

Philadelphia University	Faculty of Engineering
Mech. Engineering Department	Statics (620211)
Quiz:1-B .1 st sem. 2014/15	Dr.Nabil musa

Express each force acting on the pipe in Cartesian vector form.

Ans.

Ans.

Rectangular Components: Since $\cos^2 \alpha_2 + \cos^2 \beta_2 + \cos^2 \gamma_2 = 1$, then $\cos \beta_2 = \pm \sqrt{1 - \cos^2 60^\circ - \cos^2 120^\circ} = \pm 0.7071$. However, it is required that $\beta_2 > 90^\circ$, thus, $\beta_2 = \cos^{-1}(0.7071) = 45^\circ$. By resolving F₁ and F₂ into their x, y, and z components, as shown in Figs. a and b, respectively, F₁ and F₂, can be expressed in Cartesian vector form, as

$$\mathbf{F}_{1} = 600 \left(\frac{4}{5}\right) (+\mathbf{i}) + 0\mathbf{j} + 600 \left(\frac{3}{5}\right) (+\mathbf{k})$$

= [480\mathbf{i} + 360\mathbf{k}]N
$$\mathbf{F}_{2} = 400 \cos 60^{\circ} \mathbf{i} + 400 \cos 45^{\circ} \mathbf{j} + 400 \cos 120^{\circ} \mathbf{k}$$

= [200\mathbf{i} + 283\mathbf{j} - 200\mathbf{k}]N