
Try out the interactive SQL JOINs course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL JOINs Cheat Sheet

NATURAL JOIN
If the tables have columns with the same name, you can use
NATURAL JOIN instead of JOIN.

The common column appears only once in the result table.
Note: NATURAL JOIN is rarely used in real life.

SELECT *
FROM toy
NATURAL JOIN cat;

cat_id toy_id toy_name cat_name
1 5 ball Kitty
1 3 mouse Kitty
3 1 ball Sam
4 4 mouse Misty

LEFT JOIN
LEFT JOIN returns all rows from the left table with matching rows from the right table. Rows without a match are filled
with NULLs. LEFT JOIN is also called LEFT OUTER JOIN.

SELECT *
FROM toy
LEFT JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty
1 ball 3 3 Sam
4 mouse 4 4 Misty
2 spring NULL NULL NULL

whole left table

RIGHT JOIN
RIGHT JOIN returns all rows from the right table with matching rows from the left table. Rows without a match are
filled with NULLs. RIGHT JOIN is also called RIGHT OUTER JOIN.

SELECT *
FROM toy
RIGHT JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty

NULL NULL NULL 2 Hugo
1 ball 3 3 Sam
4 mouse 4 4 Misty

whole right table

FULL JOIN
FULL JOIN returns all rows from the left table and all rows from the right table. It fills the non-matching rows with
NULLs. FULL JOIN is also called FULL OUTER JOIN.

SELECT *
FROM toy
FULL JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty

NULL NULL NULL 2 Hugo
1 ball 3 3 Sam
4 mouse 4 4 Misty
2 spring NULL NULL NULL

whole left table whole right table

CROSS JOIN
CROSS JOIN returns all possible combinations of rows from the left and right tables.

toy_id toy_name cat_id cat_id cat_name
1 ball 3 1 Kitty
2 spring NULL 1 Kitty
3 mouse 1 1 Kitty
4 mouse 4 1 Kitty
5 ball 1 1 Kitty
1 ball 3 2 Hugo
2 spring NULL 2 Hugo
3 mouse 1 2 Hugo
4 mouse 4 2 Hugo
5 ball 1 2 Hugo
1 ball 3 3 Sam

··· ··· ··· ··· ···

SELECT *
FROM toy
CROSS JOIN cat;

SELECT *
FROM toy, cat;

Other syntax:

JOIN
JOIN returns all rows that match the ON condition. JOIN is also called INNER JOIN.

SELECT *
FROM toy
JOIN cat
 ON toy.cat_id = cat.cat_id;

toy_id toy_name cat_id cat_id cat_name
5 ball 1 1 Kitty
3 mouse 1 1 Kitty
1 ball 3 3 Sam
4 mouse 4 4 Misty

There is also another, older syntax, but it isn't recommended.
List joined tables in the FROM clause, and place the conditions in the WHERE clause.

SELECT *
FROM toy, cat
WHERE toy.cat_id = cat.cat_id;

JOIN combines data from two tables.

JOINING TABLES

JOIN typically combines rows with equal values for the specified columns. Usually, one table contains a primary key,
which is a column or columns that uniquely identify rows in the table (the cat_id column in the cat table).
The other table has a column or columns that refer to the primary key columns in the first table (the cat_id column in
the toy table). Such columns are foreign keys. The JOIN condition is the equality between the primary key columns in
one table and columns referring to them in the other table.

CAT
cat_id cat_name

1 Kitty
2 Hugo
3 Sam
4 Misty

TOY
toy_id toy_name cat_id

1 ball 3
2 spring NULL
3 mouse 1
4 mouse 4
5 ball 1

JOIN CONDITIONS
The JOIN condition doesn't have to be an equality – it can be any condition you want. JOIN doesn't interpret the JOIN
condition, it only checks if the rows satisfy the given condition.

To refer to a column in the JOIN query, you have to use the full column name: first the table name, then a dot (.) and the
column name:
 ON cat.cat_id = toy.cat_id
You can omit the table name and use just the column name if the name of the column is unique within all columns in the
joined tables.

https://learnsql.com/
https://learnsql.com/course/joins

Try out the interactive SQL JOINs course at LearnSQL.com, and check out our other SQL courses. LearnSQL.com is owned by Vertabelo SA
vertabelo.com | CC BY-NC-ND Vertabelo SA

SQL JOINs Cheat Sheet
COLUMN AND TABLE ALIASES
Aliases give a temporary name to a table or a column in a table.

A column alias renames a column in the result. A table alias renames a table within the query. If you define a table alias,
you must use it instead of the table name everywhere in the query. The AS keyword is optional in defining aliases.

OWNER AS o
id name
1 John Smith
2 Danielle Davis

CAT AS c
cat_id cat_name mom_id owner_id

1 Kitty 5 1
2 Hugo 1 2
3 Sam 2 2
4 Misty 1 NULL

SELECT
 o.name AS owner_name,
 c.cat_name
FROM cat AS c
JOIN owner AS o
 ON c.owner_id = o.id;

cat_name owner_name
Kitty John Smith
Sam Danielle Davis
Hugo Danielle Davis

SELF JOIN
You can join a table to itself, for example, to show a parent-child relationship.

CAT AS child
cat_id cat_name owner_id mom_id

1 Kitty 1 5
2 Hugo 2 1
3 Sam 2 2
4 Misty NULL 1

CAT AS mom
cat_id cat_name owner_id mom_id

1 Kitty 1 5
2 Hugo 2 1
3 Sam 2 2
4 Misty NULL 1

Each occurrence of the table must be given a different alias. Each column reference must be preceded with an
appropriate table alias.

SELECT
 child.cat_name AS child_name,
 mom.cat_name AS mom_name
FROM cat AS child
JOIN cat AS mom
 ON child.mom_id = mom.cat_id;

child_name mom_name
Hugo Kitty
Sam Hugo
Misty Kitty

NON-EQUI SELF JOIN
You can use a non-equality in the ON condition, for example, to show all different pairs of rows.

TOY AS a
toy_id toy_name cat_id

3 mouse 1
5 ball 1
1 ball 3
4 mouse 4
2 spring NULL

TOY AS b
cat_id toy_id toy_name

1 3 mouse
1 5 ball
3 1 ball
4 4 mouse

NULL 2 spring

SELECT
 a.toy_name AS toy_a,
 b.toy_name AS toy_b
FROM toy a
JOIN toy b
 ON a.cat_id < b.cat_id;

cat_a_id toy_a cat_b_id toy_b
1 mouse 3 ball
1 ball 3 ball
1 mouse 4 mouse
1 ball 4 mouse
3 ball 4 mouse

MULTIPLE JOINS
You can join more than two tables together. First, two tables are joined, then the third table is joined to the result of the
previous joining.

TOY AS t
toy_id toy_name cat_id

1 ball 3
2 spring NULL
3 mouse 1
4 mouse 4
5 ball 1

CAT AS c
cat_id cat_name mom_id owner_id

1 Kitty 5 1
2 Hugo 1 2
3 Sam 2 2
4 Misty 1 NULL

OWNER AS o
id name
1 John

Smith

2 Danielle
Davis

JOIN & JOIN LEFT JOIN & LEFT JOINJOIN & LEFT JOIN
SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
JOIN cat c
 ON t.cat_id = c.cat_id
JOIN owner o
 ON c.owner_id = o.id;

SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
JOIN cat c
 ON t.cat_id = c.cat_id
LEFT JOIN owner o
 ON c.owner_id = o.id;

SELECT
 t.toy_name,
 c.cat_name,
 o.name AS owner_name
FROM toy t
LEFT JOIN cat c
 ON t.cat_id = c.cat_id
LEFT JOIN owner o
 ON c.owner_id = o.id;

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis
mouse Misty NULL
spring NULL NULL

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis
mouse Misty NULL

toy_name cat_name owner_name
ball Kitty John Smith
mouse Kitty John Smith
ball Sam Danielle Davis

JOIN WITH MULTIPLE CONDITIONS
You can use multiple JOIN conditions using the ON keyword once and the AND keywords as many times as you need.

CAT AS c
cat_id cat_name mom_id owner_id age

1 Kitty 5 1 17
2 Hugo 1 2 10
3 Sam 2 2 5
4 Misty 1 NULL 11

OWNER AS o
id name age
1 John Smith 18
2 Danielle Davis 10

SELECT
 cat_name,
 o.name AS owner_name,
 c.age AS cat_age,
 o.age AS owner_age
FROM cat c
JOIN owner o
 ON c.owner_id = o.id
 AND c.age < o.age;

cat_name owner_name age age
Kitty John Smith 17 18
Sam Danielle Davis 5 10

https://learnsql.com/
https://learnsql.com/course/joins

