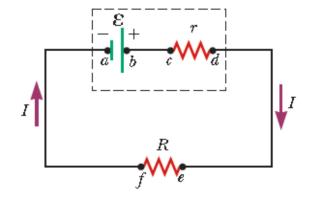
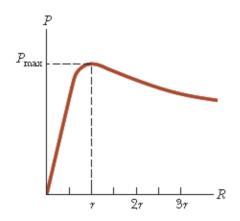
Terminal Voltage of a Battery

Friday, 29 January, 2021

21:25

A battery has an emf of $12.0\,V$ and an internal resistance of $0.0500\,\Omega$. Its terminals are connected to a load resistance of $3.00\,\Omega$.

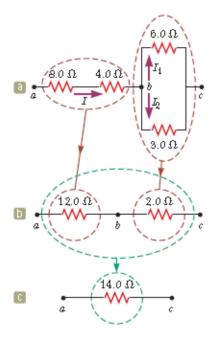

- (A) Find the current in the circuit and the terminal voltage of the battery.
- (B) Calculate the power delivered to the load resistor, the power delivered to the internal resistance of the battery, and the power delivered by the battery.


Matching the Load

Tuesday, 2 February, 2021

21:18

Find the load resistance R for which the maximum power is delivered to the load resistance shown in the figure.

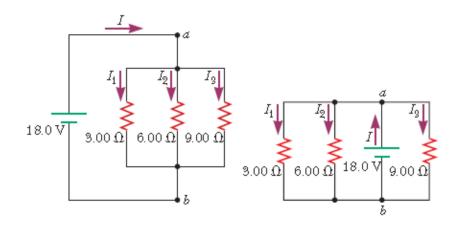


Find the Equivalent Resistance

Tuesday, 2 February, 2021 21:25

Four resistors are connected as shown.

- \circ Find the equivalent resistance between points a and c.
- What is the current in each resistor if a potential difference of 42 V is maintained between a and c?

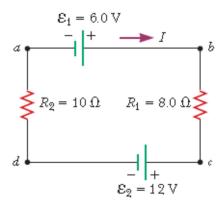

Three Resistors in Parallel

Tuesday, 2 February, 2021

21:33

Three resistors are connected in parallel as shown. A potential difference of $18.0\,V$ is maintained between points a and b.

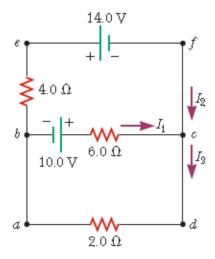
- Calculate the equivalent resistance of the circuit.
- Find the current in each resistor.
- Calculate the power delivered to each resistor and the total power delivered to the combination of resistors.



A Single-Loop Circuit

Tuesday, 2 February, 2021

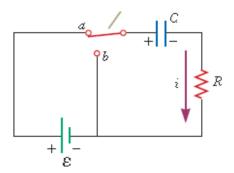
21:37


A single-loop circuit contains two resistors and two batteries as shown. (Neglect the internal resistances of the batteries.) Find the current in the circuit.

A Multiloop Circuit

Tuesday, 2 February, 2021 21:43

Find the currents I_1 , I_2 , and I_3 in the circuit shown.

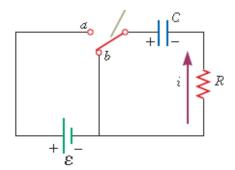


Charging a Capacitor in an RC Circuit

Tuesday, 2 February, 2021 21:45

An uncharged capacitor and a resistor are connected in series to a battery as shown, where $\varepsilon = 12.0 \, V$, $C = 5.00 \, \mu F$, and $R = 8.00 \times 10^5 \, V$. The switch is thrown to position a. Find:

- the time constant of the circuit,
- the maximum charge on the capacitor,
- the maximum current in the circuit, and
- the charge and current as functions of time.



Discharging a Capacitor in an RC Circuit

Tuesday, 2 February, 2021 21:50

Consider a capacitor of capacitance \mathcal{C} that is being discharged through a resistor of resistance R as shown.

- After how many time constants is the charge on the capacitor one-fourth its initial value?
- The energy stored in the capacitor decreases with time as the capacitor discharges. After how many time constants is this stored energy one-fourth its initial value?

Energy Delivered to a Resistor

Thursday, 4 February, 2021 15:49

A $5.00 - \mu F$ capacitor is charged to a potential difference of 800 V and then discharged through a resistor. How much energy is delivered to the resistor in the time interval required to fully discharge the capacitor?