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Chapter Outline 

Shigley’s Mechanical Engineering Design 



Types of Lubrication 

 Hydrodynamic 

 Hydrostatic 

 Elastohydrodynamic 

 Boundary 

 Solid film 
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Viscosity 

 Shear stress in a fluid is proportional to the rate of change of 

velocity with respect to y 

 

 

 m is absolute viscosity, also called dynamic viscosity 
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Viscosity 

 For most lubricating fluids, the rate of shear is constant, thus 

 

 

 

 Fluids exhibiting this characteristic are called Newtonian fluids 
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Units of Viscosity 

 Units of absolute viscosity 

◦ ips units:  reyn = lbf·s/in2 

◦ SI units: Pa·s = N·s/m2 

◦ cgs units: Poise =dyn·s/cm2 

 cgs units are discouraged, but common historically in lubrication 

 Viscosity in cgs is often expressed in centipoise (cP), designated 

by Z 

 Conversion from cgs to SI and ips:  
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Units of Viscosity 

 In ips units, the microreyn (mreyn) is often convenient. 

 The symbol m' is used to designate viscosity in mreyn 
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Measurement of Viscosity 

 Saybolt Universal Viscosimeter used to measure viscosity 

 Measures time in seconds for 60 mL of lubricant at specified 

temperature to run through a tube 17.6 mm in diameter and 12.25 

mm long 

 Result is kinematic viscosity 

 Unit is stoke = cm2/s 

 Using Hagen-Poiseuille law kinematic viscosity based on seconds 

Saybolt, also called Saybolt Universal viscosity (SUV) in seconds 

is 

 

 where Zk is in centistokes (cSt) and t is the number of seconds 

Saybolt 
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Measurement of Viscosity 

 In SI, kinematic viscosity n has units of m2/s 

 Conversion is 

 Eq. (12–3) in SI units, 

 

 

 To convert to dynamic viscosity, multiply n by density in SI units 

 

 

 where r is in kg/m3 and m is in pascal-seconds 
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Comparison of Absolute Viscosities of Various Fluids 
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Petroff’s Lightly Loaded Journal Bearing 

   
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Petroff’s Equation 
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Important Dimensionless Parameters 

 Some important dimensionless parameters used in lubrication 

◦ r/c  radial clearance ratio 

◦ mN/P 

◦ Sommerfeld number or bearing characteristic number 

 

 

 Interesting relation 
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Stable Lubrication 

 To the right of AB, changes in 

conditions are self-correcting 

and results in stable lubrication 

 To the left of AB, changes in 

conditions tend to get worse 

and results in unstable 

lubrication 

 Point C represents the 

approximate transition between 

metal-to-metal contact and 

thick film separation of the 

parts 

 Common design constraint for 

point B, 
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Thick Film Lubrication 

 Formation of a film 

Shigley’s Mechanical Engineering Design Fig. 12–5 



 Center of journal at O 

 Center of bearing at O' 

 Eccentricity e 

 Minimum film thickness h0 

occurs at line of centers 

 Film thickness anywhere is h 

 Eccentricity ratio 

 

 

 Partial bearing has b < 360 

 Full bearing  has b = 360 

 Fitted bearing has equal radii 

of bushing and journal 

Nomenclature of a Journal Bearing 
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Hydrodynamic Theory 

 Present theory originated with experimentation of Beauchamp 

Tower in early 1880s 
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Pressure Distribution Curves of Tower 

   
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Reynolds Plane Slider Simplification 

 Reynolds realized fluid films were so thin in comparison with 

bearing radius that curvature could be neglected 

 Replaced curved bearing with flat bearing 

 Called plane slider bearing 
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Derivation of Velocity Distribution 
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Derivation of Velocity Distribution 
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Velocity Distribution 

 Velocity distribution superposes parabolic distribution onto linear 

distribution 

 When pressure is maximum, dp/dx = 0 and u = (U/h) y 
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Derivation of Reynolds Equation 
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Reynolds Equation 

 Classical Reynolds equation for one-dimensional flow, neglecting 

side leakage, 

 

 

 

 With side leakage included, 

 

 

 No general analytical solutions 

 One important approximate solution by Sommerfeld, 
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Design Considerations 

 Variables either given or under control of designer 

 

 

 

 

 Dependent variables, or performance factors 
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Significant Angular Speed 

 Angular speed N that is significant to hydrodynamic film bearing 

performance is 
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Trumpler’s Design Criteria 

 Trumpler, a well-known bearing designer, recommended a set of 

design criteria. 

 Minimum film thickness to prevent accumulation of ground off 

surface particles 

 

 Maximum temperature to prevent vaporization of lighter lubricant 

components 

 

 Maximum starting load to limit wear at startup when there is 

metal-to-metal contact 

 

 

 Minimum design factor on running load 

Shigley’s Mechanical Engineering Design 



The Relations of the Variables 

 Albert Raymondi and John Boyd used an iteration technique to 

solve Reynolds’ equation. 

 Published 45 charts and 6 tables 

 This text includes charts from Part III of Raymondi and Boyd 

◦ Assumes infinitely long bearings, thus no side leakage 

◦ Assumes full bearing 

◦ Assumes oil film is ruptured when film pressure becomes zero 

Shigley’s Mechanical Engineering Design 



Viscosity Charts 

 Viscosity is clearly a function of temperature 

 Viscosity charts of common lubricants are given in Figs. 12–12 

through 12–14 

 Raymondi and Boyd assumed constant viscosity through the 

loading zone 

 Not completely true since temperature rises as work is done on the 

lubricant passing through the loading zone 

 Use average temperature to find a viscosity 
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Viscosity-Temperature Chart in U.S. Customary Units 
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Fig. 12–12 



Viscosity-Temperature Chart in Metric Units 
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Fig. 12–13 



Viscosity-Temperature Chart for Multi-viscosity Lubricants 
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Fig. 12–14 



Curve Fits for Viscosity-Temperature Chart 

 Approximate curve fit for Fig. 12–12 is given by 
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Table 12–1 



Notation of Raimondi and Boyd 

 Polar diagram of the film 

pressure distribution showing 

notation used by Raimondi and 

Boyd 
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Fig. 12–15 



Minimum Film Thickness and Eccentricity Ratio 
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Fig. 12–16 



Position of Minimum Film Thickness 
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Fig. 12–17 



Coefficient of Friction Variable 

Shigley’s Mechanical Engineering Design Fig. 12–18 



Flow Variable 
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Flow Ratio of Side Flow to Total Flow 
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Fig. 12–20 



Maximum Film Pressure 
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Fig. 12–21 



Terminating Position of Film 
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Fig. 12–22 



Example 12–1 
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Example 12–1 
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Example 12–2 
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Example 12–3 
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Example 12–4 
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Finding Temperature Rise from Energy Considerations 
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Fig. 12–23 



Finding Temperature Rise from Energy Considerations 
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Finding Temperature Rise from Energy Considerations 
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Combined Temperature Rise Chart 
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Interpolation Equation 

 Raimondi and Boyd provide interpolation equation for l/d ratios 

other than given in charts 
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Steady-State Conditions in Self-Contained Bearings 

 Previous analysis assumes lubricant carries away all enthalpy 

increase 

 Bearings in which warm lubricant stays within bearing housing are 

called self-contained bearings 

 Heat is dissipated from the housing to the surroundings 
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Heat Dissipated From Bearing Housing 

 Heat given up by bearing housing 
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Overall Coefficient of Heat Transfer 

 Overall coefficient of radiation and convection depends on 

material, surface coating, geometry, roughness, temperature 

difference between housing and surroundings, and air velocity 

 Some representative values 
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Difference in Housing and Ambient Temperatures 

 The difference between housing and ambient temperatures is 

given by  
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Table 12–2 



Housing Temperature 

 Bearing heat loss to surroundings 

 

 

 Housing surface temperature 

Shigley’s Mechanical Engineering Design 



Heat Generation Rate 

   
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Example 12–5 
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Example 12–5 
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Example 12–5 
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Example 12–5 
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Effect of Clearance on Example Problems 

 Some performance characteristics from Examples 12–1 to 12–4, 

plotted versus radial clearance 
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Clearance 
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Temperature Limits 
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Pressure-Fed Bearings 

 Temperature rise can be reduced with increased lubricant flow 

 Pressure-fed bearings increase the lubricant flow with an external 

pump 

 Common practice is to use circumferential groove at center of 

bearing 

 Effectively creates two half-bearings 
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Fig. 12–27 



Flow of Lubricant From Central Groove 

   
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Derivation of Velocity Equation with Pressure-Fed Groove 
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Derivation of Velocity Equation with Pressure-Fed Groove 
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Distribution of Velocity 
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Side Flow Notation 
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Fig. 12–30 



Derivation of Side Flow with Force-fed Groove 
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Characteristic Pressure 

 The characteristic pressure in each of the two bearings that 

constitute the pressure-fed bearing assembly is 
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Typical Plumbing with Pressure-fed Groove 
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Derivation of Temperature Rise with Pressure-Fed Groove 
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Derivation of Temperature Rise with Pressure-Fed Groove 
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Example 12–6 
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Example 12–6 
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Example 12–6 
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Example 12–6 
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Typical Range of Unit Loads for Sleeve Bearings 
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Table 12–5 



Some Characteristics of Bearing Alloys 
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Table 12–6 



Bearing Types 
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Fig. 12–32 
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Typical Groove Patterns 
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Fig. 12–34 



Thrust Bearings 

   
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Fig. 12–35 



Pressure Distribution in a Thrust Bearing 
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Flanged Sleeve Bearing 

 Flanged sleeve bearing can take both radial and thrust loads 

 Not hydrodynamically lubricated since clearance space is not 

wedge-shaped 
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Boundary-Lubricated Bearings 

 Relative motion between two surfaces with only a partial lubricant 

film (not hydrodynamic) is called boundary lubrication or thin-film 

lubrication. 

 Even hydrodynamic lubrication will have times when it is in thin-

film mode, such as at startup. 

 Some bearings are boundary lubricated (or dry) at all times. 

 Such bearings are much more limited by load, temperature, and 

speed. 

Shigley’s Mechanical Engineering Design 



Limits on Some Materials for Boundary-Lubricated Bearings 
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Table 12–7 



Linear Sliding Wear 
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Fig. 12–38 



Wear Factors in U.S. Customary Units 
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Table 12–8 



Coefficients of Friction 
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Table 12–9 



Wear Equation with Practical Modifying Factors 

 It is useful to include two modifying factors in the linear wear 

equation 

◦ f1 to account for motion type, load, and speed (Table 12-10) 

◦ f2 to account for temperature and cleanliness conditions (Table 

12-11) 
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Motion-Related Factor f1 

Shigley’s Mechanical Engineering Design Table 12–10 



Environmental Factor f2 
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Table 12–11 



Pressure Distribution on Boundary-Lubricated Bearing 

 Nominal pressure is 

 

  

 Pressure distribution is given by 

 

 

 Vertical component of p dA is 

 

 

 Integrating gives F, 
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Fig. 12–39 



Pressure and Velocity 

 Using nominal pressure, 

 

 

 Velocity in ft/min, 

 

 

 Gives PV in psi·ft/min 

 

 

 Note that PV is independent of D 
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Bushing Wear 

 Combining Eqs. (12–29), (12–31), and (12–27), an expression for 

bushing wear is 
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Length/Diameter Ratio 

 Recommended design constraints on length/diameter ratio 
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Example 12–7 

Shigley’s Mechanical Engineering Design 
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Example 12–7 
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Example 12–7 
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Example 12–7 
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Temperature Rise for Boundary-Lubrication 
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Example 12–8 
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Example 12–8 

Table 12–13 



Example 12–8 
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Example 12–8 
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