Name:
Serial number: \qquad Section:
Quistion 1
Determine the couple moment act on the pipe assembly. The distance from \mathbf{A} to \mathbf{B} is: $\mathbf{d}_{\mathbf{A B}}=\mathbf{4 0 0} \mathbf{~ m m}$. Express the result sa a Cartesian vector.

$$
\begin{aligned}
& A=(0,35 \mathrm{~m}, 0,0) \\
& B=(0,35,-y, z) ; \text { where: } \cos 30^{\circ}=\frac{y}{0,4} ; \Rightarrow y=0,4 \cos 30 ; y=0,3464 \\
& \\
& \\
& \sin 30=\frac{z}{0,4} ; \Rightarrow z=0,4 \sin 30^{\circ} ; \Rightarrow z=0,2 \mathrm{~m} \\
& B(0,35 ;-0,3464 ; 0,2) \Rightarrow \bar{r}_{A_{B}}=\{0 i ;-0,3464 \overline{\mathrm{~J}} ; 0,2 \mathrm{k}\} \mathrm{m}
\end{aligned}
$$

$$
\left(\mathbf{M}_{C}\right)_{2}=\mathbf{r}_{A s} \times \mathbf{F}_{2}
$$

$$
\left.=\left|\begin{array}{ccc}
i & j & k \\
0 & -0.3464 & 0.20 \\
-50 & 0 & 0
\end{array}\right|=\{-10.0\}-17.32 \mathrm{k}\right\} \mathrm{N} \cdot \mathrm{~m}
$$

Question 2

(7 marks)
Replace the distributed loading by an equivalent resultant force, and specify its location measured from point \mathbf{A}.

$$
\begin{aligned}
& +\downarrow F_{R}=\Sigma F_{y} ; \quad F_{R}=\frac{1}{2}(15)(3)+\frac{1}{2}(5)(3)+10(3)+\frac{1}{2}(10)(3)=75 \mathrm{kN} \downarrow \\
& C+\left(M_{R}\right)_{A}=\Sigma M_{A} ;-75(\bar{x})=\frac{1}{2}(15)(3)(1)-\frac{1}{2}(5)(3)(1)-10(3)(1.5)-\frac{1}{2}(10)(3)(4)
\end{aligned}
$$

$$
\frac{1}{2}(15)(35 \mathrm{kN}
$$

Determine the reaction support at fixed end A for cantilever beam loaded as shown in figure.

n

$$
\begin{aligned}
& +\sum \sum R_{y}=0 \Rightarrow(-5 \sin 45)-(20 \sin 30)+A_{y}=\Rightarrow-((5 \sin 45)(2))-(20 \sin 30 \times 6)+M_{A}=0 \Rightarrow M_{A}=67,07 \mathrm{kN} \mathrm{\cdot h} \\
& +2 M_{A}=0 \Rightarrow(3,53 \mathrm{kN}
\end{aligned}
$$

