Instructors: 1. Rola Alseidi 2. Ahmad Hamdan	جاست نیلارانی Philadelphia University Faculty of Science Department of Mathematics Midterm Exam	Academic Year: 2023-2024 Semester: Fall Date: 2/12/2023 Course: Set Theory Duration: 60 Min
--	---	---

Name:

I.D. Number:

Question One: [10 points] Choose the correct answer

1. If $A = \{1, 3, 4\}$ and $B = \{x : x \in \mathbb{R}, \text{ and } x^2 - 7x + 12 = 0\}$, then one of the following is **true**

(A)
$$A = B$$
 (B) $A \subset B$ (C) $\mathcal{P}(B) \subseteq \mathcal{P}(A)$ (D) $A \cap B = \phi$ (E) $B^c = A$

2. Which of the following are logically equivalent

(i) $A \lor \sim B$ (ii) $\sim (\sim A \land B)$ (iii) $(A \land B) \lor (A \land \sim B) \lor (\sim A \land \sim B)$ (iv) $(A \land B) \lor (A \land \sim B) \lor (\sim A \land B)$ (D) Only *ii* and *iv* (A) Only *i* and *ii* (B) Only *i*, *ii* and *iii* (C)Only i, ii and iv(E) None of them are equivalent

3. Let A and B be any sets. Which of the following rules are **correct**

(i) $A \cup (\phi \cap A) = B$ (ii) $A \cap (A \cup B) = B$ (iii) $(A \cap B) \cup (A \cap B^c) = A$ (iv) $A - B = A \cap B$ (A) Only *i* and *ii* (**B**) Only *i* and *ii* (C)Only *i*, *iii* (D) Only ii and iv(E) None of them

4. The **negation** of $\exists x (P(x) \land Q(x))$ is:

(A)
$$\forall x(P(x) \lor Q(x))$$
 (B) $\sim \forall x(P(x) \lor Q(x))$ (C) $\exists x \sim P(x) \land \exists xQ(x))$
(D) $\forall x(P(x) \Longrightarrow \sim Q(x))$ (E) $\forall x(\sim P(x) \Longrightarrow \sim Q(x))$

5. For each real number x, define $B_x = [x^2, x^2 + 1]$. Find $\bigcup_{x \in \mathbb{R}} B_x$: (A) ϕ (B) \mathbb{R} (C) $[0, \infty)$ (D) $(-\infty, 0]$ (E) None. Question Two: [10 points (2+4+4)]

1. Without changing its meaning, convert the following sentence in to a sentence having the form " If $P \implies Q$ ". Then give its converse.

" For a function f to be continuous, it is sufficient that it is differentiable".

2. Show that the following statement is a tautology.

•

 $(p \land (p \implies q)) \implies q$

3. Let A, B, and C any subsets of U, prove (A - B) - C = (A - C) - (B - C)

Question Three: [8 points (4+4)]

1. Prove that $n^2 + n + 1$ is odd for all $n \in \mathbb{N}$

2. Let $x, y \in \mathbb{R}$ such that x < 2y, prove that if $7xy \le 3x^2 + 2y^2$, then $3x \le y$

Question Four: [3 points] Prove that if p is prime number and $p \neq 3$, then $3 \mid (p^2 + 2)$

Good Luck