
Dr. Qadri Hamarsheh

1

Perceptrons and Multi-Layer Feedforward Neural Networks using

matlab

Part 3
Matlab examples:

1) House Price Estimation using feedforward neural networks (fitting data)

 Build a neural network that can estimate the median price of a home
described by thirteen attributes:

1. crime rate per town

2. Proportion of residential land zoned for lots over 25,000 sq. ft.

3. proportion of non-retail business acres per town

4. 1 if tract bounds Charles river, 0 otherwise

5. Nitric oxides concentration

6. Average number of rooms

7. Proportion of owner-occupied units built prior to 1940

8. Weighted distances to five Boston employment centres

9. Index of accessibility to radial highways

10. -tax rate per $10,000

11. Pupil-teacher ratio by town

12. 1000(Bk - 0.63)^2

13. Percent lower status of the population

 Create a neural network which not only estimates the known targets given

known inputs, but can generalize to estimate outputs for inputs that were not
used to design the solution: It is a fitting problem.

 Why Neural Networks?

 Neural networks are very good solution for solving the function fit

problems with non-linear nature.

 The thirteen attributes are the inputs to a neural network, and the

median home price is the target.

 Preparing the Data

 Load the dataset.
[P, T] = house_dataset;

 To view the sizes of inputs P and targets T:

size (P);

size (T);

ans = 13 506

ans = 1 506

Dr. Qadri Hamarsheh

2

 Fitting a Function with a Neural Network

 Weights initialization, the random seed is set to avoid this randomness.

setdemorandstream (491218382)

 Two-layer feed forward neural networks can fit any input-output

relationship given enough neurons in the hidden layer.
 The input and output have sizes of 0 because the network has not yet

been configured to match our input and target data. This will happen

when the network is trained.
net = fitnet (20);

view (net)

 The samples are automatically divided into training, validation and test

sets.
 The training set is used to teach the network. Training continues as

long as the network continues improving on the validation set.

 The test set provides a completely independent measure of network

accuracy.
[net, tr] = train (net, P, T); % tr is the training record information

nntraintool % to display the training tool window

Dr. Qadri Hamarsheh

3

 To display the network's performance during training, we can use either:

 "Performance" button in the training tool.

 Call plotperform function:

plotperform (tr)

 Performance is shown for each of the training, validation and test sets.

 Testing the Neural Network using the following measures:

I. The mean squared error of the trained neural network is used to how well

the network will do when applied to data from the real world.
testP = P (:, tr.testInd);

testT = T (:, tr.testInd);

testA = net (testP);

perf = mse (net, testT, testA);

perf =

 19.3315

II. Regression plot.

 The regression plot shows the actual network outputs plotted in terms of the

associated target values. If the network has learned to fit the data well, the

linear fit to this output-target relationship should closely intersect the

bottom-left and top-right corners of the plot. If this is not the case then

further training, or training a network with more hidden neurons, would be
advisable (correlation between actual network outputs and the target

values).

 To display the regression plot, we can use either:

 “Regression” button in the training tool.

 Call plotregression function:

A = net (P);

plotregression (T, A);

Dr. Qadri Hamarsheh

4

III. Error histogram is used to show how the error sizes are distributed.

Typically most errors are near zero, with very few errors far from that.

 To display the Error histogram, we can use either:

 “Error histogram” button in the training tool.

 Call ploterrhist function:

E = T - A;

ploterrhist (E);

2) Modeling Logical AND Function (linear separable classification)

 Truth table:

 The problem is linearly-separable, try to build a one neuron perceptron

network with following inputs and output:

Dr. Qadri Hamarsheh

5

Solution:

P = [0 0 1 1; 0 1 0 1]; % training inputs, p = [p1; p2]

T = [0 0 0 1]; % targets

net = newp ([0 1; 0 1], 1);

net = train (net, P, T);

a = sim (net, P);

a =

0 0 0 1

T =

0 0 0 1

3) Pattern Classification

 Build a perceptron that can differentiate between two groups of images:

 Use Boolean values 1’s and 0’s to represent the image.
Solution:

image1 = [0 1 0 1 0 1 1 0 1 0 1 0]';%group 0

image2 = [1 0 1 0 1 0 0 1 0 1 0 1]';%group 1

image3 = [0 1 0 1 0 1 1 1 0 0 1 0]';%group 0

image4 = [1 0 1 0 1 0 0 1 1 1 0 0]';%group 1

%Try testing the trained perceptron on following images:

timg1 = [1 1 0 1 0 1 0 1 0 0 1 0]';

timg3 = [1 0 1 0 1 0 0 0 1 1 0 1]';

timg2 = [1 0 1 0 1 1 0 0 0 1 0 1]';

P = [image1 image2 image3 image4];

T = [0 1 0 1];

net = newp (minmax(P), 1);

Dr. Qadri Hamarsheh

6

net = train (net, P, T);

a = sim (net, P)

% Load the test images and ask the perceptron to classify it

PTest = [timg1 timg3 timg2];

testALL = sim (net, PTest) ;

test1 = sim (net, timg1) % to do similarly for other test images

