Philadelphia University

THE WAY TO THE FUTURE **Course Syllabus**

Approved Date: PHILADELPHIA 10/2022 UNIVERSITY Issue: **Credit Hours: 2 Bachler:**

Course Information

Course No. Course Title		S			
			0520431		
0520516	0520516 Clinical Pharmacokinetics		Biopharmaceutics and		
			Pharmacokinetics		
Course Type			Class Time	Room No.	
University Requirement					
Faculty Requirement					
Major Requirement					
□ Elective					
Compulsory					

Instructure Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Yazan Bataineh	530	2281		ybatineh@philadelphia.edu.jo

Course Delivery Method

Blended	Online		Physical		
	Learning Model				
Deveentere	Synchronous	Asynchronous	Physical		
Percentage			100%		

Course Description

This course provides students with a basic intuitive understanding of the pharmacokinetic principles, terminology, models, equations and factors affecting drug absorption, distribution, metabolism and excretion and its importance in drug therapeutic or toxic effects. Emphasis will be placed upon the prediction of plasma levels of drugs under varying conditions applying different pharmacokinetic parameters. Handling pharmacokinetic parameters of drugs in the body and solving problems

Course Learning Outcomes

Number	Outcome	Corresponding Program Outcomes	Corresponding Competencies
	Knowledge		
K1	Understanding mathematics of the time course of Absorption, Distribution, Metabolism, and Excretion (ADME) of drugs in the body	Kp1,	C1
K2	Understand drug absorption, distribution and elimination	Kp1	C1
К3	Understand pharmacokinetics and biopharmaceutics after I.V bolus, I.V infusion, and oral administration of drugs.	Кр1, Кр2, Кр3	C1, C2, C3
K4	Understand protein binding and its effects	Кр1, Кр2, Кр3	C1, C2, C3
К5	Understand Pharmacokinetic variability in case ofrenal and hepatic diseases, geriatrics, pediatrics, obesity, pregnancy and change in plasma protein binding	Кр1, Кр2, Кр3	C1, C2, C3
K6	Individualization of therapy and therapeutic drugmonitoring.	Кр1, Кр2, Кр3	C1, C2, C3
	Skills		
S1	Use raw data and derive the pharmacokinetic models and parameters that best describe the process of drug absorption, distribution and elimination.	Sp1, Sp2	C7. C8
S2	Communicating dosage adjustment with physicians and patients.	Sp1, Sp2	C7. C8
S 3	Suggesting therapeutic monitoring plans for clinicians.	Sp1, Sp2	C7. C8

Learning Resources

[
Course Textbook	• Applied Biopharmaceutics and Pharmacokinetics., Shargel and A.B.C.						
	Yu., Appleton & Lange/MacGraw-Hill, New York., 7thedition 2016. ISBN: 978-0-07-182964-9						
	• Applies clinical pharmacokinetics, Bauer, Larry A. Appleton &						
	Lange/MacGraw-Hill, New York., 2nd edition 2008.						
	10.1036/0071476288						
	• Clinical Pharmacokinetics Concepts and Application s. MALCOIM						
	ROWIAND and THOMASN. TOZER., 1994, 3rd edition. LIPPINCOTT						
	WILLIAMS&WILKINS						
Supporting	1.Specialized softwares as WinNonlin® standard and PowerPoint						
References	presentations.						
	2.Merck Index: An Encyclopedia of Chemicals, Drugs, & Biologicals by Merck, Co,						

	 Maryadele J. Oneil (Editor), Ann Smith (Editor) 13th edition (October 2001), Merck & Co; ISBN: 0911910131 3.Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences by Alfred Martin, Pilar Bustamante, A.H.C. Chun (Illustrator) 622 pages 4th edition (January 15, 1993), Lea & Febiger; ISBN: 0812114388 4. Remington: The Science and Practice of Pharmacy by Alfonso R. Gennaro (Editor) 20th edition (December 15, 2000), Lippincott, Williams & Wilkins; ISBN: 0683306472
Supporting Websites	 PHARMACOKINETICS – CALCULATORS, TOOLS, ETC. <u>HTTPS://GLOBALRPH.COM/PHARMACOKINETICS/</u> Drug Half Life Calculator <u>HTTPS://WWW.OMNICALCULATOR.COM/HEALTH/DRUG-HALF-LIFE</u> COMPUTERISED BAYESIAN DOSE CALCULATION
Teaching Environment	Classroom Laboratory Learning Platform Other

Week	Торіс	LearningMethod*	Task	Learning Material
		Lecture		Vision and
	- 17.			Mission of
	• Vision and Mission			Faculty of
	Pharmacy			Pharmacy
1	• Course Syllabus			Course
1				
	· Introduction			Syllabus
				Text book
				i ent o con,
				Chapter 1
	• IN Infusion: Intravenous	• Lecture		Text book, part 1,
2	Bolus Administration:	 Problemsolving 		Chapter 6
Z	One-Compartment Model:	based learning		
	Pharmacokinetics			
	Pate Constants Volume of			
	Distribution Area Under			
	the Curve			
	Practice Problems			
	• IN Infusion: Intravenous	• Lecture		Text book, part 2,
	Bolus Administration:	• Problemsolving		Chapter 6
3	Two-Compartment	based learning		Ĩ
	Model: Pharmacokinetics			
	Parameters:Half-Life,			
	Rate Constants, Volume			
	ofDistribution, Area			
	Under the Curve,			
	Practice Problems			

Meetings and Subjects Time Table

4	 Oral Administration: Two- Compartment Model: Pharmacokinetics Parameters: Half-Life, Rate Constants 	 Lecture Problemsolving based learning 	Case study	Text book,part 1, Chapter 8
5	• Oral Administration: Two- Compartment Model: Pharmacokinetics Parameters: Volume Of Distribution, Area Under The Curve	 Lecture Problemsolving based learning 	Case study	Text book,part 2, Chapter 8
6	Oral Administration: Two- Compartment Model: PracticeProblems	• Lecture Problemsolving based learning		Text book,part 3, Chapter 8
7	 Physiologic Factors Related To Drug Absorption 1) Renal Drug Excretion 2) Drug Clearance I) Determination Of Renal Clearance 	 Lecture Problemsolving based learning 	Case study	Text book,part 1, Chapter 11
8	 Physiologic Factors Related To Drug Absorption ii) Determination Of Hepatic Clearance 	• Lecture Problemsolving based learning		Text book,part 2, Chapter 11
9	Renal drug elimination and clearance:Practice problems	 Lecture Problemsolving based learning 		Text book,part 1, Chapter 12
10	• Hepatic drug elimination and clearance: Practice problems	 Lecture Problemsolving based learning Collaborative learning 		Text book,part 2, Chapter 12
11 Mid exam	Measurement Of Glomerular FiltrationRate	 Lecture Problemsolving based learning Collaborative learning 		Text book,part 1, Chapter 7

12	Fraction Of Drug Excreted Unchanged(Fe) Methods	 Lecture Problemsolving based learning Collaborative learning 	Case study	Text book,part 2, Chapter 7
13	Dosing in renal impairment	• Lecture Problemsolving based learning	Pharmacoki netics – Calculators, Tools	Text book,part 1, Chapter 24
14	Effect of hepatic disease onpharmacokinetics	• Lecture Problemsolving based learning		Text book,part 2, Chapter 24
15	Dosing of drugs in elderly, obesepatients and infants	 Lecture Problemsolving based learning 		Text book, Chapter 23
16	Final Exam			

• Case Study: Prepared by the lecturer, adapted from the text book and other references.

• Includes: lecture, flipped Class, project based learning, problem solving based learning, collaboration learning.

Course Contributing to Learner Skill Development

Using Technology				
• Using powerpoint or any relevant program for preparing presentations				
Using smart application for dosing regimens				
• Using online application for dosing regimens for pharmacokinetic calculations				
Communication Skills				
Interaction in class while solving case-study				
Application of Concept Learnt				
• Apply the knowledge obtained from this course to evaluate individualization of the dose				
• Apply the knowledge obtained from this course to solve problems disease state, drug-				
drug interaction and different dosage form				

Assessment Methods	Grade	Assessment Time (Week No.)	Course Outcomesto be Assessed
Mid Term Exam	30%	11 th Week	K1, K2, K3,
Term Works*	30%	Continous	K1, K2, K4, K5,S1,
			S2

Assessment Methods and Grade Distribution

Final Exam	40%	16 th Week	K1, K2, K3, K4, K5, K6, K7, S1, S2
Total	100%		

* Include: quizzes, in-class and out of class assignment, presentations, reports, videotaped assignment, group or individual project.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Correspondin g	Learning Method*	Assessment Method**
		Competencies Know	ledge	
K1	Understanding mathematics of the timecourse of Absorption, Distribution, Metabolism, and Excretion (ADME) of drugs in the body	C1	 Lectures Problem- solving based learning 	Subjective quiz Exam/Objective questions
K2	Understand drug absorption, distribution and elimination	C1	 Lectures Problem- solving based learning 	Subjective quiz Exam/Objective questions
К3	Understand pharmacokinetics andbiopharmaceutics after I.V bolus, I.V infusion, and oral administrationof drugs.	C1, C2, C3	 Lectures Problem-solving based learning Collaborative learning 	Case Study Exam/Objective questions
K4	Understand protein binding and its effects	C1, C2, C3	 Lectures Problem- solving based learning 	Case Study Subjective quiz Exam/Objective questions
К5	Understand Pharmacokinetic variability in case of renal and hepatic diseases, geriatrics, pediatrics, obesity, pregnancy and change in plasma protein binding	C1, C2, C3	 Lectures Problem- solving based learning 	Case Study Subjective quiz Exam/Objective questions

K6	Individualization of therapy and therapeuticdrug monitoring.	C1, C2, C3	 Lectures Problem-solving based learning 	Case Study Subjective quiz Exam/Objective questions
		Skil	ls	
<u>81</u>	Use raw data and derive the Pharmacokinetic models and parameters that best describe the process of drug absorption, distribution and elimination.	C7. C8	 Lectures Problem-solving based learning 	Case Study Subjective quiz Exam/Objectivequestions
<u>82</u>	Communicating dosage adjustment with physicians and patients.	C7. C8	 Lectures Problem-solving based learning 	Case Study Subjective quiz Exam/Objective questions
\$3	Suggesting therapeutic monitoring plans forclinicians.	C7. C8	 Lectures Problem-solving based learning 	Case Study Subjective quiz Exam/Objective questions Pharmacokinetics – Calculators, Tools

*Include: lecture, flipped class, project based learning, problem solving based learning, collaboration learning.

** Include: quizzes, in-class and out of class assignments, presentations, reports, videotaped assignments, groupor individual projects.

Course Polices

Policy	Policy Requirements		
Passing Grade	The minimum pass for the course is (50%) and the minimum final mark is (35%) .		
Missing Exams	 Anyone absent from a declared semester exam without a sick or compulsive excuse accepted by the dean of the college that proposes the course, a zero mark shall be placed on that exam and calculated in hisfinal mark. Anyone absent from a declared semester exam with a sick or compulsive excuse accepted by the dean of the college that proposes the course must submit proof of his excuse within a week from the date of the excuse's disappearance, and in this case, the subject teacher must hold a compensation exam for the student. Anyone absent from a final exam with a sick excuse or a compulsive excuse accepted by the dean of the college that proposes the material mustsubmit proof of his excuse within three days from the date of holding that exam. 		

Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lecture days (n t) and seven lectures (days). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory or compulsive excuse accepted by the dean of the faculty, he is prohibited from taking the final exam and his result in that subject is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college that The article is introduced, it is considered withdrawn from that article,			
Academic Integrity	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as cheating, plagiarism (academic theft), collusion, intellectual property rights.			

Program Learning Outcomes to be Assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Targeted Performance level

Description of Program learning Outcomes Assessment Method

Number	Detailed Description of Assessment

Assessment Rubric of the Program Learning Outcomes