Midterm Exam General Physics 211101 Date: 09/12/2021 Thursday Time: 75 Minutes

С

Х

Х

X

D

Χ

Х

Х

Х

B

Х

X

Х

Х

Check your correct answer

Α

Х

Х

Χ

Х

with **X** in the table below:

Q. No.

1

2

3

4

5 6

7

8

9 10

11

12

13

14

15

Name:

Student number:

Check your section with [X] below:

General Physics (211101)

<u>Lecture time</u>	<u>Day</u>	<u>Lecturer</u>
(09:45 – 11:15)	Sun. & Tue	Mr. Mustafa Al-zyout
(12:45 – 14:15)	Sun. & Tue	Mr. Mustafa Al-zyout
(09:45 – 11:15)	Mon. & Wednes.	Mr. Mustafa Al-zyout
(11:15 – 12:45)	Sun. & Tue	Ms. Mariam Al-qderat
(14:15 – 15:45)	Sun. & Tue	Ms. Mariam Al-qderat
(08:15 – 09:45)	Mon. & Wednes.	Ms. Mariam Al-qderat
	Lecture time (09:45 - 11:15) (12:45 - 14:15) (09:45 - 11:15) (11:15 - 12:45) (14:15 - 15:45) (08:15 - 09:45)	Lecture timeDay(09:45 - 11:15)Sun.&Tue(12:45 - 14:15)Sun.&Tue(09:45 - 11:15)Mon.&Wednes.(11:15 - 12:45)Sun.&Tue(14:15 - 15:45)Sun.&Tue(08:15 - 09:45)Mon.&Wednes.

<u>Useful information's: $g = 9.8 \text{ m/s}^2$ </u>

- Each of the following problems has 2 point.

- You have a total of 15 questions.
- The use of a non-programmable calculator is allowed only.
 - Good Luck
 - Mr. Mustafa Al-Zyout (Module Coordinator)

Q.01) A vector is a physical quantity that has: (A) No direction nor a magnitude (B) Only a magnitude

(C) Only a direction and no magnitude

(B) Only a magnitude and no direction.(D) Both a magnitude and a direction

Q.02) Given the following three vectors $\vec{B}_1 = 4\hat{\imath} - 2\hat{\jmath}$, $\vec{B}_2 = -2\hat{\imath} + 3\hat{\jmath}$ and $\vec{B}_3 = -4\hat{\jmath}$. Determine the

resultant vector: $\vec{B} = \vec{B}_1 + \vec{B}_2 + \vec{B}_3$. (A) $2\hat{\iota} - 4\hat{j}$ (B) $2\hat{\iota} - 6\hat{j}$ (C) $2\hat{\iota} - 3\hat{j}$ (D) $2\hat{\iota} - 5\hat{j}$

Q.03) The vectors \vec{A} and \vec{B} are given by: $\vec{A} = 3\hat{\imath} - 4\hat{\jmath}$ and $\vec{B} = -3\hat{\imath} + 3\hat{k}$. Find the angle between the directions of two vectors. (A) 109.4° (B) <u>115.1°</u> (C) 118.7° (D) 121.0°

Q.04) Two vectors lying in the (x-y) plane are given by the equations $\vec{A} = 5\hat{\imath} + 2\hat{\jmath}$ and $\vec{B} = 2\hat{\imath} - 3\hat{\jmath}$. $\vec{A} \times \vec{B}$ is:

A) $-29\hat{k}$ B) $-34\hat{k}$ C) $-19\hat{k}$ D) $-24\hat{k}$

Q.05) In 2.0 s, a particle moving with constant acceleration along the *x* axis goes from x = 10 m to x = 50 m. The velocity at the end of this time interval is 10 m/s. The acceleration (in m/s²) of the particle is equal to:

(A)–15	(B)– <u>10</u>	(C) – 25	(D) -20

Q.06) A girl's hair gro grow (0.32 m) (in year	ws with an average sports)? (Note: 1 Year = 3.1)	eed of (3.5 × 10 ⁻⁹ m/s). 56 × 10 ⁷ s). (C) 3 26	How long does it take	e her hair to		
(11) 2.50	(b) 5.11	(0) 5.20	(D) 5.00			
Q.07) A stone is drop dropped. The depth of (A) 32.87	pped into a deep well the well (in m) is: (B) <u>30.38</u>	and is heard to hit th (C) 38.14	e water 2.49 seconds (D) 35.46	after being		
	()					
Q.08) Suppose the $\vec{r}(t) = [(2t^3 - 5t)\hat{i} + (A) \frac{12\hat{i} - 84\hat{j}}{2}]$	position vector for $(6-7 t^4)\hat{j}$] <i>m</i> . Find the $(B) -3\hat{i} - \hat{j}$	a particle is given e acceleration of the par (C) $\hat{i} - 28\hat{j}$	n as a function of rticle at t=1s (in m/s^2) (D) $12\hat{i} - 168\hat{j}$	f time by:).		
Q.09) A small ball roll: a point 1.52 m horizon (A) 0.61	s horizontally off the ec Itally from the table edg (B) 0.57	lge of a tabletop that is ge. How long is the ball i (C) 0.53	1.20 m high. It strikes t in the air (in s)? (D) <u>0.49</u>	the floor at		
Q.10) A car with a mass of 500 kg while traveling at a speed of 50 Km/h passes through a curved portion of road in the form of an arc of a circle of radius 10 m. The centripetal acceleration in (m/s^2) of the car at the \rightarrow 50 km/h						
(A) 32.2 (C) <u>19.3</u>	(B) 24.1 (D) 48.2			P		
Q.11) Action and react (A) <u>always act on diffe</u> (C) may be at right ang	tion forces are: <u>rent objects</u> . gles.	(B) always act on the s (D) sometimes act on t	ame object. he same object.	-		
Q.12) In the figure sh after being released fr (A) 99.3 (C) 117.4	own, the block of mass om rest. What is the ma (B) 108.3 (D) <u>90.3</u>	s (m₀=100 kg) takes 2 s iss (m) of the block on t	s to reach the floor he left (in kg)?			
Q.13) A refrigerator weighs (1700 N). It remains at rest even if a horizontal force of (F=280 N) is applied to it. What is the force of friction between the refrigerator and the floor (in units of N)? (Assume that: $\mu_k = 0.4$ and $\mu_s = 0.5$)						
(A) <u>280</u>	(B) Zero	(C) 680	(D) 850			
Q.14) An object of ma Find the coefficient of (A) 0.34	ass (2 kg) moves dowr kinetic friction betweer (B) <u>0.36</u>	n on a rough 20° inclin n the surfaces? (C) 0.97	ed plane with a consta (D) 1.0	ant velocity.		
Q.15) In the figure sh The tension in the core (A) 60.62 (C) 69.28	own, if the weight of th d (1) (in N) is? (B) 51.96 (D) <u>43.30</u>	ne suspended object is	50 N.	30° 2		

General Physics 211101 Midterm Exam on Thursday 09/12/2021 Fall 2021/2022

2-A