parallel to direction of motion of the bicyclist:

$$W = 80g = 784.8 \text{ N}$$

 $W \sin 8^{\circ} = 109.2 \text{ N}$
 $W \cos 8^{\circ} = 777.2 \text{ N}$

Then

$$109.2 - 0.15V_R^2 - .02 \times 777.2 = 0$$

$$V_{\rm R}=25.0~{\rm m/s}=V_{\rm bicycle}+5~{\rm m/s}$$

Note that 5 m/s is the head wind so the relative speed is $V_{\text{bicycle}} + 5$.

$$V_{
m bicycle}{=}20.0~{
m m/s}$$

Problem (11.49)

PROBLEM 11.49

<u>Situation</u>: A weighted wood cylinder falls through a lake (see the problem statement for all the details).

Find: Terminal velocity of the cylinder.

Assumptions: For the water density, $\rho = 1000 \text{ kg/m}^3$.

APPROACH

Apply equilibrium with the drag force and buoyancy force.

ANALYSIS

Buoyancy force

$$F_{
m buoy} = V \gamma_{
m water} = 0.80 \times (\pi/4) \times 0.20^2 \times 9810 = 246.5 \text{ N}$$

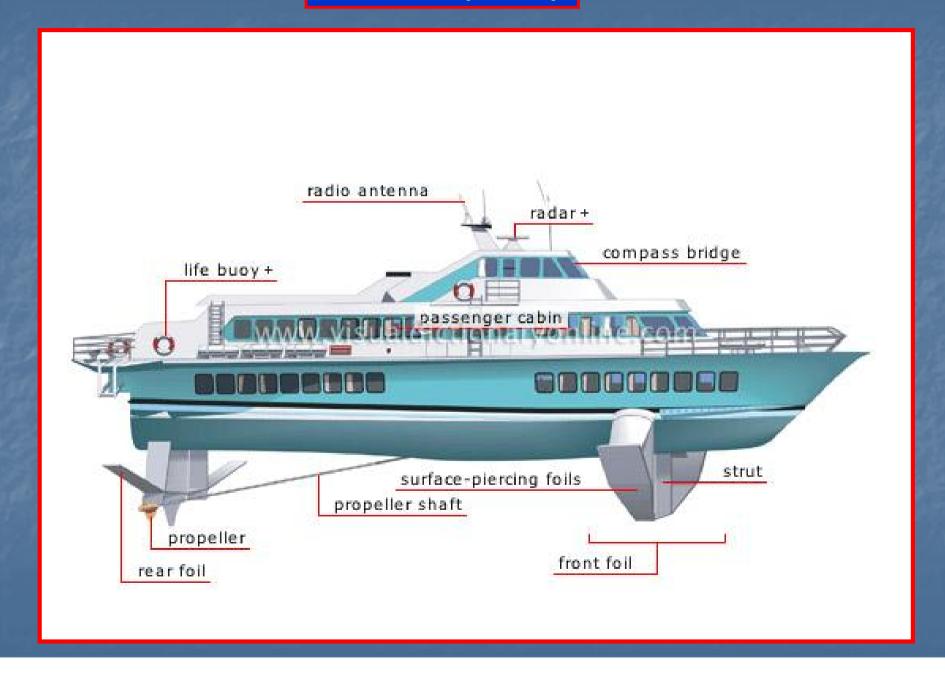
Problem (11.49)

Then the drag force is

$$F_D = F_{\text{buoy}} - W$$

= 246.5 - 200
= 46.5 N

$$\frac{L}{d} = \frac{80}{20} = 4$$


From Table 11-1 $C_D = 0.87$. Then

$$46.5 = \frac{C_D A_p \rho V_0^2}{2}$$
or
$$V_0 = \sqrt{\frac{2 \times 46.5}{C_D A_p \rho}}$$

$$V_0 = \sqrt{\frac{2 \times 46.5}{0.87 \times (\pi/4) \times 0.2^2 \times 1000}}$$

$$= \boxed{1.84 \text{ m/s}}$$

Problem (11.68)

Problem (11.68)

PROBLEM 11.68

Situation: A lifting vane for a boat of the hydrofoil type is described in the problem statement.

<u>Find</u>: Dimensions of the foil needed to support the boat.

ANALYSIS

Use Fig. 11-23 for characteristics; b/c = 4 so $C_L = 0.55$ $\frac{b}{c} = 4$

$$\frac{b}{c} = 4$$

$$F_L = C_L A \rho V_0^2 / 2$$
 $A_\rho = bc = 4c^2$
 $10,000 = 0.55 \times 4c^2 \times (1.94/2) \times 3,600$
 $c^2 = 1.30 \text{ ft}$
 $c = 1.14 \text{ ft}$
 $b = 4c = 4.56 \text{ ft}$

Use a foil 1.14 ft wide $\times 4.56$ ft long

END OF HOMEWORK