QFO-AP-FI-MO02	اسم النموذج: Course Syllabus	المعة فيلادلفيا
رقم الاصدار : 1 (Revision)	الجهة المصدرة: كلية تكنولوجيا المعلومات	The state with the
التاريخ :2017/11/05		Philadelphia University
عدد صفحات النموذج:	الجهة المدفقة: عمادة التطوير والجودة	

Course Title: Information Security	Course code:731443
Course Level: 4	Course prerequisite (s) and/or corequisite (s):711232
Lecture Time:11:10	Credit hours:3

Academic

Staff

Specifics

Name	Rank	Office Number and Location	Office Hours	E-mail Address
Dr. Amer AbuAli	Associate prof.	331	10- 11:00,12-1	aabuali@philadelphia.edu.jo

Course module description:

The aim of this course is to provide the basic knowledge about computing systems security. The topics covered in this course include cryptography fundamentals, threats to computer systems, authentication of computer systems, access control, intrusion detection, program security, operating system security, database security, network & distributed systems security fundamentals and security evaluation criteria. While the course does provide all the necessary mathematical background in cryptography, it concentrates more on the systems security aspects. Therefore the primary focus will be on the design of computing systems from the security perspective.

Course module objectives:

At the end of this module, student will be able to:

- 1. Understand the principles and practices of cryptographic techniques; (A)
- 2. Understand a variety of generic security threats and vulnerabilities, and identify and analyse particular security problems for a given application; (A and B)
- 3. Understand the design of security protocols and mechanisms for the provision of security services needed for secure networked applications; (A)
- 4. Appreciate the application of security techniques and technologies in solving real-life security problems in practical systems; (A)
- 5. Apply appropriate security techniques to solve security problems; (B and C)

Course/ module components

Books (title , author (s), publisher, year of publication)

Security in Computing, Charles Pfleeger, Prentice Hall International, 2007

- **Support material** (s) (vcs, acs, etc).
- **Study guide (s) (if applicable)**
- **Homework and laboratory guide (s) if (applicable).**

Teaching methods:

Lectures, discussion groups, tutorials, problem solving, debates, etc.

Learning outcomes:

□ Knowledge and understanding

- □ Cognitive skills (thinking and analysis).
- □ Communication skills (personal and academic).

Understand a variety of generic security threats and vulnerabilities, and identify and analyse particular security problems for a given

□ Practical and subject specific skills (Transferable Skills).

Appreciate the application of security techniques and technologies in solving real-life security problems in practical systems

Assessment instruments

- $\hfill\square$ Short reports and/ or presentations, and/ or Short research projects
- \Box Quizzes.
- \Box Home works
- \Box Final examination: 50 marks

Allocation of Marks			
Assessment Instruments	Mark		
First examination	20		
Second examination	20		
Final examination: 50 marks	40		
Reports, research projects, Quizzes, Home	20		
works, Projects			
Total	100		

Documentation and academic honesty

- □ Documentation style (with illustrative examples)
- □ Protection by copyright
- □ Avoiding plagiarism.

Course/module academic calendar

week	Basic and support material to be covered	Homework/reports and their due dates
(1)	Introduction to Computer Security	Assignment: Why we using security
(2)	Cryptography	A simple algorithm for
(-)	Fundamentals I	encryption
(3)	Cryptography	Assignment: Write three
	Fundamentals II	programs to encrypt and decrypt some words
(4)	Tutorial 1, Security	Implementation of the
	Protocols I	protocols
(5)	Security Protocols II, Tutorial 2	
(6)	Program Security,	
First examination	Tutorial 3	
(7)	Viruses	Tutorial of last viruses
(8)	Operating Systems	Implementation of the
	Security II	Operating Systems
(9)	Database Security	
(10)	Network Security I	Implementation of networks
(11)	Network Security II	
Second examination		
(12)	Security policies,	Assignment : Evaluation
	Standards & Assurance	of methods of defense
(13)	Security: Current	
	issues & Trends	
(15)	Revision	
Specimen examination		
(Optional)		
(16) Final Examination		

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute lecture/tutorial.

Attendance policy:

Absence from lectures and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Module references

Books

Cryptography and network Security: Principles and Practice, William Stallings, 2nd Edition, Printice Hall , Unix Security Reference Manual, Windows Security Reference Manual, Java Security Reference Manual