Analysis and the second

Philadelphia University

Faculty of Engineering - Department of Computer Engineering

Course Details:

Title:	Power System (2) (0610412)		
Prerequisite:	power systems (1) (0610411)		
Credit	3 credit hours (16 weeks per semester, approximately 45 contact hours)		
Hours:			
Textbook:	Power System Analysis, John J.Grainger and William D. Stevenson, JrMcGraw-Hill19		
References:	 Hadi Sadat: "Power System Analysis", 3rd 2010, M.C Graw Hill. J.Duncan Glover, and Mulukutla S.Sarma: "Power System Analysis and Design", 3rd, 2001, Thomson Engineering. 		
Course	Load flow (power flow). The stability of the power lines and generation.		
Description:	The distribution of the load between units in the electrical plant. Protection of		
	power systems for Symmetrical and unsymmetrical calculation.		

Course Outlines:

Week	Торіс
1	Complex power flow on transmission line, node equation, the bus admittance matirx
2, 3	Definition of the load flow problem and the power flow equations. Slack, generator
	and load buses
4	Iterative solution of the power flow equations using Gauss-Seidal method
5	Iterative solution of the power flow equations using Newton-Raphson method
6-7	The stability problem of single machine connected to infinite bus: rotor dynamics and
	the swing equation
8-9	The power angle equation and determination of stability using the equal-area
	criterion, critical clearing angle and critical clearing time
10-12	Introduction to power system protection: over-current relay coordination
13-15	Economic dispatch: introduction to the optimization problem, cost versus plant
	output characteristics, incremental fuel cost, distribution of load between plants.
16	Revision

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, student should:

1.	Know of electrical networks analysis and their component.	[a, c, e]
2.	Understand the steady - state and transient - state stability of a power system	[a, c, e]
3.	Understand the importance of power flow analysis in the network.	[a, c, e]
4.	Know the optimal operation of generating units in a power system and determine the economic power dispatch for the grid	[a, c, k]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Sub-Exams:	The students will be subjected to two scheduled written exams, first exam and second exam during the semester. Each exam will cover materials given in lectures in the previous 3-4 weeks.	
Quizzes:	(3-5) quizzes of (10-15) minutes will be conducted during the semester. The materials of the quizzes are set by the lecturer.	
Collective Participation:	Brain storming and collective discussions will be carried out during any lecture. Individual student will be assessed accordingly.	
Final Exam:	The students will undergo a scheduled final exam at the end of the semester covering the whole materials taught in the course.	

Grading policy:

First Exam	20%
Second Exam	20%
Quizzes and participation	20%
Final Exam	40%
Total:	100%

Attendance Regulation:

The semester has in total 16 weeks. Total absence hours from classes must not exceed 15% of the total week. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the lab. If the excuse is approved by the deanship the student will be considered withdrawn from the course.

June, 2018