

3

Rotational Kinematic Equations	
Equations	Missing
$\omega_f = \omega_i + \alpha t$	$\Delta \theta$: displacement (m)
$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$	$t: ext{time (s)}$
$\Delta \theta = \omega_i t + \frac{1}{2} \alpha t^2$	$\omega_f: {\rm final \ velocity} \ ({\rm m/s})$
$\Delta \theta = \omega_f t - \frac{1}{2} \alpha t^2$	ω_i : initial velocity (m/s)
$\Delta \theta = \frac{1}{2} (\omega_i + \omega_f) t$	$\alpha: {\rm acceleration} \ ({\rm m/s^2})$
Mustfa A-Zyout - Philadelphia University	24-Feb-21

Rotational Motion About a Fixed Axis	Translational Motion
Angular speed $\omega = d\theta/dt$	Translational speed $v = dx/dt$
Angular acceleration $\alpha = d\omega/dt$	Translational acceleration $a = dv/dt$
Net torque $\Sigma \tau_{\text{ext}} = I \alpha$	Net force $\Sigma F = ma$
If $\omega_f = \omega_i + \alpha t$	If $v_f = v_i + at$
$\alpha = \text{constant} \begin{cases} \theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2 \\ \omega_f^2 = \omega_i^2 + 2\alpha (\theta_f - \theta_i) \end{cases}$	$a = \text{constant} \begin{cases} x_f = x_i + v_i t + \frac{1}{2} a t^2 \\ v_f^2 = v_i^2 + 2a(x_f - x_i) \end{cases}$
Work $W = \int_{\theta_i}^{\theta_j} \tau \ d\theta$	Work $W = \int_{x_i}^{y} F_x dx$
Rotational kinetic energy $K_R = \frac{1}{2}I\omega^2$	Kinetic energy $K = \frac{1}{2}mv^2$
Power $P = \tau \omega$	Power $P = Fv$
Angular momentum $L = I\omega$	Linear momentum $p = mv$
Net torque $\Sigma \tau = dL/dt$	Net force $\Sigma F = dp/dt$

25

26