CHAPTER (14)

TURBOMACHINARY

HOMEWORK (5)

14.2, 14.29, 14.42, 14.48, 14.60

Problem (14.2)

APPROACH

Apply the propeller thrust force equation and the propeller power equation.

ANALYSIS

Reynolds number

Re =
$$V_0/nD$$

= $(80,000/3,600)/((1,400/60) \times 3)$
= 0.317

From Fig. 14.2

$$C_T = 0.020$$

Propeller thrust force equation

$$F = C_T \rho D^4 n_T^2$$

= 0.020 × 1.05 × 3⁴ × (1, 400/60)²
$$F_T = 926 \text{ N}$$

From Fig. 14.2

$$C_p = 0.011$$

Propeller power equation

$$P = C_p \rho n^3 D^5$$

= 0.011 × 1.05 × 3⁵ × (1400/60)³
$$P = 35.7 \text{ kW}$$

Problem (14.18)

PLAN

Apply discharge, head, and power coefficients. Use Fig. 14.6 to find the discharge, power, and head coefficients at maximum efficiency. Assume density is 1000 kg/m³.

SOLUTION

From Fig. 14.6 at maximum efficiency, $C_Q = 0.64$; $C_p = 0.60$; and $C_H = 0.75$

$$D = 0.5 \text{ m}$$

 $n = 1,100 \text{ rpm/}60 \text{ s/min} = 18.33 \text{ rev/s}$

Discharge coefficient

$$Q = C_Q n D^3$$

= $0.64 \times 18.33 \text{ rps} \times (0.5 \text{ m})^3$
 $Q = 1.46 \text{ m}^3/\text{s}$

Problem (14.18

Head coefficient

$$\Delta H = C_H n^2 D^2 / g$$

= $0.75 \times (18.33 \text{ rps})^2 \times (0.5 \text{ m})^2 / 9.81 \text{ m/s}^2$
 $\Delta H = 6.42$

Power coefficient

$$P = C_p \rho D^5 n^3$$

= $0.60 \times 1000 \text{ kg/m}^3 \times (0.5 \text{ m})^5 \times (18.33 \text{ rps})^3$
= 115475 W
 $P = 115.475 \text{ kW}$

Problem (14.29)

Situation: A pump operated at 1600 rpm.

Find: Discharge when head is 45 m

PLAN

Apply discharge coefficient. Calculate the head coefficient to find the corresponding discharge coefficient from Fig. 14.10.

SOLUTION

$$D = 0.371 \text{ m}$$

 $n = 1500/60 = 25 \text{ rps}$

Head coefficient

$$\Delta H = C_H n^2 D^2/g$$
 $C_H = \frac{\Delta H g}{n^2 D^2}$
 $C_H = \frac{45 \text{ m} \times 9.81 \text{ m/s}^2}{(25 \text{ rps})^2 \times (0.371 \text{ m})^2}$
 $= 5.13$

Problem (14.29)

from Fig. 14.10

$$C_Q = 0.122$$

Discharge coefficient

$$Q = C_Q n D^3$$

= 0.122 × 25 rps × (0.371 m)³
 $Q = 0.1557 \text{ m}^3/\text{s}$

Problem (14.42)

<u>Situation</u>: A pump is required to pump water at 0.40 m³/s at head of 70 m rotational speed of 1100 rpm.

Find: Type of pump.

PLAN

Calculate the specific speed and use figure 14.12 to find the pump range to who corresponds.

SOLUTION

Specific speed

$$N = 1,100 \text{ rpm} = 18.33 \text{ rps}$$

 $Q = 0.4 \text{ m}^3/\text{sec}$
 $h = 70 \text{ meters}$
 $n_s = n\sqrt{Q}/[g^{3/4}h^{3/4}]$
 $= (18.33 \text{ rps})(0.4 \text{ m}^3/\text{s})^{1/2}/[(9.81 \text{ m/s}^2)^{3/4}(70 \text{ m})^{3/4}]$
 $= 0.086$

Then from Fig. 14.12 use a radial flow pump.

Problem (14.48)

Situation: A water-cooled centrifugal compressor compresses air from 100 kPa to 400 kPa at 1 kg/s. Inlet temperature is 15°C and efficiency is 50%.

Find: The shaft power.

Properties: From Table A.2 for air, R = 287 J/kg-K

SOLUTION

```
P_{th} = p_1 Q_1 \ell n(p_2/p_1)

= \dot{m} R T_1 \ell n(p_2/p_1)

= 1 \text{ kg/s} \times 287 \text{ J/kg-K} \times 288 \text{ K} \times \ell n(400 \text{ kPa/100 kPa})

= 114.6 \text{ kW}

P_{ref} = 114.6 \text{ kW/0.5}

P_{ref} = 229 \text{ kW}
```

Problem (14.60)

Situation: A conventional horizontal-axis wind turbine with 2.5 m diameter propeller in a 50 km/h wind.

Find: Maximum deliverable power.

Properties: $\rho = 1.2 \text{ kg/m}^3$.

PLAN

Use equation for theoretical maximum power.

SOLUTION

The wind speed in m/s

$$V = 50 \frac{\text{km}}{\text{h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 13.9 \text{ m/s}$$

Maximum power

$$P_{\text{max}} = \frac{16}{27} \times \frac{1}{2} \rho V^3 A$$

$$= \frac{8}{27} \rho V^3 A$$

$$= \frac{8}{27} \times 1.2 \text{ kg/s} \times (13.9 \text{ m/s})^3 \times \frac{\pi}{4} \times (2.5 \text{ m})^2$$

$$P_{\text{max}} = 4.69 \text{ kW}$$

END OF HOMEWORK