

Philadelphia University

Faculty of Engineering - Department of Mechatronics Engineering Course Syllabus, First Semester, 2019/2020

Course Details:

Course Title: Automatic control Lab (0640442), Fourth year.

Prerequisite: Automatic control (0640334)

Credit Hours: 1 credit hours (16 weeks per semester, approximately 44 contact hours)

Class Time: Section 1; Mon (13:10-16:00) and Section 2; Wed (8:15-11:00).

Textbook: Laboratory notes and manual

References: 1. R.C. Dorf & R.H. Bishop," Modern Control Systems", 12th Edition,

Prentice Hall,2011.

2) K. Ogata," Modern Control Engineering", 45h Edition, Prentice Hall, 2010.

Course

1. To introduce the principle of control theory

Description:

- 2. Learn about the control systems used and realize the differences between the closed loop and open loop system.
- 3. Get the knowledge in closed loop systems and the effective parameter to improve the system response.
- 4. Introduce the principle of the servo control valve.
- 5. Study the position and speed control of pneumatic actuators
- 6. Study the pressure control in pneumatic system.
- 7. A knowledge of designing open loop and closed loop control system with emphasis on stability of the system ,Applying different controller's structures for processes with disturbance

Website: http://www.philadelphia.edu.jo/academics/waraydah/page.php?id=3

Instructor: Name: Eng. Walaa S. Aravdah

Email: waraydah@philadelphia.edu.jo

Office: Engineering building, Mechatronics Department, room 6412, ext:

2591

Office hours: Sun, Tues, Thurs: 11:15-1:15

Lab Experiments:

Week	Experiment Name	
1	Introduction	
2	Introduction to Servo Control Valves	
3	Acceleration and Deceleration Control	
4	Open-Loop Position Control	
5	Closed-Loop Position Control, Proportional Mode	
6	Closed-Loop Position Control, Proportional-Plus-Integral Mode	
7	Open-Loop Speed Control (Pneumatic motor)	
8	Closed-Loop Speed Control, Proportional-Plus-Integral-Plus-Derivative Mode	
9	Closed-Loop Pressure Control, Proportional-Plus-Integral Mode	

10	Closed-Loop Speed Control, Proportional-Plus-Integral-Plus-Derivative Mode (Dc motor)
11	Control Tutorials for MATLAB
12	MATLAB with Arduino
13	Introduction to LabVIEW and Data Acquisition System

Course Learning Outcomes with reference to ABET Student Outcomes:

Upon successful completion of this course, student should:

1.	Understand the operational amplifier characteristics and how to use it in practical control systems	[a, b, d, g, k]
2.	Understand the basic difference between open and closed loop control systems	[a, b, d, g, k]
3.	To implement controller design techniques to make the system behavior satisfy design objectives	[a, b, d, g, k]
4.	Realize how to deal with some practical problems and how to solve it	[a, b, d, g, k]

Assessment Guidance:

Evaluation of the student performance during the semester (total final mark) will be conducted according to the following activities:

Quizzes: (3-5) quizzes of (10-15) minutes will be conducted during the

semester. The materials of the quizzes are set by the lecturer.

Reports: 11 report.

Final Exam: The students will undergo a scheduled final exam at the end of the

semester covering the whole materials taught in the course.

Grading policy:

First Exam		"Quizzes (5%), reports (15%) "
		20%
Second Exam		"Quizzes (5%), reports (15%) "
		20%
Third Exam		"Quizzes (5%), reports (10%) and performances (5%)"
		20%
Final Exam		"Practical 30% and Theoretical 10%"
		40%
	Total:	100%

Attendance Regulation:

The semester has in total 45 credit hours. Total absence hours from classes must not exceed 15% of the total credit hours. Exceeding this limit without a medical or emergency excuse approved by the deanship will prohibit the student from sitting the final exam and a zero mark will be recorded for the course. If the excuse is approved by the deanship the student will be considered withdrawn from the course.

October, 2019