

## Philadelphia University Faculty of: Administrative & Financial Sciences Department of Business Networking and Systems Management

## **Course Syllabus**

**Course Title : Data Structure** 

Course code: 0371313, 3<sup>rd</sup> level

Course prerequisite (s) and/or co requisite (s):0371211

Credit hours:3

**Lecture Time:** 

| <b>Academic</b> | Staff |
|-----------------|-------|
|                 |       |

## **Specifics**

| Name             | Rank               | Office Number and<br>Location | Office<br>Hours | E-mail Address         |
|------------------|--------------------|-------------------------------|-----------------|------------------------|
| Sundus A. Hamood | Assistant<br>Prof. | 32418/<br>Ext. No. 2441       |                 | SundusHamodi@yahoo.con |

**Course module description:** 

This module covers the fundamental data structures concepts. Topics include the underlying philosophy of data structure and Abstract Data Type (ADT), fundamental data structures, classification of data structures, space and time considerations, linked lists, stacks, queues, graphs, the basics of algorithmic analysis and understanding the principles of recursion. How to design and implement data structures using C++ programming language.

#### **Teaching Methods:**

D uration: 15 weeks in first semester, 45 hours in total

Lectures: 30 hours, 2 per week (2 of them are for the first and second 1 hour exams).

Laboratory: 15 hours, 1 per week

#### Learning Outcomes:

On successful completion of this module, student will:

- 1.Build on understanding of basic ideas about data structures given in the prerequisite module.
- 2. Understand basic ideas about algorithms.
- 3.Understand the basic concepts of time and space complexity.
- 4.Be able to manipulate recursive algorithms.
- 5.Be able to develop efficient algorithms for manipulating data structures.
- 6.Know a range of algorithm structures and how to implement them.
- 7.Know and understand a wide range of searching and sorting algorithms.
- 8.Understand how the Abstract Data Type (ADT) is used.
- 9.Understand several representations of trees, and their applications.
- 10.Understand several representations of graphs, and their applications, together with a selection of important algorithms on graph networks.
- 11.Be able to construct and use the data structures mentioned above.
- 12.Understand the basic concepts of network building using different data structure types For example: tree and graph notation.

#### **Module Outline:**

| Week | Subject                                                             |              |
|------|---------------------------------------------------------------------|--------------|
| (1)  | Introduction: Program style, Introduction to analysis               |              |
|      | of algorithm, Introduction to Abstract Data Type                    |              |
|      | (ADT) approach                                                      |              |
| (2)  | Array, The ADT Array, The index function for                        | Homework 1   |
|      | sequential representation of arrays                                 |              |
| (3)  | Set, The ADT Set, An implementation of sets using                   |              |
|      | arrays, Analysis of the array implementation of sets                |              |
| (4)  | Stack, The ADT Stack, An array implementation of                    |              |
|      | stacks, Analysis of the array implementation of stacks              |              |
| (5)  | 1 <sup>st</sup> tutorial, Applications, Evaluating an expression in | Assignment 1 |
|      | postfix form, Converting infix expression to postfix                |              |
| (6)  | Queue, The ADT Queue ,An array implementation of                    |              |

| First       | queues                                                            |              |
|-------------|-------------------------------------------------------------------|--------------|
| Examination |                                                                   |              |
| (7)         | Analysis of the array implementation of queues,                   |              |
|             | Applications, Testing Palindromes                                 |              |
| (8)         | Recursion, Recursive algorithm, Removing recursion                |              |
| (9)         | Linked Lists, The ADT Linked List, Implementation                 |              |
|             | of singly linked lists                                            |              |
| (10)        | Implementation of doubly linked lists,                            | Assignment 2 |
|             | Implementation of circular linked lists, 2 <sup>nd</sup> tutorial |              |
| (11)        | Trees, Binary trees (BTs): General concepts,                      |              |
| Second      | Traversal of BT                                                   |              |
| Examination |                                                                   |              |
| (12)        | The ADT Binary Search Tree (BST), Implementation                  |              |
|             | of BST                                                            |              |
| (13)        | Graphs, The computer representation of the graphs,                | Homework 2   |
|             | Graph search strategies: Depth-First Search (DFS)                 |              |
|             | algorithm, Breadth-First Search (BFS) algorithm                   |              |
| (14)        | Sorting, Selection sort, Insertion sort, Quick sort               |              |
| (15)        | Searching, Sequential search, Binary search, Hashing              | Assignment 3 |
| (16)        | Tutorial, discussion and review                                   |              |
| Final       |                                                                   |              |
| Examination |                                                                   |              |

### Modes of Assessment:

| Modes of Assessment:                                      | Score | Date |
|-----------------------------------------------------------|-------|------|
| First Exam                                                | 20%   |      |
| Second Exam                                               | 20%   |      |
| Quizzes, Assignments, Homework, and Tutorial contribution | 20%   |      |
| Final Exam                                                | 40%   |      |

### **Attendance Policy:**

Lecture attendance is mandatory. Student is allowed maximally 15% absentia of the total module hours.

More than this percentage, student with an excuse will be drawn from the module. Otherwise, student will be deprived from the module with zero mark assigned.

### **Expected Workload**

On average you should expect to spend at least (9) hours per week on this module.

### **Practical Submissions:**

The assignments that have work to be assessed will be given to the students in separate documents including the due date and appropriate reading material

#### Textbooks and Supporting Materials:

(a) *Textbook:* 

# Data Structures Using C++, by D.S. Malik, 2nd Edition (b) Supporting Material:

- Robert L. Kruse, et al, Data Structures and Program Design in C++, Addison-Wesley, 2004.
- 2. Timothy Budd, Data Structures in C++ Using the Standard Template Library, 2001.