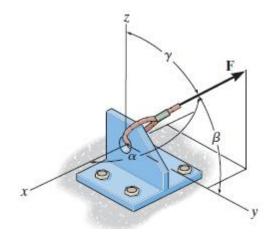


Philadelphia University

Faculty of Engineering


Mech. Engineering Department

Statics(620211)

Quiz:1-C.1st sem. 2014/15

Dr.Nabil musa

If the force $\mathbf{F}=400 \text{ N} \beta=60^{\circ}$, and $\gamma=45^{\circ}$, determine x, y, z component of \mathbf{F} .

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
$$\cos^2 \alpha + \cos^2 60^\circ + \cos^2 45^\circ = 1$$
$$\cos \alpha = \pm 0.5$$

Since F is in the octant shown in Fig. a, θ_x must be greater than 90°. Thus, $\alpha = \cos^{-1}(-0.5) = 120^\circ$.

Rectangular Components: By referring to Fig. a, the x, y, and z components of F can be written as

$$F_x = F \cos \alpha = 400 \cos 120^\circ = -200 \,\text{N}$$
 Ans.

$$F_y = F \cos \beta = 400 \cos 60^\circ = 200 \,\text{N}$$
 Ans.

$$F_z = F \cos \gamma = 400 \cos 45^\circ = 283 \,\text{N}$$
 Ans.