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Supervised Learning in Neural Networks (Part 5) 

Hopfield Networks 
There are at least two ways in which we might carry out the updating specified 

by the equation used in Hopfield Networks: 
 Synchronously or parallel: update all the units simultaneously at each 

time step. 
 Asynchronously or Sequential: Update them one at a time. 

Problems of Hopfield Network 

1) Incorrect convergence (recalling): The Hopfield network converges to a 

stable state if the retrieval is done asynchronously; this stable is not 

necessarily representing fundamental memory or the closest one. 
Example: Store 3 fundamental memories 

The weight matrix  

Probe vector: 

The output of the network will converge to the fundamental memory  which 

is wrong (the correct answer is ) 
2) Storage capacity of the Hopfield network: the maximum number of 

patterns (fundamental memories) that can be stored and retrieved correctly 

without unacceptable errors. 

 The maximum number of fundamental memories 𝑴𝒎𝒂𝒙 that can be 

stored in the n-neuron recurrent network is limited by 
a) Hopfield experimentally: 𝑴𝒎𝒂𝒙 =  𝟎. 𝟏𝟓 𝒏 . 

b) Most perfectly retrieved: 𝑴𝒎𝒂𝒙 = 
𝒏

𝟐 𝐥𝐧 𝒏
. 

c) All perfectly retrieved:  𝑴𝒎𝒂𝒙 = 
𝒏

𝟒 𝐥𝐧 𝒏
 

3) Hopfield network represent an auto-associative type of memory: 

The Hopfield network is a single layer and it can store in this layer (the 

same neurons) the output and the input patterns. To associate one memory 

with another we need a recurrent network with two layers (one set of 

neurons for input patterns and another set of neurons for the output 
patterns) ⇒Bidirectional Associative Memory. 
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Hopfield network training algorithm: 

1) Storage (learning): In the learning step for Hopfield network we need to 

find weight matrix for M of patterns (fundamental memories: 

𝒀𝟏 , 𝒀𝟐 , 𝒀𝟑 , … ,𝒀𝑴 ,) stored in the synaptic weights of the network according 

to the equation  

𝒘𝒊𝒋 = {
∑ 𝒚𝒎,𝒊𝒚𝒎,𝒋 ,   

 

𝑴

𝒎=𝟏

         𝒊 ≠ 𝒋

𝟎                                𝒊 = 𝒋

} 

𝒚𝒎,𝒊 and 𝒚𝒎,𝒋 ,   
 

ith and the jth elements of the fundamental memories 𝒀𝒎 , 

In matrix form: 

𝑾 = ∑ 𝒀𝒎𝒀𝒎
𝑻

𝑴

𝒎=𝟏

− 𝑴𝑰 

The weight matrix is symmetrical with zeros in the main diagonal 

𝑾 =  

[
 
 
 
 
 
 
 
 

𝟎 𝒘𝟏𝟐      …      
𝒘𝟐𝟏   𝟎 …

.

.

.

.

.

.

.

.

.

𝒘𝟏𝒊 … 𝒘𝟏𝒏

𝒘𝟐𝒊 … 𝒘𝟐𝒏.
.
.

.

.

.

.

.

.
𝒘𝒊𝟏 𝒘𝒊𝟐      …      
.
.
.

  

.

.

.

.

.

.
𝒘𝒏𝟏 𝒘𝒏𝟐 …

𝟎 … 𝒘𝒊𝒏.
.
.

.

.

.

.

.

.
𝒘𝒏𝒊 … 𝟎

 ]
 
 
 
 
 
 
 
 

 

Where 𝒘𝒊𝒋 = 𝒘𝒋𝒊, The weight matrix 𝐖 is remains fixed 

2) Testing 

 We need to confirm that the Hopfield network is able to recall all 

fundamental memories:  
o Recall 𝒀𝒎 when presented 𝒀𝒎as an input. 

Using: 

𝒙𝒎,𝒊 = 𝒚𝒎,𝒊  ,            𝒊 = 𝟏, 𝟐,… , 𝒏;      𝒎 = 𝟏 , 𝟐, … ,𝑴  

𝒚𝒎,𝒊 = 𝒔𝒊𝒈𝒏(∑ 𝒘𝒊𝒋
𝒏
𝒋=𝟏 𝒙𝒎,𝒋 − 𝜽𝒊)  

Where: 

𝒚𝒎,𝒊 is the 𝐢th element of the actual output vector 𝒀𝒎. 

𝒙𝒎,𝒋 is the 𝒋th element of the input vector 𝑿𝒎. 

In matrix form: 

𝑿𝒎 = 𝒀𝒎,           𝒎 = 𝟏, 𝟐,… ,𝑴  
𝒀𝒎 = 𝒔𝒊𝒈𝒏 (𝑾𝑿𝒎 − 𝜽)  

If all fundamental memories are recalled perfectly, then go to the next step 

3) Retrieval 

 Present an unknown 𝒏-dimensional vector (probe), 𝑿, (corrupted or 

incomplete version of a pattern from fundamental memories) to the network 
and retrieve a stored association (stable state): 

𝑿 ≠ 𝒀𝒎,       𝒎 = 𝟏, 𝟐,… ,𝑴 
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o Initialize the network: 

𝒙𝒋(𝟎) =  𝒙𝒋 ,          𝒋 = 𝟏, 𝟐,… , 𝒏 
Where 𝒙𝒋(𝟎) is the 𝒋th element of the probe vector 𝑿 at iteration 𝒑 = 𝟎 

In matrix form: 

𝑿(𝟎) = 𝑿,     𝒑 = 𝟎 
o Calculate the network output at iteration 𝒑 = 𝟎: 

𝒚𝒊 (𝟎) = 𝒔𝒊𝒈𝒏 (∑𝒘𝒊𝒋𝒙𝒋(𝟎) − 𝜽𝒊

𝒏

𝒋=𝟏

) ,              𝒊 = 𝟏, 𝟐,… , 𝒏 

Where 𝒚𝒊 (𝟎) is the state of neuron 𝒊 at iteration 𝒑 = 𝟎 
In matrix form: 

𝒀(𝟎) = 𝒔𝒊𝒈𝒏[𝑾𝑿(𝟎)] 
o Update the elements of state vector 𝒀(𝒑) using the rule 

𝒚𝒊 (𝒑 + 𝟏) = 𝒔𝒊𝒈𝒏 (∑𝒘𝒊𝒋

𝒏

𝒋=𝟏

𝒙𝒋(𝒑) − 𝜽𝒊) 

In matrix form: 
𝒀(𝒑 + 𝟏) = 𝒔𝒊𝒈𝒏[𝑾𝑿(𝒑) −  𝜽] 

o Repeat the iteration until convergence, when input and output remain 

unchanged. The condition for stability can be defined as : 

𝒚𝒊 (𝒑 + 𝟏) = 𝒔𝒊𝒈𝒏 (∑𝒘𝒊𝒋

𝒏

𝒋=𝟏

𝒚𝒋(𝒑) − 𝜽𝒊) ,         𝒊 = 𝟏, 𝟐,… , 𝒏  

In matrix form: 
𝒀(𝒑 + 𝟏) = 𝒔𝒊𝒈𝒏[𝑾𝒀(𝒑) −  𝜽] 

 
Hopfield network reconstructing degraded images from noisy (top) or partial (bottom)  

 

 


