

Philadelphia University Faculty of Engineering - Department of Computer Engineering First Semester 2022/2023

Course Details:

Title:	Engineering Analysis II (0610262)
Prerequisite:	Linear Algebra and Vector Calculus (250205)
Credit Hours:	3 credit hours (16 weeks per semester, approximately 44 contact hours)
Textbook:	"Applied Numerical Methods with MATLAB for Engineers and Scientists", by Steven Chapra. Third Edition 2012
References:	"Numerical Methods Using Matlab", by J. Mathews and K. Fink 4th ed. 2004 "Advanced Engineering Mathematics", Erwin Kreystzig, 10th ed. 2011.
Course Description:	This course introduces students to the various numerical methods used for solving mathematical problems such as: non-linear equation, systems of linear equations, numerical integration and differentiation, solution of differential equations, and curve fitting techniques.
Website:	https://www.philadelphia.edu.jo/academics/anazer/
Instructor:	Eng. Anis Nazer Email: anis.nazer@gmail.com Office: Engineering building, room 6712, ext: 2492

Course Outline:

Week	Торіс
1	Introduction
2	Error Calculation and Analysis
3, 4	Solution of Non-Linear equation: Bisection, False position, Newton Raphson
5, 6	System of Linear equations: Gauss-Seidel Iterations Eigenvalues and Eigenvectors
7, 8, 9	Interpolation: Lagrange, Newton Curve Fitting: Least square, Linearization
10, 11	Numerical Integration: Trapezoidal, Simpson
12, 13	Differential equations: Euler, Heun, midpoint (Runge-Kutta)
14, 15	Numerical Derivative
16	Review, and final exam

Course Learning Outcomes with reference to ABET Outcomes:

Upon successful completion of this course, the student should:

1.	Understand the role of numerical methods in engineering	[1,7]
2	Understand the errors present in numerical calculations	[1]
3.	Solve non-linear equations and Solve systems of linear equations numerically	[1]
4.	Apply curve fitting techniques to a set of data points	[1, 6]
5.	Perform numerical integration and differentiation	[1]
6.	Solve first order differential equations numerically	[1]

Assessment Guidelines:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Sub-Exams:	The students take a scheduled midterm written exam during the semester. The midterm will cover materials given in lectures in the previous 6-7 weeks.	
Quizzes:	Quizzes of (10-15) minutes will be conducted during the semester.	
Homework:	Homework problems will be given to students. Homework should be solved individually and submitted before the due date.	
	<u>Cheating by copying homework or project from others is strictly forbidden and punishable by awarding the work with zero mark.</u>	
Course Participation:	Discussions will be carried out during lectures. Individual students will be assessed accordingly.	
Final Exam:	The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.	

Grading Policy:

Midterm	30%
Course work activities - Quizzes - Assignments -Discussions	30%
Final Exam	40%
Total:	100%

Attendance Regulation:

The semester has in total 45 credit hours. Total absence hours from classes and tutorials must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.