Finding components

Friday, 29 January, 2021 21:11

A small airplane leaves an airport on an overcast day and is later sighted 215~km away, in a direction making an angle of 22° east of due north. How far east and north is the airplane from the airport when sighted?

Finding magnitude and direction

Friday, 29 January, 2021 21:33

A person walks 3 km due east and then 2 km due north. What is his displacement vector?

Friday, 29 January, 2021 21:33

A car travels 20 km due north and then 35 km in a direction 60° west of north. Find the magnitude and direction of the car's resultant displacement.

Friday, 29 January, 2021

21:33

Find the sum of two displacement vectors \vec{A} and \vec{B} lying in the xy plane and given by: $\vec{A} = (2\hat{\imath} + 2\hat{\jmath}) \ m$ and $\vec{B} = (2\hat{\imath} - 4\hat{\jmath}) \ m$.

Friday, 29 January, 2021 21:33

A particle undergoes three consecutive displacements: $\vec{A} = 16\hat{\imath} + 30\hat{\jmath} + 12\hat{k}m$, $\vec{B} = 26\hat{\imath} - 14\hat{\jmath} - 5\hat{k}m$ and $\vec{C} = (-13\hat{\imath} + 15\hat{\jmath})$ cm. Find unit-vector notation for the resultant displacement and its magnitude.

Friday, 29 January, 2021 21:33

Given the two displacements: $\vec{A} = 16\hat{\imath} + 30\hat{\jmath} + 12\hat{k}m$ and $\vec{B} = 26\hat{\imath} - 14\hat{\jmath} - 5\hat{k}m$. Find the magnitude of the displacement $2\vec{A} - \vec{B}$.

The scalar product

Friday, 29 January, 2021 21

The figure shows two vectors lying in the xy plane, if $|\vec{A}| = 6$, $|\vec{B}| = 5$ and $\alpha = 40^{\circ}$. Determine the scalar product of them.

Α

 $\alpha = 40^{\circ}$

В

The scalar product

Friday, 29 January, 2021 21:

Vectors \vec{A} and \vec{B} have magnitudes of 3 units and 4 units, respectively.

- What is the angle between the directions of \vec{A} and \vec{B} if $\vec{A} \cdot \vec{B} = 0$
- \circ What is the angle between the directions of \vec{A} and \vec{B} if $\vec{A} \cdot \vec{B} = 12$
- \circ What is the angle between the directions of \vec{A} and \vec{B} if $\vec{A} \cdot \vec{B} = -12$

Angle between two vectors using dot products

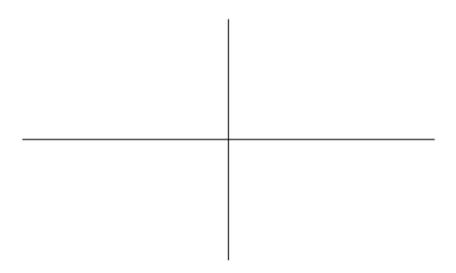
Friday, 29 January, 2021 21:33

The vectors \vec{A} and \vec{B} are given by: $\vec{A}=3\hat{\imath}-4\hat{\jmath}+\hat{k}$ and $\vec{B}=-2\hat{\imath}+3\hat{k}$.

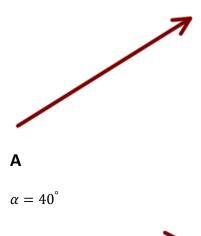
- Find the magnitude of the two vectors.
- \circ Determine the scalar product $\vec{A} \cdot \vec{B}$.
- \circ Find the angle between the directions of two vectors.
- $\circ~$ Find the angle between \vec{A} and the positive x-axis.

The Vector product-1

Friday, 29 January, 2021 21:33


Vectors \vec{A} and \vec{B} have magnitudes of 3 units and 4 units, respectively.

- What is the angle between the directions of \vec{A} and \vec{B} if $\vec{A} \times \vec{B} = 0$
- What is the angle between the directions of \vec{A} and \vec{B} if $\vec{A} \times \vec{B} = 12$


The Vector product-2

Friday, 29 January, 2021 21:

The figure shows two vectors lying in the xy plane, if $|\vec{A}| = 6$, $|\vec{B}| = 5$ and $\alpha = 40^{\circ}$. Determine the vector—product $\vec{A} \times \vec{B}$ of them.

.

В

Cross product, unit-vector notation

Saturday, 30 January, 2021 12:20

If
$$\vec{A}=3\hat{\imath}-4\hat{\jmath}+\hat{k}$$
 and $\vec{B}=-2\hat{\imath}+3\hat{k}$. What is $\vec{C}=\vec{B}\times\vec{A}$?