Philadelphia University
Faculty of Science
Department of Basic Sciences
Spring 2021/2022

Final Examination
General Physics (2) 211102
Date: 06/07/2022 Wednesday
Time: 120 Minutes

Name:
Check your section with [X] below:

General Physics (211102)
Section (Lecture time)
[X] Lecturer

1	$(11: 15-12: 45)$	[] Dr. Zuheir El-bayyari
2	$(11: 15-12: 45)$	[] Dr. Zuheir El-bayyari
3	$(09: 45-11: 15)$	[] Mr. Mustafa Al-zyout
4	$(12: 45-14: 15)$	[] Mr. Mustafa Al-zyout

Useful information:

$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$	$\epsilon_{o}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} . \mathrm{m}^{2}$
$k_{e}=1 / 4 \pi \epsilon_{o}=9 \times 10^{9} \mathrm{N.m}^{2} / \mathrm{C}^{2}$	$e=1.6 \times 10^{-19} \mathrm{C}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$
$G=6.67 \times 10^{-11} \mathrm{~N} . \mathrm{m}^{2} / \mathrm{kg}^{2}$	$1 e . V=1.6 \times 10^{-19} \mathrm{~J}$
$\rho_{C u}=1.6 \times 10^{-8} \Omega . \mathrm{m}$	$n_{C u}=8.47 \times 10^{28} \mathrm{~m}^{-3}$
$\rho_{\text {Ag }}=1.47 \times 10^{-8} \Omega . \mathrm{m}$	$n_{\text {Ag }}=5.86 \times 10^{28} \mathrm{~m}^{-3}$
$r_{\text {Earth-Moon }}=3.84 \times 10^{8} \mathrm{~m}$	$M_{\text {Earth }}=5.97 \times 10^{24} \mathrm{~kg}$
$M_{\text {Moon }}=7.35 \times 10^{22} \mathrm{~kg}$	$R_{\text {Earth }}=6.37 \times 10^{6} \mathrm{~m}$

- Each of the following problems has 2.0 points.
- You have a total of 20 questions.
- The use of a non-programmable calculator is allowed only.

Good Luck
Dr. Zuheir El-bayyari (Internal examiner)

Q. No.	A	B	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				

Q.01) A particle of charge $3 \times 10^{-6} \mathrm{C}$ is 12 cm distant from a second particle of charge $1.5 \times 10^{-6} C$. Calculate the magnitude of the electric force between the particles (in N).
(A) 2.07
(B) 1.58
(C) 1.25
(D) 2.81
Q.02) What is the magnitude of a point charge that would create an electric field of $1 N / C$ at points 39 cm away (in C)?
(A) 1.69×10^{-11}
(B) 1.44×10^{-11}
(C) 1.21×10^{-11}
(D) 1.00×10^{-11}
Q.03) An electron is accelerated eastward at $1.8 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}$ by an electric field. Determine the magnitude of the field (in N / C).
(A) 7.97
(B) 6.83
(C) 10.25
(D) 9.11
Q.04) A particle carries a charge of $6 \times 10^{-6} \mathrm{C}$. Calculate the electric flux through a spherical Gaussian surface that is centered on the particle and has a radius of 0.04 m (in N. $\mathrm{m}^{2} / \mathrm{C}$).
(A) 5.6×10^{5}
(B) 4.5×10^{5}
(C) 3.4×10^{5}
(D) 6.8×10^{5}
Q.05) A positively charged solid sphere of radius 100 mm has a uniform volume charge density of $250 \times 10^{-9} \mathrm{C} / \mathrm{m}^{3}$. Determine the electric field 20 mm from the center of the sphere (in N / C).
(A) 470.8
(B) 188.3
(C) 282.5
(D) 376.6
Q.06) Particle A carrying a charge of $3 \times 10^{-9} C$ is at the origin, how much work must be done by an outside agent to bring particle B, also carrying a $3 \times 10^{-9} C$ charge, from infinity to $r=4 \mathrm{~m}($ in $J)$?
(A) 1.35×10^{-8}
(B) 1.16×10^{-8}
(C) 2.03×10^{-8}
(D) 1.62×10^{-8}
Q.07) A particle carrying charge $+q$ is located on the x axis at $x=+d$. A particle carrying charge $+3 q$ is located on the x axis at $x=-7 d$. With zero potential at infinity, at what locations, other than infinity, on the x axis is the electric potential zero?
(A) $x=-d$
(B) $x=-d$ and $x=+5 d$
(C) $x=+5 d$
(D) Nowhere
Q.08) A capacitor consisting of two concentric spheres and one consisting of two coaxial cylinders both have an inner radius $a=10 \mathrm{~mm}$ and an outer radius $b=30 \mathrm{~mm}$. If the two capacitors have the same capacitance, what is the length of the cylinders (in mm)?
(A) 30
(B) 33
(C) 32
(D) 31
Q.09) A parallel-plate capacitor with air between its plates carries a charge of $6.6 \times 10^{-6} \mathrm{C}$ when a 9 V battery is connected to it. How much energy is stored in the capacitor (in J)?
(A) 29.7×10^{-6}
(B) 26.4×10^{-6}
(C) 23.1×10^{-6}
(D) 19.8×10^{-6}
Q.10) A $6 \times 10^{-6} F$ air-filled capacitor is connected across a 100 V voltage source. After the source fully charges the capacitor, the capacitor is immersed in oil ($\kappa=4.5$). How much additional charge flows from the voltage source, which remained connected during the process (in C)?
(A) 2.73×10^{-3}
(B) 2.10×10^{-3}
(C) 2.31×10^{-3}
(D) 2.52×10^{-3}
Q.11) Each plate of an air-filled parallel-plate air capacitor has an area of $0.004 \mathrm{~m}^{2}$, and the separation of the plates is 0.08 mm . An electric field of $5.3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ is present between the plates. What is the energy density between the plates (in $\mathrm{J} / \mathrm{m}^{3}$)?
(A) 175.6
(B) 235.8
(C) 304.8
(D) 124.3
Q.12) Three capacitors: $5 \mu F, 10 \mu F$, and $50 \mu F$, are connected in series across a $12 V$ voltage source. How much charge is stored in the $5 \mu F$ capacitor (in μC)?
(A) 50
(B) 56.25
(C) 37.5
(D) 43.75

Q．13）Each plate of a parallel－plate air－filled capacitor has an area of $0.002 \mathrm{~m}^{2}$ ，and the separation of the plates is 0.02 mm ．An electric field of $4 \times 10^{6} \mathrm{~V} / \mathrm{m}$ is present between the plates．What is the surface charge density on the plates（in $\mu \mathrm{C} / \mathrm{m}^{2}$ ）？
（A） 35.4
（B） 44.25
（C） 53.1
（D） 61.95

Q．14）The plates of a parallel plate capacitor of capacitance C_{\circ} are horizontal．Into the gap，a slab of dielectric material with $\kappa=2$ is placed，filling the bottom half of the gap between the plates．What is the resulting new capacitance？
（A）$C=\frac{12}{7} C$ 。
（B）$C=\frac{16}{9} C_{\text {。 }}$
（C）$C=\frac{4}{3} C$ 。
（D）$C=\frac{8}{5} C$ 。

Q．15）During 4 min ，a 5 A current is set up in a wire，how many electrons pass through any cross section across the wire＇s width？
（A） 1.875×10^{21}
（B） 7.5×10^{21}
（C） 5.625×10^{21}
（D） 3.75×10^{21}

Q．16）A wire of Nichrome is 1 m long and $1 \mathrm{~mm}^{2}$ in cross－sectional area．It carries a current of $4 A$ when a $2 V$ potential difference is applied between its ends．Calculate the conductivity s of Nichrome $\left(\right.$ in $\left.(\Omega . m)^{-1}\right)$ ．
（A） 3×10^{6}
（B） 4×10^{6}
（C） 5×10^{6}
（D） 2×10^{6}

Q．17）What is the magnitude of the applied electric field inside a copper wire of radius 1 mm that carries a $2 A$ current（in V / m ）？
（A） 0.01
（B） 0.02
（C） 0.03
（D） 0.04

Q．18）If the current through a 10Ω resistor is $2 A$ ，how much energy is dissipated by the resistor in 1 h （in $k J$ ）？
（A） 9.6
（B） 15
（C） 2.4
（D） 5.4

Q．19）How strong must an electric field in a metal be in order for electrons in the field to have a drift speed of $12 \mathrm{~mm} / \mathrm{s}$ if the time interval between electron－ion collisions is $1 \times 10^{-14} \mathrm{~s}$ （in N / C ）？
（A） 85.4
（B） 6.83
（C） 7.4
（D） 7.97

Q．20）When a 22Ω resistor is connected across the terminals of a 12 V battery，the voltage across the terminals of the battery falls by 0.3 V ．What is the internal resistance of this battery （in Ω ）？
（A） 0.56
（B） 0.62
（C） 0.67
（D） 0.72

Answer Table for form A

(Final Exam on Wednesday 06/07/2022. G. Physics 211102)

Q. No.	A	B	C	D
1				X
2	X			
3			X	
4				X
5		X		
6			X	
7				X
8		X		
9	X			
10		X		
11				X
12			X	
13	X			
14			X	
15		X		
16				X
17	X			
18			X	
19		X		
20	X			

