Philadelphia University
 Faculty of Science
 Department of Basic Sciences
 Fall 2021/2022

Final Examination
General Physics 211101
Date: 24/01/2022 Monday Time: Two hours

Student number:
Check your section with [X$]$ below:

General Physics (211101)

$\boxed{\text { Q Section }}$
$\square 1$
$\square 2$
$\square 3$
$\square 4$
$\square 5$
$\square 6$

Lecturer
Mr. Mustafa Al-zyout
Mr. Mustafa Al-zyout
Mr. Mustafa Al-zyout
Ms. Mariam Al-qderat
Ms. Mariam Al-qderat
Ms. Mariam Al-qderat

Useful information's: $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

- Each of the following problems has 2 point.
- You have a total of 20 questions.
- The use of a non-programmable calculator is allowed only.

Good Luck

Instructors:
Mr. Mustafa Al-Zyout
Ms. Mariam Al-qderat

Check your correct answer with \boldsymbol{X} in the table below:

Q. No.	A	B	C	D
1	X			
2				X
3		X		
4			X	
5		X		
6				X
7	X			
8			X	
9		X		
10			X	
11	X			
12		X		
13	X			
14			X	
15	X			
16				X
17	X			
18		X		
19			X	
20		X		

Q.01) A ball is thrown vertically downward from the top of a building with an initial speed of $(25 \mathrm{~m} / \mathrm{s})$. It strikes the ground after $(2 \mathrm{~s})$. The height of the building (in m) is?
(A) 69.9
(B) 59.6
(C) 49.6
(D) 39.6
Q.02) An Olympic athlete throws a javelin at four different angles above the horizontal, each with the same speed: $30^{\circ}, 40^{\circ}, 60^{\circ}$ and 80°. Which two throws cause the javelin to land the same distance away?
(A) 30° and 80°
(B) 40° and 60°
(C) 40° and 80°
(D) 30° and 60°
Q.03) A (70 kg) person rides in an elevator while standing on a scale. The scale reads $\left(400 \mathrm{~N}\right.$). The acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of the elevator is:
(A) -3.4
(B) -4.1
(C) -1.9
(D) -2.7
Q.04) A car travels around (300 m) radius flat curve at $(40 \mathrm{~m} / \mathrm{s})$ at constant speed. What is the minimum static coefficient of friction which allows it to travel at this speed without sliding?
(A) 0.31
(B) 0.21
(C) 0.54
(D) 0.42
Q.05) A stone of a mass (m) is attached to a strong string and whirled in a vertical circle of radius $(r=0.8 \mathrm{~m})$. At the top of the path the tension in the string is three times the stone's weight. What is the stone's speed (in m / s) at this point?
(A) 7.4
(B) 5.6
(C) 4.8
6.9
(D)
Q.06) A $(2 \mathrm{~kg})$ object change its position from $\left(x_{i}=2 m\right)$ to $\left(x_{f}=6 m\right)$ while a constant force $\vec{F}=4 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}(N)$ acts on it. If the velocity of the object at the initial position is $(4 \mathrm{~m} / \mathrm{s})$ and directed along x-direction. What is the final kinetic energy of the object at the final position (in J)?
(A) 40
(B) 36
(C) 28
(D) 32
Q.07) A conservative force $F_{x}=12-6 x(N)$, where x is in meters, acts on a particle moving along the x-axis. What is the change in potential energy (in J) of the particle as it moves from $(x=0)$ to $(x=1 \mathrm{~m})$?
(A) -9.0
(B) -10.0
(C) -9.5
(D) -10.5
Q.08) A force $\vec{F}=4 \hat{\imath}+2 \hat{\jmath}-7 \hat{k}(N)$ acts on a mass of $(2.3 \mathrm{~kg})$ as it moves in the x direction at a speed of $(7 \mathrm{~m} / \mathrm{s})$. What is the time rate at which the force is doing work in (Watts)?
(A) 16
(B) 24
(C) 28
(D) 20
Q.09) A (70 kg) skier goes over a frictionless circular hill of radius $(10 \mathrm{~m})$ as shown. If the skier's speed at point (A) is $(9.2 \mathrm{~m} / \mathrm{s})$. What is his speed (in m / s) at the top of the hill (point B)?
(A) 5.9
(B) 5.2
(C) 5.6
(D) 6.2

Q.10) A (5 kg) block on a rough horizontal surface is attached to a light spring ($\kappa=$ $1600 \mathrm{~N} / \mathrm{m})$. The block passes through its equilibrium position with a kinetic energy of $(5 \mathrm{~J})$ and is brought momentarily to rest after stretching the spring $(0.06 \mathrm{~m})$. How much work is done by the frictional force on the block as it moves from its equilibrium position to the point of momentary rest (in J)?
(A) -5.1
(B) -4.1
(C) -2.1
(D) -3.1
Q.11) Rain is falling on an object at time t with a force of $\vec{F}=\left(8 t \hat{\imath}-3 t^{2} \hat{\jmath}\right) N$. Find the change in the object's momentum between $\left(t_{i}=0\right)$ and $\left(t_{f}=2 s\right)$ (in N.s).
(A) $16 \hat{\imath}-8 \hat{\jmath}$
(B) $8 \hat{\imath}-12 \hat{\jmath}$
(C) $16 \hat{\imath}-12 \hat{\jmath}$
(D) $8 \hat{\imath}-16 \hat{\jmath}$
Q.12) A (2 kg) cart and a (3 kg) cart collide on a low-friction track. The (3 kg) cart is initially moving at $(1 \mathrm{~m} / \mathrm{s})$ to the right, but after the collision it is moving at $(5 \mathrm{~m} / \mathrm{s})$ to the right. After the collision, the $(2 \mathrm{~kg})$ cart is moving to the right at $(3 \mathrm{~m} / \mathrm{s})$. What was the (2 kg) cart's initial velocity (in m / s)?
(A) $12 \mathrm{~m} / \mathrm{s}$, left
(B) $9 \mathrm{~m} / \mathrm{s}$, right
(C) $12 \mathrm{~m} / \mathrm{s}$, right
(D) $9 \mathrm{~m} / \mathrm{s}$, left
Q.13) A billiard ball moving at ($5 \mathrm{~m} / \mathrm{s}$) strikes a stationary ball of the same mass. After the collision, the first ball moves at $(4.33 \mathrm{~m} / \mathrm{s})$ at an angle of $\left(30^{\circ}\right)$ with respect to the original line of motion. Assuming an elastic collision, find direction of the struck ball's velocity after the collision.
(A) 60°
(B) 30°
(C) 53°
(D) 37°
Q.14) A bullet of mass $(10 \mathrm{~g})$ strikes a ballistic pendulum of mass $(2 \mathrm{~kg})$. The center of mass of the pendulum rises a vertical distance of $(12 \mathrm{~cm})$. Assuming that the bullet remains embedded in the pendulum, calculate the bullet's initial speed (in m / s).
(A) 333
(B) 321
(C) 308
(D) 345
Q.15) A (2 kg) particle has the $x y$ coordinates $(-1.2 \mathrm{~m}, 0.5 \mathrm{~m})$, and a (4 kg) particle has the $x y$ coordinates $(0.6 m,-0.75 \mathrm{~m})$. Both lie on a horizontal plane. At what x and y coordinates must you place a (3 kg) particle such that the center of mass of the threeparticle system has the coordinates $(-0.5 \mathrm{~m},-0.7 \mathrm{~m})$?
(A) $-1.5 m,-1.43 m$
(B) $1.5 \mathrm{~m}, 1.43 \mathrm{~m}$
(C) $1.5 m,-1.43 m$
(D) $-1.5 m, 1.43 m$
Q.16) The angular position of a point on a rotating wheel is given by $\theta=2-4 t^{2}-2 t^{3}$, where θ is in radians and t is in seconds. What is its angular acceleration at $t=2 s$ (in $\left.\mathrm{rad} / \mathrm{s}^{2}\right)$?
(A) -15
(B) -40
(C) -30
(D) -32
Q.17) A drum rotates around its central axis at an angular velocity of (12 $\mathrm{rad} / \mathrm{s}$). If the drum then slows at a constant rate of $\left(4 \mathrm{rad} / \mathrm{s}^{2}\right)$, through how many revolutions does it rotate in coming to rest?
(A) 2.9 rev .
(B) 3.9 rev .
(C) 3.4 rev.
(D) 4.5 rev .
Q.18) What is the magnitude of the angular velocity of a spaceship taking a circular turn of radius (3220 km) at a speed of $(29000 \mathrm{~km} / \mathrm{h})($ in $\mathrm{rad} / \mathrm{s})$?
(A) 0
(B) 2.5×10^{-3}
(C) 9
(D) 0.15
Q.19) Calculate the moment of inertia of a meter stick, with mass (0.5 kg), about an axis perpendicular to the stick and located at the $(20 \mathrm{~cm})$ mark (in $\mathrm{kg} . \mathrm{m}^{2}$). (Treat the stick as a thin rod: $I_{c . m}=M L^{2} / 12$).
(A) 0.121
(B) 0.104
(C) 0.087
(D) 0.139
Q.20) A particle located at the position vector $\vec{r}=4 \hat{\imath}+\hat{\jmath}(\mathrm{m})$ has a force $\vec{F}=2 \hat{\imath}+3 \hat{\jmath}(N)$ acting on it. Determine the vector product $(\vec{r} \times \vec{F})$ (in N.m) about the origin.
(A) $8 \hat{\imath}+3 \hat{\jmath}$
(B) $10 \hat{k}$
(C) 11
(D) $12 \hat{\imath}-2 \hat{\jmath}$

