POWER ELECTRONICS AND DRIVES

Mohammed T. Lazim

First Edition

Published with the support of Philadelphia University-Jordan
Dedicated

To my family:

Ilham – Chief Senior Pharmacist – Wife
Sawsan – Bsc. Chemical Engineer – Daughter
Ahmed – Msc. Electronic and Communications Engineer – Son
Zahra – Msc. Computer and Control Engineer – Daughter
Noor – Bsc. Architect – Daughter
Sura – Bsc. Pharmacist – Daughter
Ali – H.N.D. Electrical Engineering – Son
About the author

Professor Mohammed T. Lazim

Mohammed T. Lazim is employed by Philadelphia University in Jordan as Professor of Electrical and Electronics Engineering. Previously, He was employed by Nahrain University in Iraq as Head of Electronics and Communications Engineering Department and Chief Consultant of Nahrain University Engineering Bureau. Lazim received his B.Sc. and M.Sc. degrees in Electrical Engineering from the University of Baghdad in 1967 and 1975 respectively, and Ph.D. degree in Electrical and Electronics Engineering from the University of Bradford in the United Kingdom in 1981. Previously, He worked as an Associate Professor of Electrical Engineering and Head of the Electrical and Electronics Engineering Department at the Military Engineering College at Baghdad-Iraq. He also worked as a Visiting Associate Professor of Electrical Engineering at the University of Technology-Iraq and as post graduate lecturer at the Electrical Engineering Department at University of Baghdad, and at the Control and Computer Engineering Department at University of Technology-Baghdad, Head of Computer Science Department, and Head of the Operational Research Department at Mansour University College at Baghdad-Iraq. Lazim was also previously employed as a Design, Development and Consultant Engineer with the Ministry of Defence, Ministry of oil, Ministry of Industry and Ministry of Electricity in Iraq.

Professor Lazim is actively involved in teaching, researching, and lecturing in Power Electronics, Electrical Power Systems, Economics of Energy Resources, Electrical Machines, Electrical Drive Systems, Electrical Installation, Reliability Theory and Control Engineering. He has published 7 books listed in the Iraqi and Jordanian National Libraries and more than 70 technical papers and research reports.
Contents

Preface .. (xv)

PART I : Power Electronics 1

Chapter One : Power Electronics Fundamentals 1

1.1 Introduction .. 1

1.2 Power Electronics Applications 3

1.3 Power Semiconductor Devices 4

1.4 Types of Power Semiconductor Devices 5

1.4.1 Power Diode .. 6

1.4.1.1 Diode Parameters 7

1.4.1.2 Classifications of Power Diode 8

1.4.2 Thyristors (Silicon Controlled Rectifiers “SCRs”) 9

1.4.2.1 Static Characteristics of the Thyristor 10

1.4.2.2 Thyristor Parameters 12

1.4.2.3 Thyristor Turning ON Mechanism 12

1.4.2.4 Thyristor Turning OFF Mechanism 14

1.4.2.5 Types of Thyristors 15

1.4.3 The Triac .. 16

1.4.4 Gate Turn off Thyristors (GTO) 17

1.4.5 Power Transistors .. 20

1.4.5.1 Bipolar Junction Transistor (BJT) 20

1.4.5.2 Metal Oxide Semiconductor Field Effect Transistors "MOSFETs" .. 23

1.4.5.3 Insulated Gate Bipolar Transistor “IGBT” 26

1.4.5.4 MOS-Controlled thyristor (MCT Thyristor) 28

1.5 Other Switching Devices 30

1.5.1 Static Induction Transistors (SITs), and Static Induction Thyristors (SITHs) 30

1.5.2 Gate Commutated Thyristor (GCT Thyristor) 30

1.6 Wide Band Gap Semiconductor Devices 30

1.7 Switching Losses in a Power Switch 33

1.8 Summary of Power Semiconductor Device Capabilities 34

Review Questions and Problems 35

Chapter Two : AC-DC Conversion : Uncontrolled Rectification 38

2.1 Introduction to Basic Rectifier Circuits 38

2.2 Uncontrolled Rectifications 39

2.2.1 Single-Phase Half-Wave Uncontrolled Rectifier with Resistive Load .. 39

2.2.2 Single-Phase Half-Wave Uncontrolled Rectifier
2.2.3 Single-Phase Half-Wave Uncontrolled Rectifier Circuit for Battery Charging .. 51
2.3 Single-Phase Full-Wave Uncontrolled Rectifiers 53
 2.3.1 Case of Resistive Load ... 53
 2.3.2 Single-phase Full-Wave Bi-Phase (Center-tapped) Uncontrolled Rectifier with Resistive Load 55
 2.3.3 Single-Phase Full-Wave Uncontrolled Rectifier Loaded with Highly Inductive Load 57
2.4 Harmonic Considerations of the Output Voltage and Current Waveforms of the Single-Phase Full-Wave Rectifier 58
 2.4.1 Voltage Waveform Harmonics 58
 2.4.2 Input Current Harmonics 61
2.5 Poly-Phase Uncontrolled Rectification 64
 2.5.1 Three-Phase Half-Wave Uncontrolled Rectifier 64
 2.5.2 Three-Phase Full-Wave Uncontrolled Bridge Rectifier 68
 2.5.3 Six-Phase (Hexa-Phase) Uncontrolled Rectifier 72
2.6 General Formula for the Output Voltage of P-Pulse Uncontrolled Rectifier ... 75
 2.6.1 Output Current of P-Pulse Converter 76
 2.6.2 Power Factor of a P-Pulse Rectifier 77
2.7 Harmonic Analysis of P-Pulse Uncontrolled Rectifier 78
2.8 Uses of Poly-Phase Uncontrolled Rectifiers 80
2.9 The Freewheeling Diode ... 83
 Problems ... 83

Chapter Three : AC-DC Conversion : Controlled Rectifications 91
3.1 Introduction ... 91
3.2 Single-Phase, Half-Wave, Controlled Rectifier Loaded with Passive Loads ... 91
 3.2.1 Case of Resistive Load .. 91
 3.2.2 Single-Phase, Half-Wave, Controlled Rectifier Loaded with Series Resistive-Inductive Load 94
 3.2.3 The Freewheeling Diode in Single-phase Controlled Rectification ... 96
3.3 Single-Phase, Full-Wave, Fully-Controlled Bridge Rectifier (p = 2) .. 105
 3.3.1 Operation of the Converter with Resistive Load 106
 3.3.2 Operation of the Converter with R-L load 107
3.4 Single-phase Half-Controlled (Semiconverter) Rectifier 113
3.5 Bi-Phase (Mid-Point) Controlled Rectifier 114
3.6 Poly-Phase Controlled Rectifiers 127
 3.6.1 Three-Phase Half-Wave Controlled Rectifier (p = 3) 127
3.6.2 Three-Phase Full-Wave Fully-Controlled Rectifier \((p = 6) \) ... 135
3.6.3 Three-Phase Full-wave, Half-Controlled Rectifier ... 137
3.7 Overlap and Harmonic Considerations in Uncontrolled AC-DC Conversion ... 147
 3.7.1 Principle of Overlap During Commutation .. 147
 3.7.2 Harmonic Considerations in Controlled P-Pulse ac-to-de Converter-General Solution 160
 3.7.3 Harmonic Amplitude Spectra of the Output Voltage Waveform for P-Pulse Controlled Rectifiers 162
 Problems ... 171

Chapter Four : DC-DC Conversion: DC Choppers ... 179
 4.1 Introduction .. 179
 4.2 Principle of Step-Down Chopper .. 181
 4.3 Analysis of a Step-Down DC Chopper with Resistive-Load ... 182
 4.4 Analysis of a Step-Down DC Chopper with \(R-L \) load:
 Exact Analysis ... 185
 4.5 Analysis of a Step-Down DC Chopper with Load Consisting \(\text{Back } emf(E) \) ... 190
 4.5.1 Continuous Current Operation Condition with Back \(emf \) .. 191
 4.5.2 Discontinuous Current Operation Condition .. 192
 4.6 Harmonic Analysis of the Load Voltage Waveform of Class-A Chopper.. 195
 4.7 Analysis of a Step-Down DC Chopper with \(R-L \) load:
 Approximate Analysis .. 201
 4.8 Step-Up DC-to-DC Converter (Boost Converter) .. 207
 4.9 Other Classes of Choppers .. 214
 4.9.1 Class B Chopper Circuit (Two-Quadrant Operation) ... 214
 4.9.2 Class-C Chopper ... 215
 4.9.3 Class-D Chopper ... 215
 4.9.4 Class-E Chopper (Full-Bridge DC-DC Converter) ... 216
 4.10 DC-DC Switch-Mode Converters ... 217
 4.10.1 Forward or (Buck) Regulator Using MOSFET .. 218
 4.10.2 Fly Back Regulator (Boost Regulator) .. 222
 4.10.3 Buck-Boost Regulator .. 226
 Problems ... 230

Chapter Five : AC-AC Conversion : AC Voltage Controller .. 234
 5.1 Introduction .. 234
 5.2 Single-Phase AC Voltage Controller ... 234
 5.2.1 AC Voltage Controller Working with Resistive Load and Symmetrical Phase-Angle Triggering 235
 5.2.2 The RMS Values of the Load Voltage and Current .. 237
 5.3 Harmonics Analysis of the Load Voltage
7.4.3 Three-Phase to Single-Phase Full-Wave (Six-Pulse) Cycloconverter.. 361
7.4.4 Three-Phase to Three-Phase Full-Wave (Six-Pulse) Cycloconverter... 361
7.5 Envelope Cycloconverter .. 365
7.5.1 Performance Characteristics of a Single-Phase Envelope Cycloconverter.. 366
7.5.2 Harmonic Analysis of the Output Voltage Waveform 367
7.5.3 Three-Phase Cycloconverter with $T=2$ with R-Load 369
7.5.4 Three-Phase Cycloconverter with $T=3$ with R-Load 371
7.6 Harmonics Reduction in Envelope Cycloconverter 378
7.7 The Matrix Converter .. 379
Problems .. 382

Chapter Eight : DC-AC Conversion: Inverters 384
8.1 Introduction .. 384
8.2 Parallel Inverter .. 385
 8.2.1 Transistor Parallel Inverter .. 385
 8.2.2 Thyristor Parallel Inverter .. 386
 8.2.3 Inverter Performance Parameters................................. 391
8.3 Single-Phase Bridge-Type Inverters 395
 8.3.1 Single-Phase Half-Bridge Inverter 396
 8.3.2 Single-Phase Full-Bridge Inverter 400
8.4 Three-Phase Inverter .. 408
 8.4.1 120–Degree Conduction ... 409
 8.4.2 180–Degree Conduction ... 412
8.5 Inverter Output Frequency and Voltage Control 417
 8.5.1 Single Pulse Width Modulation 419
 8.5.2 Multiple Pulse Width Modulation 421
 8.5.3 Sinusoidal Pulse Width Modulation (SPWM) 423
 8.5.4 Modified Sinusoidal Pulse Width Modulation 426
 8.5.5 Other PWM Methods .. 426
8.6 Voltage Control of Three-Phase Inverter 428
8.7 Harmonic Reductions in the Inverter Output Voltage 428
 8.7.1 Harmonic Reduction by PWM .. 429
 8.7.2 Harmonic Reduction by Transformer Connections 429
 8.7.3 Harmonic Reduction by Stepped-Wave Inverter 431
 8.7.4 Harmonic Reduction Using Filters 431
8.8 Three-Phase Naturally Commutated Inverter 432
8.9 Current Source Inverter .. 433
 8.9.1 Single-Phase Current Source Inverter 434
 8.9.2 Three-Phase Current Source Inverter 435
Problems .. 436
Excited DC Motor... 515
11.5.2 Mechanical Characteristics of Shunt DC Motor 516
11.5.3 Mechanical Characteristics of Series DC Motor 518
11.5.4 Mechanical Characteristics of Compound DC Motor 522
11.6 DC Motors Speed Control .. 523
11.6.1 Motor Speed Control of Shunt and Separately-Excited DC Motors .. 523
11.6.2 Safe Ranges of Operation for the Two Common Methods 526
11.6.3 Speed Control of Series DC Motors 532
11.7 Four-Quadrant Operation of a Drive System and Motor Braking 535
11.7.1 Four-Quadrant Operation of DC Machine 535
11.7.2 Electrical Braking of DC motors 537
11.7.3 Types of DC Motor Electric Braking 538
Problems ... 545
Chapter Twelve : DC Chopper Drives 548
12.1 Introduction... 548
12.2 One-Quadrant DC Chopper Drives 548
12.2.1 Armature Voltage Waveform Analysis
for Continuous Armature Current Operation 550
12.2.2 Armature Voltage Waveform Analysis for
Discontinuous Armature Current Operation 551
12.3 Analytical Properties of the Armature Current Waveform 552
12.4 Power Input, Supply Current, Average Armature
Current and Torque Calculations.. 558
Problems ... 567
Chapter Thirteen : DC Drives Using Controlled Rectifiers 572
13.1 Introduction... 572
13.2 Single-Phase Converter Drives 573
13.2.1 Single-Phase Half-Wave Converter Drives 573
13.2.2 Single-Phase Semiconverter with
Separately-Excited DC Motor Load 577
13.2.3 Single-Phase Full-Wave Fully-Controlled
Rectifier Drives ... 582
13.2.4 Single-Phase Dual Converter Drives 591
13.3 Three-Phase DC Drives ... 593
13.3.1 Three-Phase Half-Wave (or P = 3) Converter 594
13.3.2 Three-Phase Semiconverter Drive 596
13.3.3 Three-Phase Full-Converter Drive 599
13.3.4 Three-Phase Dual Converter Drive 601
Problems ... 605

xiii
Chapter Fourteen: Closed-Loop Variable Speed DC Drives

14.1 Introduction ... 610
14.2 Closed-Loop Variable Speed DC Drive 611
 14.2.1 The Triggering (Firing) Circuit 611
 14.2.2 Control Signal and Components 612
14.3 Speed control .. 613
 14.3.1 Open-Loop Operation .. 614
 14.3.2 Closed-Loop Operation ... 614
14.4 DC Motor Control Characteristics ... 616
 14.4.1 Open-Loop Transfer Function of DC Motor 617
 14.4.2 Closed-Loop Transfer Function 621
14.5 Practical Closed-Loop Control System
 for DC Motor with Speed and Current Controllers 623
 14.5.1 Speed and Current Controllers Transfer Functions 625
 14.5.2 Mathematical Modeling of the Power Converter Units 629
 14.5.3 Closed-Loop Current Control with PI-Controller 633
 14.5.4 Closed-Loop Speed Control with PI-Controller 636
 14.5.5 Closed-Loop Speed and Current Control with PI-Controller
 Simplified Steady-State Analysis 639
 Problems .. 643

Chapter Fifteen: AC Drives .. 649
15.1 Introduction .. 649
15.2 Types of AC Motors ... 650
15.3 Three-Phase Induction Motor: Revision of Equations 651
 15.3.1 Basic Principles of Three-Phase Induction Motor with
 Sinusoidal Supply Voltages .. 652
 15.3.2 Development of Circuit Model (Equivalent Circuit) Standstill
 Operation .. 654
 15.3.3 The Approximate Equivalent Circuit 657
 15.3.4 Power and Torque in Induction Motor 657
15.4 Speed Control of Induction Motor ... 662
 15.4.1 Speed Control from Stator Side 663
 15.4.2 Speed Control from Rotor Side 685
15.5 Synchronous Motor Drives .. 697
 15.5.1 Variable Speed Synchronous Motor Drives (VSD) 698
 15.5.2 Types of Inverters Used in Synchronous Motor Drives 701
 15.5.3 Cycloconverter Drives of Synchronous Motors 702
 15.5.4 Types of Cycloconverter Used in Synchronous Motor Drives
 Problems .. 707

Appendices ... 709
References ... 717
Index .. 720
During the last fifty years the field of power electronics and drives has become more diversified and broader in scope. Power electronics has found an important place in modern technology being a core of power and energy control. Almost all the new electrical and electromechanical equipment contain power electronics circuits.

This book *Power Electronics and Drives* is intended as a textbook for courses on Power Electronics and Motor Control for junior and senior undergraduate students in Electrical; Electronics and Communication; Electronics and Telecommunication; Instrumentation and Control; Electronics and Instrumentation; Industrial Electronics, and Mechatronics Engineering. The content of the book and the level of the presentation are designed to suit the preparation and needs of the average engineering student. The text is written for some flexibility in the order of the topics. The textbook is unique and differs from the general treatment of the subject, through the style of presentation of the material, and through the addition of recent theories and applications of power electronics.

The book consists of two parts. Part-I (Chapter 1 to 9) provides good background and a comprehensive description on power electronics subjects. Part-II (Chapter 10 to 15) covers the motor drive systems, which undergraduate students will also find useful. The text can also be utilised as a textbook for graduate students and as a reference book for technicians and engineers of respective specialties.

A large number of solved examples, theoretical exercises and numerical problems, all of degree standard, have been included in the text. The solution to illustrative examples covering almost all topics and sub-topics makes the entire presentation easy to follow. Exercises and numerical problems with answers given at the end of each chapter help the students in evaluating their understanding of the subject.

The author wishes to thank Philadelphia University for its support in publishing this book and also Professor Munther N. Baker for his valuable remarks on the book during the writing phases. Similarly he thanks Professor Kassim Al-Obaidi, Dean of the Faculty of Engineering and Technology and Dr. Mohammed M. Al-Salman, Head of Electrical Engineering Department for their encouragement and support. Thanks are also due to author’s previous M.Sc. and Ph.D. students: Dr. Mohammed
Khasbak, Dr. Anas L.Mahmoud, Dr. Ali K.Jabir, Mr. Ahmed Mudhafar Al-Taie and Mr. Jan W.Jan, for their great help with Chapters 6 and 7.

Within this book, every care and attention has been taken to eliminate misprints and errors. However, should the reader become aware of any inaccuracy or misprint that has crept in, then the author would be grateful if this could be brought to his attention. Also, any suggestion for improvement of the book will be acknowledged and well appreciated.

Author
Dr. Prof. Mohammed T.Lazim
Amman 2019
drmohamadtofik@yahoo.com