Digital System Design

Digital Number Systems I

Objectives:

- 1. Understanding decimal, binary, octal and hexadecimal numbers.
- 2. Counting in decimal, binary, octal and hexadecimal systems.
- 3. Convert a number from one number system to another system.
- 4. Advantage of octal and hexadecimal systems.
 - 1. <u>Understanding decimal, binary, octal and hexadecimal</u> numbers

Decimal number systems:

✓ Decimal numbers are made of decimal digits:

$$(0,1,2,3,4,5,6,7,8,9 - - - 10 - base system)$$

✓ The decimal system is a "*positional-value system*" in which the value of a digit depends on its position.

Examples:

- ❖ 453→4 hundreds, 5 tens and 3 units.
 - ✓ 4 is the most weight called "most significant digit"
 MSD.
 - ✓ 3 carries the last weight called "least significant digit" LSD.
- number of items that a decimal number represent:

9261=
$$(9\times10^3)+(2\times10^2)+(6\times10^1)+(1\times10^0)$$

* The decimal fractions:

3267.317=
$$(3\times10^3)+(2\times10^2)+(6\times10^1)+(7\times10^0)+(3\times10^{-1})+(6\times10^{-2})+(1\times10^{-3})$$

- ✓ *Decimal point* used to separate the integer and fractional part of the number.
- ✓ Formal notation \rightarrow (3267.317)₁₀.
- ✓ Decimal position values of powers of (10).

Positional values "weights"

10 ⁴	10 ³	10 ²	10 ¹	10 ⁰		10^{-1}	10^{-2}	10^{-3}	10^{-4}
†	1	1	1	†		†	†	1	1
2	7	7	8	3	•	2	3	4	5
MSD									LSD

Binary numbers:

- **Base-2** system (**0 or 1**).
- We can represent any quantity that can be represented in decimal or other number systems using *binary numbers*.
- Binary number is also *positional–value system* (power of **2**).

Example: 1101.011

2 ³	2 ²	2 ¹	2 ⁰		2-1	2^{-2}	2^{-3}
1	†	1	†		†	†	†
1	1	0	1	•	0	1	1
MSD							LSD

Notes:

■ To find the equivalent of binary numbers in decimal system, we simply take the *sum of products of each digit value* (0,1)and its positional value:

Example: $(1011.101)_2$

$$= (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (1 \times 2^{-1}) + (0 \times 2^{-2}) + (1 \times 2^{-3})$$

$$= 8 + 0 + 2 + 1 + \frac{1}{2} + 0 + \frac{1}{8} = 11.625_{10}$$

In general, any number (decimal, binary, octal and hexadecimal) is simply the sum of products of each digit value and its positional value.

• In binary system, the term binary digit is often called *bit*.

- Binary values at the output of digital system must be converted to decimal values for presentation to the outside world.
- Decimal values must be converted into the digital system.
- Group of 8 bits are called a *byte*.

Octal Number System

• octal number system has a **base of 8**: (0,1,2,3,4,5,6,7)

Examples:

 $(1101.011)_8$

8 ³	8 ²	8 ¹	80		8-1	8^{-2}	8-3
1	†	1	1		1	1	1
1	1	0	1	•	0	1	1
MSD							LSD

• $(4327)_8$

$$= (4 \times 8^3) + (3 \times 8^2) + (2 \times 8^1) + (7 \times 8^0)$$

• **372**. **36**₈

$$= (3 \times 8^{2}) + (7 \times 8^{1}) + (2 \times 8^{0}) + (3 \times 8^{-1}) + (6 \times 8^{-2})$$

Note: octal number don't use digits 8 or 9

Hexadecimal number system (16-base)

✓ Hexadecimal numbers are made of 16 digits, it uses the digits 0 through 9 plus the letters A, B, C, D, E, F.

Examples:

•
$$(A29)_{16}$$

$$=(10\times16^2)+(2\times16^1)+(9\times16^0)=(2601)_{10}$$

•
$$(2c7.38)_{16}$$

$$= (2 \times 16^{2}) + (12 \times 16^{1}) + (7 \times 16^{0}) + (7 \times 16^{0}) + (3 \times 16^{-1}) + (8 \times 16^{-2})$$

Note:

✓ For hex numbers the digits 10, 11, 12, 13, 14, 15 are represented by **a**, **b**, **c**, **d**, **e**, **f** as shown in the following table:

Number Systems					
Decimal	Binary	Octal	Hex		
0	0000	0	0		
1	0001	1	1		
2	0010	2	2		
3	0011	3	3		
4	0100	4	4		
5	0101	5	5		
6	0110	6	6		
7	0111	7	7		
8	1000	10	8		
9	1001	11	9		
10	1010	12	A		
11	1011	13	В		
12	1100	14	C		
13	1101	15	D		
14	1110	16	E		
15	1111	17	F		

2. <u>Counting in decimal ,binary, octal and hexadecimal systems</u>

Decimal counting:

- Start with 0 in the units position and take each digit in progression until reach 9.
- Add 1 to the next higher position and start over 0 in the first position.
- o Continue process until the count 99.
- Add 1 to the third position and start over with 0 in the first position.

Note: the largest number that can be represented using 8 bits is

$$2^{n}$$
-1= 2^{8} -1= 255_{10} = 111111111_{2}

Counting in hexadecimal:

- ✓ For **n** hex digit positions, we can count for decimal **0** to 16^n -1, for a total of 16^n different values.
- ✓ The *general representation* for a number in the form:

$$a_4a_3a_2a_1a_0$$
. $a_{-1}a_{-2}a_{-3}$

Using **r-base/radix** number system, in which the number of *radix* r can be written as

$$n_r = + a_4. r^4 + a_3. r^3 + a_2. r^2 + a_1. r^1 + a_0. r^0 + a_{-1}. r^{-1} + a_{-2}. r^{-2} + ...$$

Numbering System	Radix
Decimal	r=10
Binary	r=2
Octal	r=8
Hex	r=16

Counting in binary system: (counting range)

✓ Using **n** bits, we can represent decimal numbers ranging from **0** to $2^n - 1$, a total of 2^n different numbers.

Examples:

• for n=4 bits

We can count from **0000** to **1111**₂ (see table above) which is 0_{10} to 15_{10} (16 different numbers).

• How many bits are needed to represent decimal values ranging from 0 to 12500?

Answer:

- With 13 bits, we can count from 0 to 2^{13} -1 =8191 (not enough)
- With **14** bits, we can count from **0** to 2^{14} -**1** =**16.383** (*okay*)
 - What is the total range of decimal values that can be represented in 8 bits?

Answer:

For N=8, we can represent form 0 to $2^8-1=255$.