Philadelphia University

Mech. Engineering Department
Quiz:1-A . ${ }^{\text {st }}$ sem. 2014/15
Faculty of Engineering
Statics(620211)

Determine the coordinate angle γ for \mathbf{F}_{2} and then express each force as a Cartesian vector.

Rectangular Components: Since $\cos ^{2} \alpha_{2}+\cos ^{2} \beta_{2}+\cos ^{2} \gamma_{2}=1$, then $\cos \gamma_{2 z}= \pm \sqrt{1-\cos ^{2} 45^{\circ}-\cos ^{2} 60^{\circ}}= \pm 0.5$. However, it is required that $\gamma_{2}>90^{\circ}$, thus, $\gamma_{2}=\cos ^{-1}(-0.5)=120^{\circ}$. By resolving F_{1} and F_{2} into their x, y, and z components, as shown in Figs. a and b, respectively F_{1} and F_{2} can be expressed in Cartesian vector form as

```
\(F_{1}=450 \cos 45^{\circ} \sin 30^{\circ}(-1)+450 \cos 45^{\circ} \cos 30^{\circ}\left(+D+450 \sin 45^{\circ}(+\mathrm{k})\right.\)
    \(=\{-159 i+276 j+318 k\} N\)
\(F_{2}=600 \cos 45^{\circ} \mathrm{i}+600 \cos 60^{\circ} \mathrm{j}+600 \cos 120^{\circ} \mathrm{k}\)
    \(=\{424 i+300 j-300 \mathrm{k}\} \mathrm{N}\)
```

Ans.

Ans.

