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Introduction 
 

This document describes the features of the LDRA tool suite that contribute to the                      
DO-178B/C Data Coupling and Control Coupling objectives. In this section the 
definitions and descriptions of these terms from the DO-178C standard are reproduced 
and the next section describes some of the faults that these objectives are designed 
to detect. The third section describes how the LDRA tool suite contributes to the 
certification process for these objectives. 
 
Definitions of the relevant terms presented in the Glossary section of Annex B of DO-
178C are as follow: 

 
Data coupling – The dependence of a software component on data not 
exclusively under the control of that software component. 
Control coupling – The manner or degree by which one software component 
influences the execution of another software component. 
 

In addition the definition of component is given as: 
 

Component – A self contained part, combination of parts, 
subassemblies, or units that perform a distinct function of a system. 
 

In general this term is interpreted as including: procedures, functions, subroutines, 
modules and other similar programming constructs. 
 
The objective which is required to be achieved, table A-7 objective 8, is described as 
follows: 

 
6.4.4 d. Test coverage of software structure, both data coupling and control 
coupling, is achieved. 

 
Then in 6.4.4.2.c this activity is further clarified as follows: 
 

c. Analysis to confirm that the requirements-based testing has exercised the 
data and control coupling between code components. 

 
Examples of clarifications between DO-178B and DO-178C include:  
 
i. Clarified that the structural coverage analysis of data and control coupling between 
code components should be achieved by assessing the results of the requirements-
based tests (see 6.4.4.2.c).  

 

It is an unfortunate fact that these definitions do not uniquely identify the actual checks 
to be made. It is clear that they are targeted at faults which will not be detected by the 
other, better known coverage techniques. 
 
In the following discussion the concepts will be explored in detail in order to formulate 
practical techniques to achieve these objectives. Then the contribution that the LDRA 
tool suite may make to the application of these techniques, and hence satisfaction of 
each of the objectives, will also be discussed. 
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The Concepts 
 
The definitions given above are, in general, inadequate to precisely determine the type 
of analysis which is required. This document uses examples to illustrate the type of 
defect which exhibits the unwanted behaviour. It then attempts to generalise in order 
to identify all the possible defects of that type. 
 
Control Coupling 
 
In many ways the issues are easiest to see by way of examples: 
 
Example CC1. Control Coupling. 
 
Consider the following model with three files and in each there is at least one call to a 
function foo. However two of the files contain a definition of a function foo. The two 
definitions may be identical or possibly similar (same interface). 
 

 
        File A                                   File B                               File C 

 
The linker may choose to resolve all the calls to the function definition in file A (case 
1) or it may resolve the calls in file A to the definition in file A, the call in file B to the 
definition in file B and the calls in file C may be resolved to either (case 2). This is an 
example of a Control Coupling defect because the user may be unaware of the 
ambiguity. 
 
The design of the system should be able to resolve which of these two linkage cases 
is required.  
 
 
 

Call foo 
 
 
 
 
 
 
 
 
 
Definition of 
foo 

Call foo Call foo 
 
 
 
 
 
 
 
 
 
Definition of 
foo 
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Example CC2 
 

This second example is based on parametric Control Coupling. Consider a function 
foo which has a procedural parameter, i.e. it is possible to pass the name of another 
procedure through the parameter list of foo. 
 
int var; 

void foo ( void (*pfunc)(void) ){ 

     if( var == 1 ) { 

    *pfunc();   /* case 1 */ 

} else { 

    *pfunc();   /* case 2 */ 

} 

 

} 

int main ( void ){ 

     loop: 

       get ( var ); get ( glob ); 

       if( glob == 1 ){ 

          foo( &func1 ); 

       }else{ 

          foo( &func2 ); 

       } 

     goto loop; 

} 

 

In this example the two data sets shown below will ensure that every statement is 
executed, and additionally every branch (or control flow decision). 
 

var  glob                                                        

1    0 

                    0    1 

However, potentially there are two functions which could have been called at the points 
labelled case 1 and case 2 whereas with these two data sets above only one function 
is called at each point, func1 at point case 1 and func2 at point case 2. 
 
Control Coupling requires that all potential calls be executed at each point. To ensure 
that all of the control flow calls are executed the requirements based test data will 
therefore need to include two additional data sets. 
 
Clearly this concept can be applied to all cases of the use of pointers to functions. 
Where a function is called by pointer dereference all the potential functions which 
could be called must be executed. 
 
Similarly in C++ all virtual functions which can be called at a particular point must be 
executed by the requirements based test data. 
 
To establish Control Coupling it is firstly essential that the set of possible functions to 
be called is known and secondly it must be known which members of this set are 
actually called. This information is normally proved by static analysis of the code under 
test. 
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Data Coupling 
 

Data Coupling is totally dependant on the structure of the control flow graph of either 
the complete system or alternatively of sub-systems. Again consider some examples. 
 
Example DC1. Data Coupling. 
 

 
 
For this demonstration of a Data Coupling defect consider two functions, Calculate-
Airspeed and Display-Airspeed both of which are called from the same Main Program 
(diagram above) and which share a global variable ‘speed’. Calculate-Airspeed 
computes a value for the variable ‘speed’, i.e. a set operation, whilst the function 
Display-Airspeed outputs the value of ‘speed’ to a display device, i.e. a use operation. 
The Main Program may be of the form illustrated below. 
 
int main(){ 

   int speed, order;  

 loop: 

   get(order); 

   switch( order ){ 

     case 1: calculate_airspeed(speed); 

     case 2: display_airspeed(speed); 

   } 

   goto loop; 

} 

 

It may be possible to construct one test case which executes Display-Airspeed and 
then another test case which executes Calculate-Airspeed.  In this case the Control 
Coupling is tested as required (i.e. every statement executed and every 
branch/decision executed, with no MC/DC requirements in this case) but the 
ordering of the calls is defective because Display-Airspeed has no valid speed to 
display. Similarly if a test case calls Calculate-Airspeed and there is no subsequent 
call to Display-Airspeed it is highly likely that there is another defect. 
 
This example shows that there is a need to demonstrate that all the inputs to a given 
procedure have valid values at the point of a call and that all values assigned to global 
variables are used. In this context a global variable is a variable declared and set 
externally to a procedure in which it is used. 
 

Speed 

Calculate-
Airspeed 

Display-Airspeed 

Main Program 
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Example DC2. 
 
Consider the following code: In the following function foo there are three uses of the 
parametric variable x. 
 
     9Fint 

    10T  foo ( 

    11F  int x ) 

    12F  { 

    13T    if 

    14T      ( 

    15T      x == 1 

    16T      )        // a use of x 

    17T      { 

    18T        return 

    19T        x ;     // a use of x 

    20T      } 

    21T    else 

    22T      { 

    23T        return 

    24T        x ;     // a use of x 

    25T      } 

    26T  } 

 

Now consider the impact of calling this function from the following main program. 
 
    28Fint 

    29T  main() 

    30F  { 

    31F    int 

    32F      i , 

    33F      y , 

    34F      z ; 

    35T    for 

    36T      ( 

    37T      i = 1 

    38T      ; 

    39T      i <= 2 

    40T      ; 

    41T      i ++ 

    42T      ) 

    43T      { 

    44T        y = i ; 

    45F             // y is set 

    46T 

    47T        foo ( 

    48T        y ) ;  // y is aliased to x 

    49T      } 

    50T    scanf ( "%d" , & z ) ; 

    51F                    // z is set 

    52T 

    53T    foo ( 

    54T    z ) ;  // z is aliased to x 

    55T  } 
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The first call to foo with argument y will cause every statement in foo to be executed 
and additionally every branch/decision because the loop generates both possibilities 
for y. It will also cause the execution of all three uses of y; The second call to foo with 
argument z does not cover any statements or branches/decisions in foo which are not 
already covered but it does introduce another three uses (of z) of which one is not 
executed. Data Coupling based testing will require two test cases, one with z having 
a unit value and a second case with a different value so that all three uses of z in foo 
(via the alias x) are covered. 
 
From these discussions the DO-178B/C requirement can be formalised as follows; 
 

Data Coupling involves all the global variables and also those local variables 
which are passed down through parameter lists to lower level components. 
These latter are local-global variables, but subsequently in this document both 
these two global variable types will be referred to simply as the set of global 
variables. Any of these global variables will be given a value by some operation 
such as an assignment or receive a value in an input operation. These are 
referred to as the Set operations. Then there are the points where these values 
contribute to the operations (calculations, outputs, etc.) of the program, these 
are referred to as the Use operations.  
 
There are two cases to consider; those variables which are declared globally 
and are used in many components but never appear as actual parameters in 
procedure calls, and those which do appear as actual parameters in procedure 
calls. 
 
For the first case, two lists are produced for each such global variable, the list 
of all Set operations, the Set list, and the list of all the use operations, the Use 
list. The impact of these lists on the measurement of Data Coupling will be 
discussed below. 
 
For the second case consider a specific global variable which occurs as an 
actual parameter in a specific procedure call. Prior to the call there will be one 
or more points in the control-flow graph where that variable was Set and from 
which the call is reachable. In general there will be a set of control-flow paths 
from each of these Set points to that procedure call. The list of Set points for 
that variable and procedure call combination will be called the Set-Call list. In 
the body of the procedure this variable will map to one of the formal parameters. 
In turn this formal parameter will have one or more Use points in the procedure 
body which here is termed the Call-Use list. 
 
The Set-Call and Call-Use lists will together be referred to as the variable Fan-
In/Fan-Out at that procedure call. Therefore for every procedure call there is a 
super set variable Fan-In /Fan-Out consisting of all the separate Set-Call lists 
and Call-Use lists for all the input variables in the procedure call. 
 
If every statement in the program is executed every Set operation and every 
Use operation will have been executed but that can be achieved by executing 
just a subset of the Set operations for each procedure call (see previous 
example CC2). There are two schemes for improving the measurement of Data 
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Coupling Coverage which can be derived from these lists. The first is to execute 
every Set operation in the Fan-In lists and every Use operation in the Fan-Out 
lists. This will be referred to as Variable Fan-In/Fan-Out Coverage. The second 
scheme is to ensure that the all the combinations of the Set-Use pairs in these 
lists are executed, i.e. Set-Use Coverage. However, this second schema 
suffers from the possibility of a combinatoric explosion. 
 
The DO-178B/C standards committee have already ruled against a similar 
combinatoric explosion in formulating MC/DC rather than requiring the full 
Branch Condition Combination Coverage (i.e. testing all the true/false 
combinations of the Boolean subconditions). Therefore the Set-Use coverage 
is not suitable for practical consideration for the same reasons of practicality. 
The consequence of this is that Data Coupling Coverage can only be realised 
practically via variable Fan-In/Fan-Out Coverage. In the same way that MC/DC 
Coverage realises much of the benefits of condition coverage so too does 
variable Fan-In/Fan-Out Coverage realise much of the benefits of global 
variable Set-Use coverage.  
 
Returning to the case of global variables which never appear in parameter lists 
it can be seen that statement coverage already ensures that all entries in their 
Set and Use lists have been executed. However it does not cover all the 
possible Set-Use combinations. Therefore the realisation of the measurement 
of Data Coupling as a non combinatoric technique means that only those global 
variables which are passed as parameters need to be considered. 
 
The realisation and measurement of this metric is straightforward. Consider a 
trace of the execution of the software during a test. For a given variable a 
specific Set operation will be encountered, then, subsequently a use of this 
variable will be encountered. This means that both entries in the variable Fan-
In/Fan-Out lists can be marked as covered. Later the same Set operation may 
be encountered and subsequently another Use point may be executed and 
hence the new Use can be marked as covered. 
 
Note that this is reported for every procedure call and indeed each procedure 
call may appear more than once. This can happen if the procedure call is itself 
in the body of another procedure and a formal parameter of this enclosing 
procedure appears in the actual parameter list of the function call under 
consideration. Then this enclosed procedure must be evaluated for all the 
appropriate actual parameters of the outer call. 
 
The extra costs incurred by the measurement of Data Coupling are difficult to 
estimate due to the impact of branch/decision coverage, procedure call 
coverage and MC/DC which inevitably will execute more entries in the variable 
Fan-In/Fan-Out lists than simple statement coverage. In practice it might be a 
sensible strategy to only investigate the Data Coupling after these coverage 
metrics have been maximised to the required levels. 

 
It is an objective of DO-178C that all the Data Coupling shall be satisfied by the 
requirements based test data and that there shall be no Uses which are not preceded 
by a Set. 
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LDRA tool suite Features 
 
In this section the features of the LDRA tool suite which contribute to Control and Data 
Coupling are described. There are two issues which need to be considered. Firstly, 
how can the need for special test cases be identified and secondly how can specific 
test cases be shown to provide the required coverage? The LDRA tool suite solves 
the first problem through the use of Static Analysis and for the second case combines 
the knowledge produce by this Static Analysis with detailed Dynamic Analysis of a 
control flow trace. 
 
Control Coupling 
  
A key element of the Structural Coverage Analysis facilities provided by the LDRA tool 
suite is the control flow model which is automatically determined through an extensive 
Static Analysis of the source code under test. In reporting Structural Coverage 
Analysis the tool suite then compares the actual flow of control with that predicted 
through Static Analysis. This enables the tool to identify any errors in linkage or other 
departures from the required control flow behaviour. Linkage errors can arise, for 
instance, if the same procedure or function name occurs in several source code files. 
It is dependant on the Linker which procedures or functions get linked to which calls. 
The tool suite provides Static Analysis based warnings of the possible ambiguity and 
then produces Dynamic Analysis generated messages based on the requirements-led 
testing if the actual linkage is different from the predicted linkage. The user then 
explores the graphical representations to resolve what the design or architectural 
representations were predicting. 
  
In support of this primary aspect of Control Coupling reporting the LDRA tool suite also 
reports Procedure Function Call Coverage and provides a graphical indication of 
Control Coupling via the Callgraph Display. This latter facility provides a visual 
representation of the dependence of a given software component on those 
components that call it. From the Callgraph Display users may then target specific 
instances of Control Coupling by selecting an individual software component 
(procedural node) and selecting the 'Nuclear Spider' option from the right-mouse 
button menu. This display provides a graphical representation of the immediate 
Control Coupling and the extended or hierarchical Control Coupling may then be 
shown with the 'Extended Spider' display that is selected from the same menu. 
Alternatively the calling components, together with their calling frequency may be 
listed textually via the 'Interface Information' option that is again available from the 
same menu. 
  
This information may also be mapped back directly to the source code by 'drilling-
down' to the specific predicates within the source code which must be satisfied in order 
to affect the call. This can be achieved either directly from the Callgraph Display or via 
the intermediate step of selecting the Procedural Flowgraph Display and then clicking 
on the appropriate node of the graph. 
  
It should also be noted that Exact Semantic Analysis can be used to provide additional 
monitoring of global variables should this be considered desirable. For example 
annotations can be added which will check the actual function pointer values. 
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For the examples given previously: 
 

Example CC1. 
 
The LDRA tool suite reports the ambiguity caused by the two definitions and 
graphically shows the linkage which it assumes is correct. The user is then able 
to either confirm or refute this linkage model and remove the ambiguity. 
Alternatively, the Dynamic Analysis will show the actual linkage in terms of 
coverage. For case 1 the procedure definition in file B will get zero statement 
and branch coverage and all the coverage will appear in the definition in file A. 
For case 2 both definitions will show coverage. Which resolution is used by the 
calls in file C will be shown in the procedure call table coverage? The defect 
can therefore be detected. 
 
Example CC2. 
 
In this example the LDRA tool suite statically scans all the calls to the procedure 
foo and obtains all the functions which are passed as actual parameters. The 
subsequent data and control flow analysis will utilise the list of functions which 
are called. This analysis will trace the called functions over the whole of the 
graph, through other procedure calls if necessary. 

 
In conclusion, the Control Coupling verification is greatly simplified by the extensive 
Static Analysis checks which then increase the confidence of the Control Coupling 
coverage obtained from the Dynamic Analysis of the coverage of the requirements 
based test data. 
 
Data Coupling 
 
The LDRA tool suite addresses the Data Coupling defects in two ways, with Static 
Analysis and then with Dynamic Analysis. It is the power of these two techniques 
combined which yields the appropriate coverage metrics. 
 
Firstly the tool suite applies system-wide Static Data Flow Analysis to the full graphical 
representation of the system-under-test and identifies not only the Set and Use points 
referred to previously but also the Dec-Use pairs (declaration to use paths), the Set-
Set paths and the Set-Unuse paths (assignment to variable-out-of-scope path). Note 
Unuse points are sometimes referred to as variable kill points or variable Undefine 
points. Of these pairs the Dec-Use and Set-Unuse pairs are clear indicators of defects. 
The Set-Set pairs are common but whilst they can sometimes indicate a defect, in 
general they are too expensive to remove because they are subject to combinatoric 
possibilities. Note that in the notation of traditional Data Flow Analysis the Dec-Use 
pairs map to UR anomalies, the Set-Set pairs to DD anomalies and the Set-Unuse 
pairs to DU anomalies.  
 
Since the setting of variables is often intimately related to I/O operations it is imperative 
to have no defects in the I/O operations. Therefore the tool suite also searches the 
system-wide control flow graph to show that all I/O operations are appropriate, 
coupling this with the use patterns of the input variables. The file operation checks 
ensure that on every path all reads and writes are preceded by an open, a currently 
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open file is not reopened and all opened files are closed at program termination. 
Writing to a previously closed file or closing a previously closed file and other subtle 
I/O defects are also diagnosed. 
 
It is possible for the analysis to produce unnecessary pairs (of all the types discussed) 
due to the presence of infeasible paths (termed unreachable paths in DO-178B/C). 
The tool suite reports many causes of infeasible paths in the Static Analysis. This 
enables the software developers to simplify their code which in turn helps to reduce 
the cost of constructing requirements based tests. It is very frustrating to spend time 
attempting to execute code components in order to obtain coverage of a particular 
Set-Use pair only to discover that the paths which connect them are infeasible. 
 
The Dynamic Data Flow Coverage Analysis then identifies the actual (as observed 
from the control flow trace) Dec-Use anomalies and the actual Set-Unuse anomalies 
because these may indicate a possible incorrect ordering of the components. A Dec-
Use defect (i.e. uninitialised variable) is always a fault whereas a Set-Unuse defect 
can arise from a clumsy programming style. This dynamic information is obtained from 
a trace of the execution path as the program executes the requirements based test 
data and hence provides an independent confirmation of results reported in the Static 
Data Flow Analysis. Note that it is usually more cost effective to remove these defects 
after the Static Analysis has been performed and before requirements based testing 
commences. The Set-Use and Use-Call lists and their coverage are reported as shown 
in Diagram 1.  
 
Diagram 1 
========================================================================================== 

 VARIABLE      DPTH PARAM    FILE          PROCEDURE     TYPE   ATTRIBUTE 

 NAME               ALIAS                  NAME          CODE   CODE       USED ON LINES.. 

 ========================================================================================= 

 i                           ex_dc2.c      main           L      E         32 

                                                          L      R         39     41 

                                                                           44 

                                                          L      D         37     41 

          

 -------- 

 x                           ex_dc2.c      foo            P      E         11 

                                                          P      R         15     19 

                                                                           24 

          

 -------- 

 y                           ex_dc2.c      main           L      E         33 

                                                          L      R         48 

                                                          L      D         44 

                 1  x        ex_dc2.c      foo            P      E         11 

                                                          P      R         15     19 

                                                                           24 

          

 -------- 

 z                           ex_dc2.c      main           L      E         34 

                                                          L      I         50 

                                                          L      R         54 

                                                          L      D         50 

                 1  x        ex_dc2.c      foo            P      E         11 

                                                          P      R         15 

                                                                           19  ***** 

                                                                           24 

 ---------------------------------------------------------------------------------------- 

These results are derived from analysing a dynamic trace of the actual execution path 
taken by the program on its last run. Line numbers followed by ***** have not been 
executed on any test run to date. 
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A key to terms used in Diagram 1 can be seen in Diagram 2. 
 
Diagram 2. 

                                ****************** 

                                *                * 

                                *  Key to Terms  * 

                                *                * 

                                ****************** 

 

 Type and Attribute codes are shown for each variable 

 ---------------------------------------------------- 

 

 Variable Type Codes 

 ------------------- 

      ====================== 

      TYPE           MEANING 

      ====================== 

      C              Constant 

      L              Local 

      G              Global 

      P              Parameter 

      LG             Local-Global 

   

 Variable Attribute Codes 

 ------------------------ 

      ====================== 

      ATTRIBUTE      MEANING 

      ====================== 

      E              Declaration 

      D              Definition 

      R              Reference 

      I              Input 

      O              Output 

      N              Indirect Usage 

      U              Unused parameter 

 

 

 Other Terms in Dynamic Data Flow Table 

 -------------------------------------- 

 ======================= 

 ITEM        DESCRIPTION 

 ======================= 

 Variable    Main variable name matching user selection 

 Alias       Call depth + aliased name when passed as procedure parameter 

 n           Variable used on line n 

 n *****     Use of variable on line n not hit in any data set 

             Use of aliased parameter on line n not hit for function call 

 (n)         Use of variable on line n hit in last data set 

 n -         Variable used on non-executable line n 

 

 

The LDRA tool suite provides comprehensive Data Coupling information in both the 
Static and Dynamic domains as detailed below in order to assist developers select 
requirements based test data to execute any uncovered items in the variable Fan-
In/Fan-Out lists. 
  
Certain aspects of Data Coupling may again be accessed via the LDRA tool suite 
Callgraph and Flowgraph Displays where users may 'drill-down' to the source code 
containing the specific instances of predicates within the source which influence the 
behaviour of the dependent software component. 
  
The Cross Reference Analysis and Data Object Analysis may be utilised to show ALL 
instances of the data items which are accessed by a particular software component. 
This includes local variables declared within the scope of the component and global 
variables accessed by the component, but declared elsewhere. Significantly, through 
the sophisticated Data Object Analysis module, the LDRA tool suite is able to provide 
a  'filtered' and hence extremely focussed analysis which will track and report user-
defined data items across file and procedure boundaries even in cases where they are 
aliased as parameters to procedure calls or accessed via a call-chain. With the 
addition of Information Flow Analysis output, this reporting mechanism is further 
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enhanced to include both direct and conditional data object dependence and inverse 
dependence tables. 
  
In addition to contributing to aspects of the Data Object Analysis reporting, the 
Information Flow Analysis will identify and report data dependencies within the code 
under analysis and will also automatically detect and report inappropriate 
(unexpected) data dependencies. The ability to determine and verify the data 
interfaces between modules/components is then provided by the Static Data Flow 
Analysis module which reports the interface of each procedure in the source code in 
terms of its parameters, global variables and any returned results. Each of these items 
is listed together with its determined usage, i.e. whether the item is referenced only, 
changed within the procedure or unused. 
  
In the Dynamic domain the Dynamic Data Flow Coverage facility provided by the tool 
suite indicates which data components have been accessed at run-time by the 
requirements based test data. In so doing, it utilises the execution trace associated 
with each specific test data set and thereby provides the Data Coupling for that 
particular test case as well as accumulated results for all test runs.  
 
Data Coupling Analysis is a software integration technique because it looks at the way 
data is transmitted through the system. There are three ways in which integration can 
proceed: 
 

1. Integrate the whole system in one operation, 
2. Integrate bottom up, testing each level with the use of drivers, 
3. Integrate top down, testing each level with the use of stubs. 
 

The LDRA tool suite can accomplish the Data Coupling Analysis in any of these three 
alternatives. It can automatically generate both drivers and stubs with the minimum of 
user effort, substantially reducing costs. 
 
The Dynamic Data Flow Coverage can also list each instance of an initialisation or Set 
operation of a global variable and all the subsequent uses of that variable. These are 
the variable Fan-In/Fan-Out lists. This includes all aliasing of a global variable as it is 
subsequently passed through procedure interfaces via parameter lists. The total set 
variable Fan-In/Fan-Out lists for each global variable and local variables passed 
through parameter lists is generated for any of the three integration options above. 
Then from the Dynamic Coverage Analysis which is generated using the requirements 
based test data the tool suite reports which of the Set or Use instances has been 
covered by the tests and critically those which have not been covered. 
 
From the resultant coverage it is possible to detect when all the Variable Fan-In/Fan-
Out instances have been executed and the DO-178C objective has been met. 
 
In conclusion the tool suite provides exceptionally detailed Static Analysis based 
checks to reduce the possibility of defects which make the task of assessing Data 
Coupling more difficult. The Dynamic Analysis produces explicit coverage of the 
coupling coverage of the requirements based test data. 
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Conclusion 
 
This document describes the extensive features of the LDRA tool suite which can 
document conformance to the specification of requirements based test data Control 
and Data Coupling. 
 
It shows that the LDRA tool suite can provide the information and analysis to achieve 
the DO-178C objectives for Control and Data Coupling. 
 

Appendix 
 
For illustrative guidance on the detailed checks necessary the following is the 
appropriate table from ‘Developing Safety-critical Software’ by Leanna Rierson, CRC 
Press, 2013, ISBN 978-1-4398-1368-3. In the appropriate sections below the 
contribution of LDRA tool suite to each bulleted item will be shown. 
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TABLE 9.2 
 
Example Data and Control Coupling Items to Consider During Design and Code Review/Analysis 
 
Example Data Coupling Items to Consider  

 

Example Data Coupling Items to  
Consider 

Example Control Coupling Items to Consider 

1. All external inputs and outputs are defined and are 
correct 

2. All internal inputs and outputs are defined and are 
correct 

3. Data is typed correctly/consistently 
4. Units are consistent and agree with data dictionary 
5. Data dictionary and code agree and are both 

complete 
6. Data is sent and received in the right order 
7. Data is used consistently 
8. Data corruption is prevented or detected 
9. Data is initialized or read-in before being used 
10. Stale or invalid data is prevented or detected 
11. Data miscompares or data dropouts are prevented 

or detected 
12. Unexpected floating point values are prevented or 

detected 
13. Parameters are passed properly 
14. Global data and data elements within global data 

constructs are correct 
15. I/O is properly accessed from external sources 
16. All variables are set (or initialized) before being 

used 
17. All variables are used 
18. Overflow and underflow is identified and correct 
19. Local and global data are used 
20. Arrays are properly indexed 
21. Code is consistent with the design 
 

1. Order of execution is identified and correct 
2. Rate of execution is identified and correct 
3. Conditional execution is identified and correct 
4. Execution dependencies are identified and 

correct 
5. Execution sequence, rate, and conditions satisfy 

the requirements 
6. Interrupts are identified and correct 
7. Exceptions are identified and correct 
8. Resets are identified and correct 
9. Responses to power interrupts are identified and 

correct 
10. Foreground schedulers execute in proper order 

and at the right rate 
11. Background schedulers are executed and not 

stuck in infinite loop 
12. Code is consistent with the design 
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The items in table 9 above can be addressed as follows: 
 

1. All external inputs and outputs are defined and are correct. The procedure 
interface analysis shows details of each component’s parameters, return values, 
I/O and global variables. This information is extremely helpful for Design 
Analysis and Review. 

2. All internal inputs and outputs are defined and are correct. The procedure 
interface analysis shows details of all variables mapped to hardware and 
variables which appear in parameter lists to sub-components or output 
statements. 

3. Data is typed correctly/consistently. Strong type checking is a powerful feature 
of the tools invoking up to 340 checks on declarations and 166 checks on 
expressions. 

4. Units are consistent and agree with data dictionary. The tool suite checks that 
the interfaces between units satisfies some 90 checks on number, type and 
attributes of the objects in the interfaces. 

5. Data dictionary and code agree and are both complete. The tool ensures that 
all requirements map to code and all code maps back to requirements which is 
a form of completeness. 

6. Data is sent and received in the right order. There are checks that file reads, 
writes and closes are always in the right order. Other checks ensure that related 
components are executed on all paths in a predefined order. There are 
numerous checks to identify such ordering faults as variables being reassigned 
values with no intervening uses. 

7. Data is used consistently. There are 166 checks on the structure of expressions.  
8. Data corruption is prevented and detected. There are checks on array bound 

overflow and the use of overlapping declarations. 
9. Data is initialized or read-in before use. The tool suite system wide data flow 

analysis provides a formal proof that this constraint is satisfied. 
10. Stale or invalid data is prevented or detected. The tool suite checks that all input 

data is sanitized before use (i.e. subjected to constraints). 
11. Data miscompares or data dropouts are prevented or detected. 
12. Unexpected floating point values are prevented or detected. 
13. Parameters are passed properly. There are some forty six checks performed 

on parameters.  
14. Global data and data elements within global data constructs are correct. The 

strong typing is also performed on the fields of data structures ensuring that 
they are correctly initialised and used. 

15. I/O is properly accessed from external sources. Checks are performed on the 
ordering of file opens, reads, writes and closes. The input values from reads 
are checked to ensure that their values are sanitized on all paths before use. 

16. All variables are set (or initialized) before being used. The tool suite system 
wide data flow analysis provides a formal proof that this constraint is satisfied. 

17. All variables are used. Checks ensure that all variables given a value are used 
before going out of scope. 

18. Overflow or underflow is identified and correct. The tool suite reports some 
cases of potential integer overflow. 

19. Local and global data are used. Checks ensure that all named locations holding 
data are used. 



Data Coupling and Control Coupling 

 

20. Arrays are properly indexed. Comprehensive array bound checks are 
performed statically. There is also a dynamic capability. 

21. Code is consistent with design. The graphical facilities help to match the code 
to design representation. 

 
In addition to the Static Analysis facilities described above, in the Dynamic domain the 
Dynamic Callgraph Display incorporates structural coverage analysis information to 
demonstrate the degree to which the identified control coupling has been exercised at 
run-time. 
  
The information sources described above may all be utilised to identify control 
dependencies. 
  
Additional, non-graphical, data such as that generated by the LDRA tool suite 
Information Flow Analysis and Data Object Analysis modules, further enhance the 
available reporting facilities by identifying module/component data object 
dependencies. 
 

1. Order of execution is identified and correct. 85 checks. 
2. Rate of execution is identified and correct. 
3. Conditional execution is identified and correct. 27 checks. 
4. Execution dependencies are identified and correct. 
5. Execution sequence, rate and conditions satisfy the requirements. 
6. Interrupts are identified and correct. 17 checks. 
7. Executions are identified and correct. 
8. Resets are identified and correct. 
9. Responses to power interrupts are identified and correct. 
10. Foreground schedulers execute in proper order and at the right rate. 
11. Background schedulers are executed and not stuck in infinite loops. Infinite 

loops identified 26 checks. 
12. Code is consistent with the design. 
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