Chapter :4
Functions

Function: Formal Definition

- Def. 1: Let A and B be sets, a function from A to $B(f: A \rightarrow B)$ is an assignment of exactly one elements of B to each element of A . where $f(\mathrm{a})=\mathrm{b}$, and $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}$.

Graphical Representations

- Functions can be represented graphically in several ways:

Like Venn diagrams

Some Function Terminology

- If it is written that $f: A \rightarrow B$, and $f(a)=b$ (where $a \in A \& b \in B$), then we say:
$-A$ is the domain of f.
$-B$ is the codomain of f.
$-b$ is the image of a under f.
$-a$ is a pre-image of b under f.
- In general, b may have more than 1 pre-image.
- The range $R \subseteq B$ of f is $R=\{b \mid \exists a f(a)=b\}$.
- If \boldsymbol{f} is a function from A to B, we say that A maps B.

Range versus Codomain

- The range of a function might not be its whole codomain.
- The codomain is the set that the function is declared to map all domain values into.
- The range is the particular set of values in the codomain that the function actually maps elements of the domain to.

Example

Let $\mathrm{f}: \mathrm{Z} \rightarrow \mathrm{Z}$ such that

$$
f(x)=x^{2}
$$

The domain and the codomain is all integers. The range of f is the set positive integers Z^{+}

Example

- let $\mathrm{A}=\{1,2,3\} \quad \mathrm{B}=\{1,2,3,4,5\}$

Determine whether the following is function from A \rightarrow B or not

- $\mathrm{F} 1=\{(1,5),(2,2),(3,2)\}$

Yes

- $F 2=\{(1,2),(2,3),(2,5),(3,3)\}$ No

Function Representations

A function can be specified in different ways:

- Formula

$$
e x: f(x)=x+1
$$

- Graph: ex: function f: A \rightarrow B
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{2,3,4\} f(\mathrm{a})=2, f(\mathrm{~b})=4 \quad f(\mathrm{c})=3$

- List: $\mathrm{F}=\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 3)\}$

Function Representations

- We can represent a function $f: A \rightarrow B$ as a set of ordered pairs $\{(a, f(a)) \mid a \in A\}$.
- Note that $\forall a$, there is only 1 pair (a, b).

Ex: function f: A \rightarrow B
$\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{B}=\{2,3,4\} f(\mathrm{a})=2, f(\mathrm{~b})=4 f(\mathrm{c})=3$

$$
\mathrm{F}=\{(\mathrm{a}, 2),(\mathrm{b}, 4),(\mathrm{c}, 3)\}
$$

Function Operator Example

-,$+ \times$ ("plus","times") are binary operators over R. (Normal addition \& multiplication.)

- Therefore, we can also add and multiply functions $f, g: \mathbf{R} \rightarrow \mathbf{R}$:

$$
\begin{aligned}
& -(f+g): \mathbf{R} \rightarrow \mathbf{R} \text {, where }(f+g)(x)=f(x)+g(x) \\
& -(f \times g): \mathbf{R} \rightarrow \mathbf{R} \text {, where }(f \times g)(x)=f(x) \times g(x)
\end{aligned}
$$

Function Operator Example

- Ex: Let $f 1$ and $f 2$ be functions from R to R such that $f 1(x)=\mathrm{x}^{2}$ and $f 2(x)=\mathrm{x}-\mathrm{x}^{2}$ what are the functions $f 1+f 2$ and $f 1 f 2$?

$$
\begin{aligned}
& (f 1+f 2)(\mathrm{x})=f 1(\mathrm{x})+f 2(\mathrm{x})=\mathrm{x}^{2}+\left(\mathrm{x}-\mathrm{x}^{2}\right)=\mathrm{x} \\
& (f 1 f 2)(\mathrm{x})=f 1(\mathrm{x}) f 2(\mathrm{x})=\mathrm{x}^{2} *\left(\mathrm{x}-\mathrm{x}^{2}\right)=\mathrm{x}^{3}-\mathrm{x}^{4}
\end{aligned}
$$

Identity function

Identity function on A is the function $f: \mathrm{A} \rightarrow \mathrm{A}$, where $f(\mathrm{x})=\mathrm{x}$

Identity Function Illustrations

- The identity function:

Domain and range

Functions Types

A. One - To - One (injective)

A function f is One- to -One if and only if $f(\mathrm{x})=f(\mathrm{y})$ implies that $\mathrm{x}=\mathrm{y}$ for all x and y in the domain of f.
$\forall \mathrm{x} \forall \mathrm{y}(f(\mathrm{x})=f(\mathrm{y}) \rightarrow \mathrm{x}=\mathrm{y})$
or
$\forall \mathrm{x} \forall \mathrm{y}(\mathrm{x} \neq \mathrm{y} \rightarrow f(\mathrm{x}) \neq f(\mathrm{y}))$

One-to-One Illustration

- (graph representations of functions that are (or not) one-to-one:

One-to-one

Not one-to-one
Not even a function!

Functions Types

Ex: The function f from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to $\{1,2,3,4,5\}$ with $f(a)=4, f(b)=5, f(c)=1$, and $f(\mathrm{~d})=3$ is oneto -one.

Functions Types

Ex: Determine whether the functions $f: Z \rightarrow Z$ is one-to-one or not.

1. $f(\mathrm{x})=\mathrm{x}^{2}$

Sol: The function $f(x)=x^{2}$ is not one-to-one because
$f(1)=f(-1)=1$ but $1 \neq-1$
2. $f(x)=x+5$
\Rightarrow it is one-to-one

Functions Types

B. Onto (Surjective)

A function $f: A \rightarrow B$ is onto or surjective iff its range is equal to its codomain

$$
(\forall b \in B, \exists a \in A: f(a)=b) .
$$

Functions Types

Ex: let the function f from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to $\{1,2,3\}$ defined by $f(\mathrm{a})=3, f(\mathrm{~b})=2, f(\mathrm{c})=1, f(\mathrm{~d})=3$, is f onto?

onto function

Functions Types

Ex: is the function $f(x)=x^{2}$ from $Z \rightarrow Z$ Onto function.

Sol.: It is not onto function, since there is no integer x such that $f(\mathrm{x})=-1$

Functions Types

C. One- to -one correspondence (bijective)

A function is bijective if and only if it is both one-to-one and onto

Ex: identity function $f(\mathrm{x})=\mathrm{x}$ is bijective

Functions Types

Composition Function

Note match here.

- For functions $g: A \rightarrow B$ and $f: B \rightarrow C$, there is a special operator called compose ("‘").
- It composes (creates) a new function out of f and g by applying f to the result of applying g.
- We say $(f \circ g): A \rightarrow C$, where $(f \circ g)(a): \equiv f(g(a))$.
- Note $g(a) \in B$, so $f(g(a))$ is defined and $\in C$.
- is non-commuting. (Generally, $f \circ g \neq g \circ f$.)

Composition Function

Note match here.
Ex: Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}+2$ what is the composition of f and g if they both are from R to R ?

$$
\begin{aligned}
& (\mathrm{f} \circ \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{~g}(\mathrm{x}))=\mathrm{f}(3 \mathrm{x}+2)=6 \mathrm{x}+7 \\
& (\mathrm{~g} \circ \mathrm{f})(\mathrm{x})=\mathrm{g}(\mathrm{f}(\mathrm{x}))=\mathrm{g}(2 \mathrm{x}+3)=6 \mathrm{x}+11 \\
& \therefore(\mathrm{f} \circ \mathrm{~g})(\mathrm{x}) \neq(\mathrm{g} \circ \mathrm{f})(\mathrm{x})
\end{aligned}
$$

Inverse Function

For bijections $f: A \rightarrow B$, there exists an inverse of f, written $f^{-1}: B \rightarrow A$, where $f(\mathrm{a})=\mathrm{b}$ and $f^{-1}(\mathrm{~b})=\mathrm{a}$
which is the unique function such that

- (where I_{A} is the identity function on $\left.A\right)$

$$
f^{-1} \circ f=I_{A}
$$

Inverse Function

Ex: let f be the function from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3, f(c)=1$, is f bijective and what is its inverse if it is?

Sol.: f is bijective because it 's one-to-one and onto

$$
f^{-1}(2)=\mathrm{a}, \quad f^{-1}(3)=\mathrm{b}, \quad f^{-1}(1)=\mathrm{c}
$$

Inverse Function

- Ex: Let f be the function from Z to Z with $f(\mathrm{x})=\mathrm{x}+1$, is f bijective?
- Sol.: It is bijective and the inverse is

$$
\begin{aligned}
& f(\mathrm{y})=\mathrm{y}-1 \\
& \therefore \quad f^{-1}(x)=x-1
\end{aligned}
$$

Inverse Function

EX: Find the inverse function of $f(x)=3 x+2$

$$
f^{-1}(x)=\frac{x-2}{3} .
$$

Floor And Ceiling Function

- Floor function $\lfloor\mathrm{x}\rfloor$: the floor of real number x is the largest integer that is less than or equal to x .
- Ceiling function $\lceil\mathrm{x}\rceil$: the ceiling of real number x is the smallest integer that is greater than or equal to x.

Visualizing Floor \& Ceiling

- Real numbers "fall to their floor" or "rise to their ceiling."
- Note that if $x \notin \mathbf{Z}$, $\lfloor-x\rfloor \neq-\lfloor x\rfloor \&$
$\lceil-x\rceil \neq-\lceil x\rceil$
- Note that if $x \in \mathbf{Z}$,

$$
\lfloor x\rfloor=\lceil x\rceil=x .
$$

Floor And Ceiling Function

- Ex: what is the value of the following?

$$
\begin{array}{ll}
\lfloor 1 / 2\rfloor=0 & \lceil 1 / 2\rceil=1 \\
\lfloor-1 / 2\rfloor=-1 & \lceil-1 / 2\rceil=0 \\
\lfloor 3.1\rfloor=3 & \lceil 3.1\rceil=4 \\
\lfloor 7\rfloor=7 & \lceil 7\rceil=7
\end{array}
$$

Note: $\mathrm{x}-1<\lfloor\mathrm{x}\rfloor \leq \mathrm{x} \leq\lceil\mathrm{x}\rceil<\mathrm{x}+1$

