Algorithm Analysis: The Big-O Notation

» Analyze algorithm after design

» Delivering packages example

Calculate the shortest distance from the shop to a particular destination.
— 50 packages delivered to 50 different houses
— 50 houses one mile apart, in the same area

oo o o oo

Gift shop and each dot representing a house

: L;
—+

1
T
L I
)

Package delivering scheme 1

- Driver picks up all 50 packages

- Drives one mile to first house, delivers first package

- Drives another mile, delivers second package

- Drives another mile, delivers third package, and so on

- Distance driven to deliver packages

1+1+1+... +1 =50 miles

Total distance traveled: 50 + 50 = 100 miles

el e el et el e

Package delivering scheme 1

T
'k

Q
ot

[P]
=

Package delivering scheme 2
— Similar route to deliver another set of 50 packages
» Driver picks up first package, drives one mile to the first house, delivers package, returns to the shop
» Driver picks up second package, drives two miles, delivers second package, returns to the shop
— Total distance traveled
2 * (1+2+3+...+50) = 2550 miles

package delivery scheme 2
— n packages to deliver to n houses, each one mile apart
— First scheme: total distance traveled

1+1+1+... +n = 2n miles
Function of n
— Second scheme: total distance traveled
2 * (1+2+3+...+n) = 2*(n(n+1) / 2) = n?+n
Function of n? (n?is the dominant term in the above equation)

Various values of n, 2n, n?, and n®+ n

1l 2 1 2

10 20 100 110

100 200 10,000 10,100
1000 2000 1,000,000 1,001,000
10,000 20,000 100,000,000 100,010,000

Analyzing an algorithm
— Count number of operations performed by the algorithm, Not affected by computer speed
« Example 1-1
— Illustrates fixed number of executed operations

cout << "Enter two numbers"™; //Line 1
cin >> numl >> num2; //Line 2
if (numl >= num?2) //Line 3

max = numl; //Line 4
else //Line 5

max = num2; //Line &
cout << "The maximum number is: " << max << endl; //Line 7

The total number of operations performed by the above code is equal to 8
« Example 1-2
— Illustrates dominant operations

cout << "Enter positive integers ending with -1" << endl; //Line 1
count = 0; //Line 2
sum = 0; //Line 3
cin >> num; //Line 4
while (num != -1) //Line 5
{
sum = sum + num; //Line é
count++; //Line 7
cin >> num; //Line 8
3}
cout << "The sum of the numbers is: " << sum << endl; //Line 9
if (count != 0) //Line 10
average = sum / count; //Line 11
else //Line 12
average = 0; //Line 13
cout << "The average is: " << average << endl; //Line

Line 1-4 has 5 operations,
Line 5-8 has 5 operations
Line 9-14 has 8 or 9 operations depending on whether line 11or line 13 executes.
Then the total number of operations, when the while loop executes n times
5n+150r5n+ 14

Note: one extra operation is executed to terminate the loop.
For very largen, the term 5n becomes the dominating term and 14 or 15 becomes insignificant.
Certain operations in different algorithms are dominant
Example:
In Matrix multiplication, the two operations are addition and multiplication, but the dominant is the
multiplication, so we count the total number of multiplications operations.
Search algorithm

— n:represents list size

— f(n): count function

— Number of comparisons (dominant operation) in search algorithm.

— c: units of computer time to execute one operation

— cf(n): computer time to execute f(n) operations

— Constant ¢ depends computer speed (varies)

— f(n): number of basic operations (constant)

— Determine algorithm efficiency

— Knowing how function f(n) grows as problem size grows

Growth rates of various functions

1 1 2

o o
2 1 2 =
4 p=] 16 16
8 3 24 64 256
16 4 64 256 65,536
32 5 160 1024 4,294,967,296
Ll -
Lk -
. L) = o -
| i =
= - 1 L Flmmh = r¥
.
F Lend .
- -) b o r
=]
il - < = E = 1in
[

Growth rate of functions in the previous table

— Notation useful in describing algorithm behavior
— Shows how a function f(n) grows as n increases without bound
— Asymptotic
— Study of the function f as n becomes larger and larger without bound
— Examples of functions
 g(n)=n? (o linear term)
« f(n)=n’+4n+20
As n becomes larger and larger
— Term4n + 20 in f(n) becomes insignificant
— Term n? becomes dominant term

Growth rate of n? and n? + 4n + 20n

I e e

10 100 160

50 2500 2720

100 10,000 10,420

1000 1,000,000 1,004,020
10,000 100,000,000 100,040,020

» Algorithm analysis
— If function complexity can be described by complexity of a quadratic function without the
linear term
« We say the function is of O(n?) or Big-O of n?
» Letfand g be real-valued functions
— Assume f and g nonnegative
e For all real numbers n, f(n) >=0and g(n) >=0
« f(n) is Big-O of g(n): written f(n) = O(g(n))
— If there exists positive constants ¢ and ng such that f(n) <= cg(n) for all n >=ng

Some Big-O functions that appear in algorithm analysis

The growth rate is constant and so does not depend on n, the size of the

gl =1 problem.

() — I " The growth rate is a function of logzn. Because a logarithm function grows
g = 1082 slowly, the growth rate of the function fis also slow.

N The growth rate is linear. The growth rate of fis directly proportional to the
£ - size of the problem.
£(n) = nlogan The growth rate is faster than the linear algorithm.

T The growth rate of such functions increases rapidly with the size of the
£ - problem. The growth rate is quadrupled when the problem size is doubled.
g(n) — 27 The growth rate is exponential. The growth rate is squared when the problem

size is doubled.

