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Chapter Outline 
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Welding Symbols 

 Welding symbol standardized by American Welding Society  

 Specifies details of weld on machine drawings 
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Welding Symbols 
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Welding Symbols 

 Arrow side of a joint is the line, side, area, or near member to 

which the arrow points 

 The side opposite the arrow side is the other side 

 Shape of weld is shown with the symbols below 
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Welding Symbol Examples 

Shigley’s Mechanical Engineering Design 

 Weld leg size of 5 mm 

 Fillet weld 

 Both sides 

 

 

 Intermittent and 

staggered 60 mm along 

on 200 mm centers 

 

 Leg size of 5 mm 

 On one side only 

(outside) 

 Circle indicates all the 

way around 



Welding Symbol Examples 
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Welding Symbol Examples 

Shigley’s Mechanical Engineering Design 

Fig. 9–6 



Tensile Butt Joint 

 Simple butt joint loaded in tension or compression 

 Stress is normal stress 

 

 Throat h does not include extra reinforcement 

 Reinforcement adds some strength for static loaded joints 

 Reinforcement adds stress concentration and should be ground 

off for fatigue loaded joints 

Shigley’s Mechanical Engineering Design Fig. 9–7a 



Shear Butt Joint 

 Simple butt joint loaded in shear 

 Average shear stress 
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Transverse Fillet Weld 

 Joint loaded in tension 

 Weld loading is complex 
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Transverse Fillet Weld 

 Summation of forces 

 

 

 Law of sines 

 

 

 Solving for throat thickness t 
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Transverse Fillet Weld 

 Nominal stresses at angle q 

 

 

 

 

 Von Mises Stress at angle q 
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Transverse Fillet Weld 

 Largest von Mises stress occurs at q = 62.5º with value of  

s' = 2.16F/(hl) 

 Maximum shear stress occurs at q = 67.5º with value of  

tmax = 1.207F/(hl) 
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Experimental Stresses in Transverse Fillet Weld 

 Experimental results are more complex 
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Transverse Fillet Weld Simplified Model 

 No analytical approach accurately predicts the experimentally 

measured stresses. 

 Standard practice is to use a simple and conservative model 

 Assume the external load is carried entirely by shear forces on 

the minimum throat area. 

 

 

 By ignoring normal stress on throat, the shearing stresses are 

inflated sufficiently to render the model conservative. 

 By comparison with previous maximum shear stress model, this 

inflates estimated shear stress by factor of 1.414/1.207 = 1.17. 

 

 

Shigley’s Mechanical Engineering Design 



Parallel Fillet Welds 

 Same equation also applies for simpler case of simple shear 

loading in fillet weld 
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Fillet Welds Loaded in Torsion 

 Fillet welds carrying both 
direct shear V and moment 
M  

 Primary shear 

 

 

 Secondary shear 

 

 

 A is the throat area of all 
welds 

 r is distance from centroid of 
weld group to point of 
interest 

 J is second polar moment of 
area of weld group about 
centroid of group 
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Example of Finding A and J 

 Rectangles represent 

throat areas.  t = 0.707 h 
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Example of Finding A and J 

 Note that t3 terms will be 

very small compared to 

b3 and d3 

 Usually neglected 

 Leaves JG1 and JG2  linear 

in weld width 

 Can normalize by 

treating each weld as a 

line with unit thickness t 

 Results in unit second 

polar moment of area, Ju 

 Since t = 0.707h, 

  

 J = 0.707hJu 
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Common Torsional Properties of Fillet Welds (Table 9–1) 
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Common Torsional Properties of Fillet Welds (Table 9–1) 

Shigley’s Mechanical Engineering Design 



Example 9–1 
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Example 9–1 
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Fillet Welds Loaded in Bending 

 Fillet welds carry both shear V and moment M 
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Bending Properties of Fillet Welds (Table 9–2) 
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Bending Properties of Fillet Welds (Table 9–2) 
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Strength of Welded Joints 

 Must check for failure in parent material and in weld 

 Weld strength is dependent on choice of electrode material 

 Weld material is often stronger than parent material 

 Parent material experiences heat treatment near weld 

 Cold drawn parent material may become more like hot rolled in 

vicinity of weld 

 Often welded joints are designed by following codes rather than 

designing by the conventional factor of safety method 
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Minimum Weld-Metal Properties (Table 9–3) 
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Stresses Permitted by the AISC Code for Weld Metal 
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Fatigue Stress-Concentration Factors 

 Kfs appropriate for application to shear stresses 

 Use for parent metal and for weld metal 
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Allowable Load or Various Sizes of Fillet Welds (Table 9–6) 
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Minimum Fillet Weld Size, h (Table 9–6) 
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Example 9–2 
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Example 9–2 
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Example 9–2 
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Example 9–3 
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Example 9–3 
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Example 9–4 
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Example 9–4 
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Example 9–5 
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Example 9–6 
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Example 9–6 
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Resistance Welding 

 Welding by passing an electric current through parts that are 

pressed together 

 Common forms are spot welding and seam welding 

 Failure by shear of weld or tearing of member 

 Avoid loading joint in tension to avoid tearing 
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Adhesive Bonding 

 Adhesive bonding has unique advantages 

 Reduced weight, sealing capabilities, reduced part count, reduced 

assembly time, improved fatigue and corrosion resistance, reduced 

stress concentration associated with bolt holes 
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Types of Adhesives 

 May be classified by 

◦ Chemistry 

 Epoxies, polyurethanes, polyimides 

◦ Form 

 Paste, liquid, film, pellets, tape 

◦ Type 

 Hot melt, reactive hot melt, thermosetting, pressure sensitive, 

contact 

◦ Load-carrying capability 

 Structural, semi-structural, non-structural 
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Mechanical Performance of Various Types of Adhesives 
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Table 9–7 



Stress Distributions 

 Adhesive joints are much stronger 

in shear loading than tensile loading 

 Lap-shear joints are important for 

test specimens and for practical 

designs 

 Simplest analysis assumes uniform 

stress distribution over bonded area 

 Most joints actually experience 

significant peaks of stress 
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Double-lap Joint 

 Classic analysis of double-lap joint known as shear-lag model 

 Double joint eliminates complication of bending from 

eccentricity 
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Double-lap Joint 

 Shear-stress distribution is given by 
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Example 9–7 
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Example 9–7 
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Example 9-7 

Shigley’s Mechanical Engineering Design 



Example 9-7 

Shigley’s Mechanical Engineering Design 



Single-lap Joint 

 Eccentricity introduces bending 

 Bending can as much as double the resulting shear stresses 

 Near ends of joint peel stresses can be large, causing joint failure 
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Single-lap Joint 

 Shear and peal stresses in single-lap joint, as calculated by Goland 

and Reissner 

 Volkersen curve is for double-lap joint 
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Adhesive Joint Design Guidelines 

 Design to place bondline in shear, not peel. 

 Use adhesives with adequate ductility to reduce stress 

concentrations and increase toughness to resist debond 

propagation. 

 Recognize environmental limitations of adhesives and surface 

preparation. 

 Design to facilitate inspection. 

 Allow sufficient bond area to tolerate some debonding before 

becoming critical. 

 Attempt to bond to multiple surfaces to support loads in any 

direction. 

 Consider using adhesives in conjunction with spot welds, rivets, or 

bolts. 

Shigley’s Mechanical Engineering Design 



Design Ideas for Improved Bonding 
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Design Ideas for Improved Bonding 
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Design Ideas for Improved Bonding 
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