
Chapter 7: Trees

• A tree is a connected simple undirected graph
with no simple circuits.

• Properties:

o There is a unique simple path between any 2
of its vertices.

o No loops.

o No multiple edges.



Example 1
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G1 : This graph is a Tree because it is a connected

graph with no simple circuits



Example 2
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G2: is not a tree “ because there is a cycle  a, b, e, d, a”



Example 3
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G3: is not a tree “because

it’s not connected”. In this

case it’s called forest in

which each connected

component is a tree.

Component 1: a, f

Component 2: c, e, b, d



• An undirected graph without simple circuits is

called a forest.

– You can think of it as a set of trees having

disjoint sets of nodes.

Forest





Rooted (Directed) Trees

• A rooted tree is a tree in which one node has been

designated the root and every edge is directed

away from the root.

• You should know the following terms about

rooted trees:

– Root, Parent, Child, Siblings, Ancestors,

Descendents, Leaf, Internal node, Subtree.



Definitions

• Root: Vertex with in-degree 0 

[Node a  is the root]
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• Parent: Vertex u is a parent, such that there is directed edge

from u to v.

[b is parent of g and f ]

• Child: If u is parent of v, then v is child of u.

[g and f are children of b ]

• Siblings: Vertices with the same parents.

[f and g ]

• Ancestors:  Vertices in path from the root to vertex v, 

excluding v itself, including the root. 

[Ancestors of g : b, a ]

Definitions



• Descendents: All vertices that have v as ancestors.   

[Descendents of b : f, g, y ] 

• Leaf: Vertex with no children. 

[y, g, e, d ]

• Internal vertices: Vertices that have children. 

[a, b, c, f  ]

• Subtree: Subgraphs consisting of v and its descendents 

and their incident edges.

Subtree rooted at b :
b

gf

y

Definitions



• Level (of v ) is length of unique path from root to

v.

[level of root = 0, level of b = 1, level of g = 2]

• Height is maximum of vertices levels.

[ Height = 3] 

Definitions



m-ary Trees

• A rooted tree is called m-ary if every internal

vertex has no more than m children.

• It is called full m-array if every internal vertex

has exactly m children.

• A 2-ary tree is called a binary tree.



Example

b c

a

fed g

Full binary tree

Full 3-ary tree



Ordered Rooted Tree

• A rooted tree where the children of each internal

node are ordered.

• In ordered binary trees, we can define:

– left child, right child

– left subtree, right subtree

• For m-ary trees with m > 2, we can use terms like

“leftmost”, “rightmost,” etc.



Examples

a

b g

c e h j

d f k n m

Left child of c is d ,  Right child of c is f

h

nk

j

m

Left subtree of g Right subtree of g



Properties of Trees

1- A tree with n vertices has 

n - 1 edges.

e.g. The tree in the figure has

14 vertices and 13 edges



2- A full m-ary tree with I internal vertices and L
leaves contains:

n = m × I + 1 vertices

n = I + L vertices

e.g. The full binary tree in

the figure has:

Internal vertices   I = 6

Leaves   L = 7

Vertices  13 = (2)(6) + 1 

Properties of Trees



For a full m-ary tree:

(i) Given n vertices,  I  = (n – 1 ) / m internal vertices and  

L = n – I = [(m  – 1) × n + 1] / m leaves.

(ii) Given I internal vertices,  n = m × I + 1 vertices and   

L = n – I = (m – 1) × I + 1 leaves.

(iii) Given L leaves,  n = (m × L – 1) / (m – 1) vertices and   

I = n – L  = (L – 1) / (m  – 1) internal vertices.

In the previous example: 
m = 2,   n = 13 ,  I = 6  and  L = 7

(i) I = (13 – 1) / 2  = 6 and  L = 13 – 6 = 7

(ii) n = 2×6 + 1 = 13 and  L = 13 – 6 = 7

(iii) n = (2×7 – 1 )/ (2 – 1) = 13  and  I = 13 – 7 = 6

Summary



3- The level of a vertex in a rooted tree is the length

of the path from the root to the vertex (level of

the root is 0)

4- The height of the rooted tree is the maximum of

the levels of vertices (length of the longest path

from the root to any vertex)

Properties of Trees



Balanced Trees

• Balanced Tree

A rooted m-ary tree of height h is balanced if all

leaves are at levels h or h - 1.

Balanced Balanced Not Balanced



7.2 Tree Traversal

• Traversal algorithms

o Pre-order traversal

o In-order traversal

o Post-order traversal

• Prefix / Infix / Postfix notation



Traversal Algorithms

Is visiting every vertex of ordered rooted tree.

• Pre-order: Root, Left, Right.

• In-order:    Left, Root, Right.

• Post-order: Left, Right, Root.



Tree Traversals

• Pre-order traversal

• In-order traversal

• Post-order traversal



Pre-order: a   b   e   j    k   n   o   p   f    c    d    g   l   m   h   i

In-order: j   e   n   k   o   p   b   f   a   c    l   g   m   d   h   i

Post-order: j   n   o   p   k   e   f    b   c   l   m   g   h   i   d   a

Pre-order: Root,  Left,  Right.

In-order: Left,  Root,  Right.

Post-order: Left,  Right,  Root.

Tree Traversals
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Infix, Prefix, and Postfix Notation

• The way to write arithmetic expression is 

known as a notation. An arithmetic 

expression can be written in three different 

but equivalent notations

These notations are

• Infix Notation

• Prefix (Polish) Notation

• Postfix (Reverse-Polish) Notation



Infix, Prefix, and Postfix Notation 

• Infix Notation:

We write expression in infix notation

e.g. a - b + c

• where operators are used in-between operands. It 

is easy for us humans to read, write, and speak in 

infix notation but the same does not go well with 

computing devices. An algorithm to process infix 

notation could be difficult and costly in terms of 

time and space consumption.
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Infix, Prefix, and Postfix Notation 

• Prefix Notation :

In this notation, operator is prefixed to operands, i.e. 

operator is written ahead of operands. 

• For example, +ab. This is equivalent to its infix 

notation a + b. 

• Prefix notation is also known as Polish Notation.
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Infix, Prefix, and Postfix Notation 

• Postfix Notation:

This notation style is known as Reversed Polish 

Notation. 

• In this notation style, the operator is postfixed to 

the operands i.e., the operator is written after the 

operands. 

For example, ab+. This is equivalent to its infix 

notation a + b.
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Infix, Prefix, and Postfix Notation 

The following table briefly tries to show the difference in all three notations −
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Sr.No. Infix Notation Prefix Notation Postfix Notation

1 a + b + a b a b +

2 (a + b) ∗ c ∗ + a b c a b + c ∗

3 a ∗ (b + c) ∗ a + b c a b c + ∗

4 a / b + c / d + / a b / c d a b / c d / +

5 (a + b) ∗ (c + d) ∗ + a b + c d a b + c d + ∗

6 ((a + b) ∗ c) - d - ∗ + a b c d a b + c ∗ d -
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Infix, Prefix, and Postfix Notation

A tree can be used to represents mathematical

expressions.

Example: (( x + y )^2)  + (( x – 4) / 3)

Prefix:  +  ^  + x y 2 / – x 4 3

Postfix: x y + 2 ^  x 4  – 3  / +



Infix: In-order traversal of tree must be fully parenthesized to
remove ambiguity.

Example: x + 5 / 3 : (x + 5) / 3 , x + (5 / 3)

Prefix (polish): Pre-order traversal of tree (no parenthesis
needed)

Example: From the above tree + * + x y 2 / – x 4 3

Postfix: Post-order traversal (no parenthesis needed)

Example: From the above tree x y + 2 * x 4 – 3 / +

Infix, Prefix, and Postfix Notation



1. Evaluating a Prefix Expression: (Pre-order: Right to left) 



2. Evaluating a Postfix Expression: (Post-order: Left to right)



Infix, Prefix, and Postfix Notation

• Exercise 

Draw the tree for the following expression and find the infix, prefix, and postfix 

¬(pq) ↔ (¬p¬q)
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