

Philadelphia University	Faculty of Engineering
Mech. Engineering Department	Statics (620211)
Quiz:1-A .1 st sem. 2014/15	Dr.Nabil musa

Determine the coordinate angle γ for \mathbf{F}_2 and then express each force as a Cartesian vector.

Rectangular Components: Since $\cos^2 \alpha_2 + \cos^2 \beta_2 + \cos^2 \gamma_2 = 1$, then $\cos \gamma_{2z} = \pm \sqrt{1 - \cos^2 45^\circ - \cos^2 60^\circ} = \pm 0.5$. However, it is required that $\gamma_2 > 90^\circ$, thus, $\gamma_2 = \cos^{-1}(-0.5) = 120^\circ$. By resolving \mathbf{F}_1 and \mathbf{F}_2 into their x, y, and z components, as shown in Figs. a and b, respectively \mathbf{F}_1 and \mathbf{F}_2 can be expressed in Cartesian vector form as

$$\begin{split} \mathbf{F_1} &= 450\cos 45^\circ \sin 30^\circ (-\mathbf{i}) + 450\cos 45^\circ \cos 30^\circ (+\mathbf{j}) + 450\sin 45^\circ (+\mathbf{k}) \\ &= \{-159\mathbf{i} + 276\mathbf{j} + 318\mathbf{k}\}\mathbf{N} & \mathbf{Ans.} \\ \mathbf{F_2} &= 600\cos 45^\circ \mathbf{i} + 600\cos 60^\circ \mathbf{j} + 600\cos 120^\circ \mathbf{k} \\ &= \{424\mathbf{i} + 300\mathbf{j} - 300\mathbf{k}\}\mathbf{N} & \mathbf{Ans.} \end{split}$$