Example
Example 1: let UD be the real number
$P(x, y)=x * y=0$
What is the truth value of the following:
$\forall x \forall y \mathrm{P}(\mathrm{x}, \mathrm{y}):$ fasle
$\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y})$: true
$\exists x \forall y P(x, y):$ true
$\exists x \exists y P(x, y)$: true

Example 1: let UD be the real number
$P(x, y)=x / y=1$
What is the truth value of the following:
$\forall x \forall y P(x, y):$ false
$\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y})$: true
$\exists x \forall y P(x, y):$ false
$\exists x \exists y P(x, y)$: true

For example, in $\forall x \exists y(x+y=0)$, you would loop through ALL the elements in the domain for x, searching for AT LEAST one element for y that satisfies the statement.

In $\exists x \forall y \mathrm{Q}(\mathrm{x}, \mathrm{y})$, you would loop through the domain, testing every x until you find ONE x that satisfies the statement for ALL y
$\exists x P(x)$
$\forall x P(x)$
$\exists x P(x)$
$\exists x \neg P(x)$
$\forall x \neg P(x)$

$$
\begin{aligned}
& \neg(\forall x P(x)) \equiv \exists x(\neg P(x)) \\
& \neg(\exists x P(x)) \equiv \forall x(\neg P(x)) \\
& \forall x \forall y Q(x, y) \equiv \forall y \forall x Q(x, y) \\
& \exists x \exists y Q(x, y) \equiv \exists y \exists x Q(x, y) \\
& \hline
\end{aligned}
$$

