Philadelphia University

Faculty: pharmacy Department:-Academic Year:2021/2022 UNIVERSITY THE WAY TO THE FUTURE Course Syllabus

ADELPHIA

Approved Date: 20/10/2021 Issue: 1 Credit Hours:3 Bachler:

Course Information

Course No.	Course Title	Prerequisite	
0510310	0510310 Pharmaceutical Medicinal Chemistry 3		Il Organic)510210)
Course Type		Class Time	Room No.
 Univirsity Re Major Requir Compulsory 	equirement Fuclty Requirement rement Elective		

Course Delivery Method

Blended	🗆 Onli	Online P	
Learning Model			
Percentage	Synchronous	Asynchronous	Physical
			100%

Course Description

The first part of the subject deals with drugs used in cancer with main emphasis on alkylating agents, platinum-based drugs, antimetabolites, antibiotics, mitotic inhibitors and combination therapy. The second part of the course will concentrate on studying anti-diabetic agents, hormones and cardiovascular drugs that are specially used in the treatment of hypertension such as ACE inhibitors, calcium channel blockers. The last part will study the design and development of diuretics, non-steroidal anti-inflammatory drugs (NSAIDs) and proton pump inhibitors (PPIs). In all the above-mentioned groups, chemical structure will be extensively studied an attempt to build a suitable SAR and try to modify structures to improve activity and minimize toxicity.

Course Learning Outcome

Number	Outcome	Corresponding Program Outcomes	Corresponding Competencies
	Knowledge		
K1	Acquire basic knowledge about the pharmacological aspect	K _P 1	C1
	for cancer, hypertension, diabetes, inflammation and ulcer		
K2	Outline the basic concepts for drug design and development	K _P 1	C1
	for anticancer, cardiovascular agents, diuretics, NSAID,		
	antidiabetic agents, and drugs used for gastric ulcer		
V2	To compare the product operation for options	IZ 1	<u>C1</u>
КJ	drugs and proton nump inhibitors and their value to	K _P 1	CI
	improve pharmacekinetic and pharmacedunamic properties		
	for corresponding drugs		
K4	To distinguish between different classes of cardiovascular	K _P 1	C1
	drugs, diuretics, hormones, NSAID, antidiabetics, their SAR,		
	classes and therapeutic indications and contraindications		
K5	To give example for the synthesis for commercially available	K _P 6	C6
	drug, utilizing the basic principles in organic chemistry		
S1	Figure out the main problem in designing: anticancer,	S _P 2	C8
	angiotensin converting enzyme inhibitors and PPIs and the		
	main approach used to solve these problems utilizing the		
	complementarity principle (either electronic or steric),		
S2	Demonstrate effective written and oral communication	S _P 6	C12
	skills, especially the ability to transmit complex technical		
	information in a clear and concise manner.		

Course Textbook					
	An introduction to Medicinal Chemistry by Graham L. Patrick. fifth edition, Oxford, 2018.				
	Foye's principle of medicinal chemistry by David H. Williams, Thomas L. Leuke, Williams O. Foye. Lippincott William and Wilkins. Seventh edition, 2013				
Supporting References	Wilson and Gisvolds text book of organic medicinal and pharmaceutical chemistry by John H. Black and John M. Beale, jr. Twelfth edition, Lippincott Williams and Wilkings 2011				
Supporting Websites	www.scinecedirect.com, www.youtube.com				
Teaching Environment	Classroom laboratory Learning Platform Other				

Meetings and Subjects Time Table

Week	Торіс	Learning Method*	Task	Learning Material
1	Introduction to medicinal chemistry-III Anticancer agents An introduction Alkylating agents	Lecture problem solving based learning,	Case study	Vision and Mission of faculty of pharmacy Course syllabus Graham Patrick, chapter 21
2	Anticancer agents Alkylating agents	Lecture		Graham Patrick, chapter 21
3	Platinum based drugs Antimetabolites	Lecture		Graham Patrick, chapter 21
4	Antibiotics Plant extracts (mitotic inhibitors and topoisomerase inhibitors) Combination therapy	Lecture	Quiz	Graham Patrick, chapter 21
5	Diuretics Carbonic anhydrase inhibitors (CAIs)	Lecture	Case study	Graham Patrick, chapter 21
6	Loop diuretics Thiazide and thiazide-like diuretics Potassium-sparing diuretics Osmotic diuretics	Lecture	Quiz	Foys, Chapter 22

	Loop diuretics	Lecture		
7	Thiazide and thiazide-like diuretics			
	Potassium-sparing diuretics		Midterm Exam	Foys, Chapter 22
	Osmotic diuretics		L'Adm	
	Cardiovascular drug development	Lecture		
	Antihypertensive agents-An introduction		Midterm	Wilson and Gisvold,
8	Angiotensin converting enzyme		Exam	Chapter 19
	inhibitors (ACE inhibitors)			
	Cardiovascular drug development	Lecture		
	Antihypertensive agents-An introduction			
	Angiotensin converting enzyme inhibitors			Wilson and Gisvold
9	(ACE inhibitors)		Oniz	Chapter 18
	Angiotensin II recentor antagonists		Quil	
	Cardiovascular drug development	Lecture		
10	Calcium channel blockers			Wilson and Gisvold, Chapter 19
10	Vasodilator			
		-		Wilson and Circuld
11	Insulin and antidiabetic agents	Lecture		chapters 19 & 20
12	Insulin and antidiabetic agents	Lecture		Wilson and Gisvold, , chapters 19& 20
13	Non-steroidal anti-inflammatory drugs	Lecture		Wilson and Gisvold, , chapters 24
14	Non-steroidal anti-inflammatory drugs	Lecture	Quiz	Wilson and Gisvold, , chapters 24
	Gastric drug development	Lecture		
15	Design and development of proton pump inhibitors (PPIs)			Graham Patrick, chapter 25
16	F	inal Exam		

*Includes: lecture, flipped Class, project-based learning, problem-based learning, collaboration learning.

Course Contributing to Learner Skill Development

Using Technology			
Using Microsoft programs (word, power point), YouTube videos, Google and scientific websites,			
ChemBiodraw software.			
Communication Skills			
Videos and home works discussion			
Application of Concept Learnt			

Assessment Methods	Grade	Assessment Time (Week No.)	Course Outcomes to be Assessed
Mid Term Exam	% 30	6^{th}	K(1, 2, 3, 7) and S
			(1&2)
Term Works*	% 30	Continuous	
Final Exam	% 40	16^{th}	All
Total	%100		

Assessment Methods and Grade Distribution

* Include: quizzes, in-class and out of class assignment, presentations, reports, Videotaped assignment, group or individual project.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Corresponding Competencies	Learning Method*	Assessment Method**	
	Knowledge				
K1	Acquire basic knowledge about the pharmacological aspect for cancer, hypertension, diabetes, inflammation and ulcer	C1	Lecture	Quizzes Exam	
K2	Outline the basic concepts for drug design and development for anticancer, cardiovascular agents, diuretics, NSAID, antidiabetic agents, and drugs used for gastric ulcer	C1	Lecture	Quizzes Exam	
К3	To comprehend the prodrug approaches for anticancer drugs and proton pump inhibitors and their value to improve pharmacokinetic and pharmacodynamic properties for corresponding drugs	C1	Lecture	Quizzes Exam	
К4	To distinguish between different classes of cardiovascular drugs, NSAID, antidiabetics, their SAR, classes, therapeutic indications and contraindications	C1	Lecture	Quizzes Exam Group project	
К5	To give example for the synthesis for commercially available drug, utilizing the basic principles in organic chemistry	C6	Lecture	Quizzes Exam	

Skills				
S1	Figure out the main problem in designing: anticancer agents, angiotensin converting enzyme inhibitors and PPI and the main approach used to solve these problems utilizing the complementarity principle (either electronic or steric).	C8	problem solving based learning	Quizzes Exam
S2	Demonstrate effective written and oral communication skills, especially the ability to transmit complex technical information in a clear and concise manner.	C12	collaboration learning.	Quizzes Exam

*Include: lecture, flipped class, project based learning, problem solving based learning, collaboration learning. ** Include: quizzes, in-class and out of class assignments, presentations, reports, videotaped assignments, group or individual projects.

Policy	Policy Requirements			
Passing Grade	The minimum pass for the course is (50%) and the minimum final mark is (35%).			
Missing Exams	 Anyone absent from a declared semester exam without a sick or compulsive excuse accepted by the dean of the college that proposes the course, a zero mark shall be placed on that exam and calculated in his final mark. Anyone absent from a declared semester exam with a sick or compulsive excuse accepted by the dean of the college that proposes the course must submit proof of his excuse within a week from the date of the excuse's disappearance, and in this case, the subject teacher must hold a compensation exam for the student. Anyone absent from a final exam with a sick excuse or a compulsive excuse accepted by the dean of the college that proposes the material must submit 			
Attendance	proof of his excuse within three days from the date of holding that exam. The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lecture days (n t) and seven lectures (days). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory or compulsive excuse accepted by the dean of the faculty, he is prohibited from taking the final exam and his result in that subject is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college that The article is introduced, it is considered withdrawn from that article, and the provisions of withdrawal shall apply to it.			
Academic Integrity	 apply to it. Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as cheating plagiarism (academic theft), collusion, intellectual property rights. 			

Course Polices

Program Learning Outcomes to be assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Targeted Performance level

Number	Detailed Description of Assessment

Assessment Rubric of the Program Learning Outcomes