
I

 4+1 View Architectural Model

Pattern for Software-Intensive Systems

By

Noor Rasheed Hameed

Supervisor

Dr. Moayad A.fadhil

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

2012

II

III

IV

Dedication

I fully dedicate this thesis to my love, and my whole family; father, mother, sister and
brothers

Also to my professors and all my friends

Noor

V

Acknowledgment

I would like to express my regards and appreciation to all of those who have helped me and

encouraged me and I gift them all of existed beautiful words from thanks and love.

 Noor

VI

 Table of Contents

Subject Page

Title i

Authorization Form ii

Examination Committee iii

Dedication iv

Acknowledgement v

Table of Contents vi

List of Figures viii

List of Table x

List of Abbreviations xi

Abstract xii

Chapter one: Introduction 1

 1.1 Introduction 2

 1.2 Problem Statement 2

 1.3 Software Intensive Systems and 4+1 Architectural Model 3

 1.4 4+1 Architectural Model 6

 1.5- modeling language 11

Chapter two: Previous Studies 16

 2.1 Previous studies 17

Chapter three: Methodology 21

 3.1 Research Methodology 22

 3.2 Software-Intensive Systems Challenges 22

 3.3-Relationship between SIS and 4+1 view models 25

VII

Chapter four : analysis and design 27

 4. Analysis and design 28

 4.1 Analysis the research problem 28

 4.2 Solving the problem 28

 4.2.1 Design of the New Pattern (template). 29

 4.3 Example of Logical View Modeling by UML 30

Chapter five: case study modeling 32

 5.1 Introduction 33

 5.2 ATC 34

 5.3 ATC as example 35

 5.4 ATC system services 35

 5.5 Use case ATC (scenario) 37

 5.6 Design the system using 4+1 view model in UML 38

 5.7 Logical View and ATC Modeling 38

 5.8 ATC UML Class Diagram 51

 5.9 Logical View to Process View 54

 Chapter Six : Evaluation 56

 6.1 System Evaluation 57

Chapter Seven: Conclusions and Future Works 59

 7.1 Conclusion 60

 7.2 Future Works 61

References 62

VIII

 List of Figures

Figure Number Figure Title Page

Figure (1-1) Increasing Complexity of Software over Time 4

Figure (1-2) Increasing Complexity of Data over Time 5

Figure (1-3) 4+1 architectural view model 7

Figure (1-4) Notation for the logical blueprint 8

Figure (1-5) Notation for the Development blueprint 8

Figure (1-6) Notation for the Process blueprint 9

Figure (1-7) Process view on PABX example 9

Figure (1-8) Physical view example 10

Figure (3-1) Architecture Methodology of this research (Step-by-
step)

23

Figure (4-1) General pattern (template) for relationship between

SIS and Logical view

29

Figure (4-2) A junction representation 30

Figure (4-3) UML class diagram for representing of logical view 31

Figure (5.1) ATC by using pattern (template) 33

Figure (5.2) ATC activities 36

Figure (5-3) ATC services simplified by grouping 37

Figure (5-4) UML Use Case model on all function the system 37

Figure (5-5) UML activities for departure control service 40

Figure (5-6) communicate the gate controller 41

Figure (5-7) communicate the ramp controller 42

Figure (5-8) communications both of ground controller and local 43

IX

controller

Figure (5-9) Detect track in the runway and start departure. 44

Figure (5-10) Final phase for departure. 45

Figure (5-11) UML activity diagram of en route service controlling 47

Figure (5-12) UML activities for landing control service. 49

Figure (5-13) Communicates the controller on the landing. 50

Figure (5-14) UML Class Diagram 51

Figure (5-15) Departure UML Class Diagram 52

Figure (5-16) UML class diagram of departure service 53

X

List of table

Table Number Table Title page

Table 1.1 Type of things 13

Table 1.2 Relationship things 15

Table 5.1 "4+1 architecture model " 33

Table 5.2 Notation 38

Table 6.1 " Table Evaluate Comparison" 57

XI

 List of Abbreviations

AUML Agent Unified Modeling Language

ATC Air Traffic Control

ATCT airport traffic control tower

AMOLA Agent Modeling Language

OMG Object Management Group

OOSE Object Oriented Software Engineering

SIS Software Intensive System

SORAP A Source of Repair Assignment Process

Sys ML System Model Language

TEC Tower En Route Control

TRACON Terminal Radar Approach Control

UML Unified Modeling Language

4+1 4+1 view architecture model

XII

Abstract

The architecture is general has no specific recommendation on using special method

or language. Software-intensive systems are considered as one of the major and

essential roles in software engineering, where software-intensive systems affect on the

design, constructions, deployment and also the evolution of the whole system. In this

thesis we purpose an enhancement on a specific model (4+1 view model) in order to

reduce challenges a software intensive system. The problem of architecture model for

software intensive system is lack of software pattern (Template). The new pattern

must enhance the 4+1 view model by providing the model of how to design and

implement two types of software-intensive system (monitoring and control) ,

(Integration and composition) .

So, that we created a new pattern (template) that solves the problem mentioned above.

As a result we will have pattern (template) that ensure an adaptable methodology

which can integrate and synchronize all the a activities of software intensive system.

1

CHAPTER ONE

INTRODUCTION

2

1.1 Introduction

Software has become a key feature of a rapidly growing range of products and services from all

sectors of economic activity. Software intensive systems (SIS) include large-scale heterogeneous

systems, embedded systems for automotive applications, telecommunications, wireless ad hoc

systems, business applications with an emphasis on web services etc. Our daily lives depend on

complex software-intensive systems, from banking to communications to transportation to

medicine. Software technology is a driving factor for many high tech products; competence in

software technology defines more and more the innovation capability of the whole industry (Wising

et al, 2004).

A software intensive system is a system where software represents a significant segment in any of

the following points: system functionality, system cost, system development risk,

development time. (TNO/IDATE, 2005)

1.2 Problem Statement

During studying some challenges such as (complexity), (adapt changing technology) we found an

increase in challenges in software-intensive system and there is no a specific pattern (template) for

solving these problems and problem in architecture model.

So our research aims to solve the problem of architecture model for software-intensive system by

creating a new software pattern (Template). The new pattern will enhance the 4+1 view model by

providing the model of how to design and implement two types of software-intensive system

1.2.1-Monitoring and Controlling of Large Systems or Environments: These applications

are characterized by the need to collect data from environments which can partially control

the environment.

 For example: Systems controlling critical infrastructures such as electricity, transportation

 , and weather monitoring and prediction.

1.2.2-Integration and composition of highly complex software systems: These applications

are characterized by the need to adapt in response to unforeseen changes of requirements,

technology, or environment, and to integrate highly dynamic unpredictable diverse

knowledge.

3

For example: Telecommunications, wireless ad hoc systems which are decentralized and

have a dynamically changing topology, with nodes constantly entering and leaving the

system.

1.3-Software Intensive Systems and 4+1 Architectural Model

Software intensive systems have become a major part of an increasingly growing range of

applications, services and products. Software intensive systems are systems in which software

interacts with other systems, software, sensors and devices with people. Such systems are like

telecommunications, wireless, heterogeneous systems, business applications with web services.

People’s activities depends on complex software intensive systems increasingly, such systems are

becoming more heterogeneous, decentralized, and operating more in dynamic and often

unpredictable; this development has several consequences; as software systems grew increasingly,

the focus has moved from the complexity of developing algorithms to the complexity structuring

large systems, and then to creating complex distributed concurrent systems. Show (figure (1.1)) as

time goes, we will have to face another level of complexity rise up from the fact that systems have

to operate in open, large and non-deterministic environments.

Current engineering methods are not powerful enough to design, deploy and maintain software

intensive systems. However there is no realistic alternative to such systems, we can’t afford to stop

building software intensive systems. (Hwang .K, 2008)

Following are some factors responsible for the development of systems which are playing an

increasingly huge role in our lives and daily activities.

1.3.1 Our personal and business life in an interconnected world

Living in a highly interconnected world, which has expanded from wire bound telephone and mail

to more rapidly with the internet, portable computers with Bluetooth and mobile phones, and so on.

4

Figure 1.1: Increasing Complexity of Software over Time. (Wirsing et al, 2004)

Communications have diverted from sending letters by mail to writing SMS’s, we are no longer storing

our documents or books in a public or private libraries, they are being stored now on a network that can

be accessed from personal computers or laptops or even mobile devices. Show (figure (1.2)).

In business, we have replaced formal communication from sending letters and faxes to emails,

employees are accessing to their company’s resources through their personal computers. Business

processes are increasingly operated to be more involved with automatic communication by computers

and less manual interaction by humans. We depend very much on these systems that a few hours of

downtime can have severe consequences, from mild discomfort that many people experience when a

network fail for few hours, to millions of dollars of damage when software intensive systems used in

international trade fail. (Wirsing et al, 2004)

5

Figure 1.2: Increasing Complexity of Data over Time (Wirsing et al, 2004)

1.3.2 Service-Oriented systems

In the service-oriented paradigm, services act as autonomous, platform-independent entities that can be

published discovered, described, and dynamically assembled for developing massively distributed,

evolved systems. Service oriented facilitates personalization of information to applications and end

users by different means of context services, in which that the quality of the service is organized

according to the context of its use, transaction user, customer type, location, and so on. It also addresses

the requirements of dynamic e-business which includes alternative modes of user interaction (e.g.

portals), innovative business models (e.g., auctions and e-marketplaces), and devices (mobile phones).

Service-oriented system also allow for multi-step transactions to be supported across any device (e.g.

web browsers, internet appliances). The promise that Service-oriented systems or architecture offers is a

world of cooperating services, where application components are assembled into services that can be

gathered to create dynamic business processes and applications. (TNO/IDATE, 2006)

1.3.3 Software-Intensive Systems

Most of the systems depend on software that control the behavior of individual components and the

interaction between components, and also it depend on software which interacts with other software,

devices, sensors, people, and systems; which means they all depend on software-intensive systems. As

a result for the unique ways that software offers, it is possible to build more advanced systems more

cheaply and more flexibly than ever before, for example, the possibilities given by embedded systems;

their computational power increased exponentially, while the cost and energy consumption decreases;

this will accelerate the process of transitioning from manual or mechanical systems to computers in the

6

near future. Software intensive systems will become even more spread in the next years. (Lapham,

2006)

 -Exploitation, integration and composition of highly complex software systems

These applications are characterized by the need to adapt in response to unforeseen changes of

requirements, technology, or environment, and to integrate highly dynamic unpredictable diverse

knowledge, but also by the need to integrate and compose the execution of autonomous software

systems. A possible solution here is to develop seamless adaptive service systems: namely systems

embedded in human-centered environments, which meaningfully interact with humans and offer

seamless adaptive services, thus hiding the complexities of their internals for example:

a) SIS for communication and entertainment. Telecommunications systems, e.g., wireless ad hoc

networks, are decentralized and have a dynamically changing topology, with nodes constantly

entering and leaving the system. The cable television system is being combined with the Internet

and therefore integrated into a software-intensive system by the introduction of multi-purpose

home entertainment centers.

b) SIS for business. The infrastructure of large companies becomes increasingly software-intensive

with increasing integration of computer-aided design (CAD), manufacturing (CAM),

procurement, supply management, etc. Business applications are increasingly built from

distributed, dynamically assembled services and endowed with decision-making capabilities.

(Soares et al , 2009)

1.4- “4+1” Architectural view model

1.4.1 Architectural model

Software architecture deals with high-level structure of the software. Software architecture is the result

of assembling a number of elements in some well-chosen forms to achieve the major functionality

requirements of the system, along with non-functional requirements such as scalability, portability,

reliability and availability. Each view defines a set of elements to use (components, containers, and

connectors). We capture the forms and patterns that work, and we capture the rationale and constraints,

connecting the architecture to some of the requirements. Perry and Wolfe put it in the following formula

which has been modified by (Boehm, Kruchten, 1995).

Software architecture = {Elements, Forms, Rationale/Constraints}

7

Most of architectural documents are overemphasizing the aspect of development or do not address the

concerns of all stakeholders; various stakeholders of software system, such as, end-user, developers,

system engineers, and project managers. Software engineers used to struggle to represent more on one

blueprint, and so architectural documents contain complex diagrams. 4+1 is a view model, was designed

by Philippe (Kruchten, 1995) for “describing the architecture of software-intensive systems, based on the

use of multiple, concurrent views”. The views are used to describe the system for the viewpoint of

different stakeholders. The four views are logical, development, process and physical view. as

description in (figure (1-3)) .

 Figure 1.3: 4+1 Architecture View model

Logical view: The logical view is concerned with the functional requirements; what the system should

provide in terms of services to its end-users. The system is decomposed into a set of keys that are taken

from the problem domain, which are represented in the form of objects or object classes. These objects

use the principles of encapsulation, abstraction and inheritance

The decomposition also serves to identify common mechanisms and design elements across the various

parts of the system beside the functional analysis.

Sets of related classes can be grouped into class categories. Class templates focus on each individual

class; they emphasize the main class operations, and identify key object characteristics. If it is important

to define the internal behavior of an object, this is done with state transition diagrams, or state charts.

Common mechanisms or services are defined in class utilities. Alternatively to an OO approach, an

application that is very data-driven may use some other form of logical view, such as E-R diagrams.

UML diagrams used in this view to represent the logical view include Class diagram, Sequence

8

diagram, and Communication diagram. Show (figure (1-4)). Illustrates how logical view can be

represented using a UML tool like Rational Rose.

Figure 1.4: Notation for the logical blueprint

Development view: The development view illustrates a system from a programmer’s perspective; it is

concerned with software module organization (Hierarchy of layers, software management, reuse,

constraints of tools). The software is packaged in small chunks (program libraries or subsystems) that

can be developed by on or small number of developers. The subsystems are organized in a hierarchy of

layers, each layer providing a narrow well defined interface to the layer above it. The development

architecture of the system is represented by module and subsystem diagrams, showing the ‘export’ and

‘import’ relationships. The complete development architecture can only be described when all the

elements of the software have been identified. It is, however, possible to list the rules that govern the

development architecture: partitioning, grouping, visibility. Development view is also known as the

implementation view. UML diagrams are also used in development view to represent it and to represent

the Package diagram. Show (figure (1-5)). (Mikko, 2005)

9

 Figure 1.5: Notation for the Development blueprint (Kruchten, 1995).

Process view: The process view is considering a non-functional requirement, it addresses concurrency,

integrators, distribution, performance, and scalability, it explains the system processes and how do they

communicate and focuses on the runtime behavior of the system. A process is a grouping of tasks that

form an executable unit. Processes represent the level at which the process architecture can be tactically

controlled (i.e., started, recovered, reconfigured, and shut down). In addition, processes can be

replicated for increased distribution of the processing load, or for improved availability. The software is

partitioned into a set of independent tasks. A task is a separate thread of control that can be scheduled

individually on one processing node. We can distinguish then: major tasks, that are the architectural

elements that can be uniquely addressed and minor tasks, that are additional tasks introduced locally for

implementation reasons (cyclical activities, buffering, time-outs, etc.). They can be implemented as

light-weight threads. Major tasks communicate via a set of well-defined inter-task communication

mechanisms: synchronous and asynchronous message-based communication services, remote procedure

calls, event broadcast, (Kruchten, 1995).etc. Minor task may communicate by rendezvous or shared

memory. Major tasks shall not make assumptions about their collocation in the same process or

processing node. Show (figure (1-6, 1-7)).illustrates how a process views would be represented using a

UML tool. (Mikko, 2005).

 Figure 1.6: Notation for the Process blueprint

 Figure 1.7: Process view on PABX example (Kruchten, 1995).

10

Physical view: The physical view describes a system from a system engineer’s point of view. It is

concerned with a non-functional requirements regarding to underlying the topology of software

components and communication on the physical layer. It is also known as the deployment view. The

software executes on a network of computers, or processing nodes (or just nodes for short). The various

elements identified— networks, processes, tasks, and objects—need to be mapped onto the various

nodes. We expect that several different physical configurations will be used: some for development and

testing, others for the deployment of the system for various sites or for different customers. The

mapping of the software to the nodes therefore needs to be highly flexible and have a minimal impact on

the source code itself (Kruchten, 1995) .UML diagrams used to represent physical

View. Show Fig (1-8).illustrates how a physical view can be represented using a UML tool. (Mikko,

2005)

 Figure 1.8: Physical view example (Kruchten, 1995).

Scenarios: The scenarios are the description of architecture that is illustrated using a small set of use

cases. It helps to illustrate and validate the document and describe sequences of interactions between

objects and between processes. They also help as a starting point for testing an architecture prototype.

scenarios are in some sense an abstraction of the most important requirements. Their design is expressed

using object scenario diagrams and object interaction diagrams. This view is redundant with the other

ones (hence the “+1”), but it serves two main purposes: (Kruchten, 1995).

First: As a driver to discover the architectural elements during the architecture design as we will

describe later, Second: As a validation and illustration role after this architecture design is complete,

both on paper and as the starting point for the tests of an architectural prototype.

11

1.5 Modeling language

Modeling languages, like programming languages, need to be designed if they are to be practical,

usable, accepted, and of lasting value. It presents principles for the design of modeling languages to

arrive at these principles; it considers the intended use of modeling languages. Principles of modeling

language are applicable to the development of new modeling languages, and for improving the design of

existing modeling languages that have evolved, perhaps through a process of unification. The principles

are illustrated and explained by several examples, drawing on object-oriented and mathematical

modeling languages. There are many types of modeling language can be used in this research starting

with the used modeling language in 4+1 view model which is Rational Rose. After this tow authors

make a research to compare which is the best modeling language can be used with 4+1 view models.

They compared between two modeling languages Sys ML and Unified Modeling Language (UML).

1.5.1 Unified Modeling language (UML)

The Unified Modeling Language (UML) is a family of design notations that is rapidly becoming a de

facto standard software design language. UML provides a variety of useful capabilities to the software

designer, including multiple, interrelated design views, a semiformal semantics expressed as a UML

meta model, and an associated language for expressing formal logic constraints on design elements. The

Unified Modeling Language (UML) is a standard language for specifying, visualizing, constructing, and

documenting the artifacts of software systems, as well as for business modeling and other non-software

systems. The UML represents a collection of best engineering practices that have proven successful in

the modeling of large and complex systems. The UML is a very important part of developing objects

oriented software and the software development process. The UML uses mostly graphical notations to

express the design of software projects. Using the UML helps project teams communicate, explore

potential designs, and validate the architectural design of the software.

1.5.2 Goals of UML

The primary goals in the design of the UML were:

1-Provide users with a ready-to-use, expressive visual modeling language so they can develop

 and exchange meaningful models.

2-Provide extensibility and specialization mechanisms to extend the core concepts.

3- Be independent of particular programming languages and development processes.

 4- Provide a formal basis for understanding the modeling language.

 5- Encourage the growth of the OO tools market.

12

 6- Support higher-level development concepts such as collaborations, frameworks, patterns and

 components.

 7- Integrate best practices.

1.5.3 Using UML in this Research

As the strategic value of software increases for many companies, the industry looks for techniques to

automate the production of software and to improve quality and reduce cost and time-to-market. These

techniques include component technology, visual programming, patterns and frameworks. Businesses

also seek techniques to manage the complexity of systems as they increase in scope and scale. In

particular, they recognize the need to solve recurring architectural problems, such as physical

distribution, concurrency, replication, security, load balancing and fault tolerance. Additionally, the

development for the World Wide Web, while making some things simpler, has exacerbated these

architectural problems. The Unified Modeling Language (UML) was designed to respond to these

needs. UML is a result of the evolution of object-oriented modeling languages. It was developed by

Rational Software Company by unifying some of the leading object-oriented modeling methods:

• Booch by Grady Booch .

• OMT (Object Modeling Technique), by Jim Raumbaugh and

• OOSE (Object-Oriented Software Engineering), by Ivar Jacobson.

UML is used for modeling software systems; such modeling includes analysis and design. By an

analysis the system is first described by a set of requirements, and then by identification of system parts

on a high level. The design phase is tightly connected to the analysis phase. It starts from the identified

system parts and continues with detailed specification of these parts and their interaction. For the early

phases of software projects UML provide support for identifying and specifying requirements as use

cases. Class diagrams or component diagrams can be used for identification of system parts on a high

level. During the design phase class diagrams, interaction diagrams, component diagrams and state chart

diagrams can be used for comprehensive descriptions of the different parts in the system.

1.5.4 Basic building blocks of UML

The basic building blocks in UML are things and relationships; these are combined in different ways

following different rules to create different types of diagrams. In UML there are 13 types of diagrams,

below is a list and brief description of them. The more in depth descriptions in the document, will focus

on the first five diagrams in the list, which can be seen as the most general, sometimes also referred to as

the UML core diagrams.

13

1. Use case diagrams; shows a set of use cases, and how actors can use them.

2. Class diagrams; describes the structure of the system, divided in classes with different

connections and relationships

3. Sequence diagrams; shows the interaction between a set of objects, through the messages that

may be dispatched between them.

4. State chart diagrams; state machines, consisting of states, transitions, events and activities.

5. Activity diagrams; shows the flow through a program from an defined start point to an end

point.

6. Object diagrams; a set of objects and their relationships, this is a snapshot of instances of the

things found in the class diagrams.

7. Communication Diagrams (Collaboration diagrams in UML-1); a way to show how objects

are linked together and how messages are sent between them.

8. Component diagrams; shows organizations and dependencies among a set of components.

These diagrams address static implementation view of the system.

9. Deployment diagrams; show the configuration of run-time processing nodes and components

that live on them.

10. Package diagrams; is used to group classes at compile time to get an easier overview of a

bigger system with a lot of classes.

11. Composite Structure diagrams; runtime decomposition of a class, it is like a package diagram

but it shows the grouping at runtime instead of compile-time.

12. Interaction Overview diagrams; a mix of sequence diagrams and activity diagrams.

13. Timing diagrams; shows interaction between objects base on timing.

1.5.5 Representing “Things” in UML

Things are used to describe different parts of a system; existing types of things in UML are presented in

(table (1.1). (Table 1.1 Type of things)

Type of Things Symbol Description

Class

Description of a set of objects that share the same:
attributes, operations, relationships and semantics

Interface

A collection of operations that specify a service of a
class or component.

14

Collaboration

An interaction and a society or roles and other
elements that work together to provide some
cooperative behavior that is bigger than the sum of
all the elements. Represent implementation of
patterns that make up the system

Actor

The outside entity that communicates with a system,
typically a person playing a role or an external
device

Use Case

A description of set of sequence of actions that a
system performs that produces an observable result
of value to a particular actor. Used to structure
behavioral things in the model.

Active class

A class whose objects own a process or execution
thread and therefore can initiate a control activity on
their own.

Component

A component is a physical and replicable part that
conforms to and provides the realization of a set of
interfaces.

Node

A physical resource that exists in run time and
represents a computational resource.

Interaction

Set of messages exchanged among a set of objects
within a particular context to accomplish a specific
purpose.

Activity

A behavior that specifies the sequences of steps a
computational process performs during its lifecycle.

Packages

General purpose mechanism of organizing elements
into groups.

15

Note

A symbol for rendering notes and constraints
attached to an element or a collection of elements.

1.5.6 Representing of “Relationships” UML

The types of UML relationships are shown in the (table (1.2) , relationships are used to connect things
into well defined models (UML diagrams).

 (Table 1.2 relationships)

Name Symbol Description

Dependency

A semantic relationship between two things in which a
change to one thing may affect the semantics of the
dependent thing.

Generalization

Specialization/generalization relationship in which objects
of the specialized element are substitutable for objects of the
generalized element.

Realization

Semantic relationship between two classifiers, where one or
them specifies a contract and the other guaranties to carry
out the contract. They are used between:

- Interfaces and classes or components.

- Use cases and collaborations that realize them.

16

 CHAPTER TWO

 PREVIOUS STUDIES

17

2.1 Previous studies:

Kruchten (1995), published a paper titled “Architectural Blueprints: The “4+1” View Model of Software

Architecture”. This paper presents a model for describing the architecture of software-intensive systems,

based on the use of multiple, concurrent views. This use of multiple views allows addressing separately

the concerns of the various ‘stakeholders’ of the architecture: end-user, developers, systems engineers

and project managers. It describes how to handle separately the functional and non functional

requirements. Each of the five views is described, together with a notation to capture it. The views are

designed using an architecture-centered, scenario driven, iterative development process.

Our search works more useful because we have to ensure:

 1-Enhancement and development on the 4+1 view model not only using the language of representation,

but in the same architectural model by finding a new pattern (template).

2 - After the development and the improvement of ”4+1 view model”, we create a new pattern

(template)which will be used to solve the existing problems with the design and implementation

of the SIS.

Lapham (2006), wrote a technical note discussing some particular questions including definitions,

relevant concerns, future considerations, along with some suggestions for maintaining software-

intensive systems. Well-done sustainment and assists to lead to well supported software-intensive

systems, in addition to decreasing the total ownership costs, along with supporting the organizations to

meet the latest mission area and capabilities requirements. The issues that are facing systems are

generally the result of their very nature. A solution for organizations so they could be more effective in

sustaining software-intensive systems is by guiding these organizations to be more aware of the issues

which are addressing them practically. Some of the issues mentioned are: the lack of funding for

transition planning, the lack of signed SORAP or any equivalent document, including unclear AI

requirements, and the un-addressed support database and tools transition logistics. But we are done on

found pattern (template) using in software intensive system that solution the one on challenges in SIS.

Tiako (2008), mentioned in “Designing Software-Intensive Systems” that the methods and principles

which address as the complex subjects, that are associated with software engineering environment

capabilities for designing real-time embedded software systems. This provides relevant theoretical

foundations, principles, methodologies, frameworks, and the latest research findings in the field to

deliver a superior knowledge base for those in computer science, software engineering, and fields alike.

have described Software-intensive systems are large, complex systems, in which software is an essential

component, interacting with other software, systems, devices, actuators, sensors and with people, and

18

that it is an essential key attribute of a growing rising variety of products and services in all sectors of

the economic activity design for software-intensive systems requires adequate methodology and tool

support in order for researchers and practitioners to make use of and develop very large and complex

systems. Software engineering environments help reduce the design costs of very large and intricate

software systems while improving the quality of the software produced. But otherwise we create pattern

(template) to solving problem (increase complexity) for software intensive system

Buettner (2008) had mentioned that the development of schedule-constrained software-intensive space

systems is very challenging and difficult. Case study information provided by the national security space

programs developed at the U.S. Air Force Space and Missile Systems Center (USAF SMC) have

provided evidence of the strong desire by suppliers to omit or severely trim down software development

design, and the early defect detection methods in these schedule-constrained environments. His own

research findings had suggested some recommendations to entirely address these issues at several levels.

Though, the observations lead him to investigate modeling and theoretical methods to basically show us

and help us to understand what motivated this behavior. The result of the study clears that the

inspection-based system dynamics model is adapted to embrace unit testing and an integration test

feedback loop. This Modified Madachy Model (MMM) is used as a tool to investigate the consequences

of this behavior on the observed defect dynamics for two remarkably different case study software

projects.

Soares and Vrancken (2009), introduced the “4+1” View Model of Software Architecture, whereas they

developed this model by including the Systems Modeling Language (SysML) with the model especially

with software intensive system. The authors argued software intensive systems are normally large scale

systems in which software plays a fundamental role, but other elements are also important. The purpose

of this article is to show where and how Sys ML applied to model other elements than just the software

in a software-intensive system, can be included in the 4+1 View Model of Architecture. For each view,

UML and SysML diagrams are jointly used. The methodology used in this research is basically based on

Action Research, where as the researchers here work as a team all together with the practitioners so they

could be able to apply the theories which they have developed, and then test these theories in practice. In

this research and approach, the result was obviously feasible while evaluating the company’s

employees. In this research, the scientists doing research and study singled out by comparing the two

modern methods of representation of the system or the regulations are the SysML, UML while we've

improved on this research so that we use and like us in a language representation of the UML to

solve the existing problems in SIS, and we came up with pattern (template) solve the

problems found by the SIS, our search job more useful because we have to represent and

19

apply the architecture pattern (template) to language representation UML and developed and

improved on the model used by the Papers himself, which is the 4+1 View model and solve a problem

of the SIS .

Boehm and valerdi (2011) “Impact of Software Resource Estimation Research on Practice:

Achievements, Synergies, and Challenges”, this paper is an involvement of the Impact Project in the

area of software resource estimation. The main purpose of the Impact Project has been analyzed

concerning the impact of software engineering research investments on software engineering perform.

In addition to have exposed that: by means of well-defined systems engineering approaches for

software- intensive systems development results in improved and enhanced cost and schedule

performance, and amplifies the likelihood that the implementation will meet the user's needs. Additional

benefits conclude the production of adaptable and resilient systems, along with improved reuse and

better documentation.

Muller (2011), have mentioned in his paper “The Role of Software in Systems” that the amount of

software in various types of systems raises exponentially. This augment impacts the reliability of these

systems. In the source code of software many hidden faults are present. In which these hidden faults

could transform into errors through the life cycle of the system itself, due to the changes that occur in

the system, or due to the context of the system software which is a dominating issue in the development

process. In addition to the role of software in the broader system context; an advanced comprehending

of the functionality of software, whereas it enables the system architect and the stakeholders of the

product creation process, of integrating the software development in a better way. Our search

works more useful because:

3- It is clear that there is an increase in the growth of complexity and this is what we found that our

search has provided results that are better in terms of reduced complexity in SIS through using pattern

(template). Where the produced pattern (template) could be flexible (customized) to work with any

system or Application in software intensive systems.

4- Through the creation and the application of the new pattern (template), we have solved one of the

challenges in SIS (Increasing the complexity because of having an increase in functions).

5- Handling Complexity and the Two-Way Alignment between the Business (Problem) and the Solution

(Software).

20

The studies presented, were either concerned about software intensive system (SIS), or the 4+1 view

model. Each of Buettner (2008), Boehm and valerdi (2011), Tiako (2008), Lapham (2006), addresses the

software-intensive systems; whereas they generally defined the software-intensive as the following:

Software-intensive systems are considered as one of the major and essential roles in software

engineering, where software-intensive systems affect on the design, constructions, deployment and also

the evolution of the whole system. Yet, software-intensive systems face some challenges, two of the

main challenges which affects on the software-intensive systems are: the enormously growing

complexity of software-intensive systems, along with the growing and continuous requiring of adapting

a fast changing technology and environment. Where this research aims to solve the problem of

architecture model for software-intensive systems, and that’s through creating a new software pattern

(Template). On the other hand, the following researchers Soares and Vrancken (2009), and Kruchten

(1995), have concentrated more on the 4+1 view model, which basically concludes the four main views

or architecture (logical, process, deployment, and implementation), the +1 is the (use case) which is the

crosscutting view that integrates the four views mentioned previously. In addition to the common

modeling language UML which associates with the 4+1 view model including Sys ML. However, some

specific methods, or languages for design are not supported, in this part this research is considering a

solution to support the system of the 4+1 view model, and make it more flexible by designing this new

pattern (template), by using the 4+1 view model in order to find a solution in designing and

implementing the software-intensive system.

21

CHAPTER THREE

 METHODOLOGY

22

3.1 Introduction (Research Methodology)

In this chapter we will be touching and explain the methodology of this research and some important
paragraphs and the relations among them as

The aim of this research is create software pattern (Template), Which will enhance the 4+1 view model
and it’s based on “4+1 view model” software architecture to solve one problem or challenge of Software
Intensive System (SIS). It is a description or template for how to solve a problem that can be used in
many different situations. Object-oriented design patterns typically show relationships
and interactions between classes or objects, without specifying the final application classes or objects
that are involved.

(Figure (3-1)) shows the steps that will be taken in order to achieve the main aim of this research.

This research will adopt one challenge of software-intensive system to be solved by 4+1 view model.

Figure (3-1) explain the steps that research will follow to achieve the main purpose.

Step 1: there are many software architectures available to design and implement the systems. After
studying the software architectures, it can be seen the most appropriate architecture that will be used is
4+1 view models.

Step 2: there are many challenges that face software intensive systems. After studying the software-
intensive system, later each challenge will be discussed and figure out the main reasons of each
challenge.

Step 3: study the selective software architecture and compare between SIS’s challenges and each view
in order to find a relationship between them.

Step 4: Design the new template based on SIS and 4+1 view architecture models.

3.2 Software-Intensive Systems Challenges

 There are two challenges that face SIS in general:

a) The increasing complexity of software-intensive systems.

b) The increasing need to adapt to a fast changing technology and environment.

 Each challenge has its own reason.

23

 Fig. 3-1 Architecture Methodology of this research (Step-by-step)

Study the software architecture
and then select one model (4+1
views model)

Study and analysis SIS and its
main problems (Challenges)

Design the new pattern based on
the 4+1 view model and SIS

Analysis of the main reasons of increasing
complexity of software-intensive systems
and then selects one reason

Logical
View

Process
View

Development
View

Physical View

Increase in
functionality

Increase in
quality needs

Mass customization
of software

Increasing complexity of
software-intensive systems

Increasing need to adapt to a
fast changing technology and
environment

Differentiation
between the
constructions

In-cooperation
of variability at
all levels

Study and analysis 4+1 view
model and determine the best
view to solve SIS problems

24

3.2.1 Main reasons of “increasing complexity” challenge:

1. Increase in functionality: As observable, e.g., in the automotive or telecommunication industry, the

functionality of software increases dramatically. Each new product (or even software version) must of

course provide all the “old” functionality and, in addition, in cooperation a lot of new functions – quite

often, a platform change is required in parallel, and other devises such as sensors change their behavior

so that the “old” functionality must be adjusted accordingly.

 2. Increase in quality needs: The time where the delivery of faulty software or software

 requiring a significant, not intended adaptation of its environment still satisfied the customer is over.

Today, software – as all other products – must be delivered without failure and must fit in the

environment. In addition, there are increasing demands for the quality of the internal software

“structure; one main reason for demanding an increase in software quality. Another main reason is the

increase of quality features like security, safety or mobility (which often are used to express opaque

functional features).

3. Mass customization of software: Customer demands an adaptation of the software-intensive product

to their needs – like with other products like cars. This leads to a mass customization of software-

intensive products which quite easily lead to the existence of several hundred or even thousands of

software systems/versions. Maintaining and managing their evolution is a main reason for the increase

of complexity – orthogonal to the above. The challenge that will be solved in this research is “Increase

in functionality” which is a very important reason for complexity of software-intensive systems.

3.2.2 Main reasons of “need to adapt to a fast changing technology and environment”

1- Requirements engineering methods, techniques and tools for facilitating the two way

alignment establishing requirements as a “bridge” between the problem and the solution

 space.

2- Dynamic adaptation and run-time evolution as well as run-time evaluation of software

systems.

3- Quality assessment of components (open source and COTS) during runtime, certification

of such components.

25

4- Standardization of components and semantic component interfaces to allow semantic run-

 time evaluations; even more important as basis for standardization.

3.3-Relationship between SIS and 4+1 view models

The methodology that will be adopted in this research is finding the best view of the 4+1 view models.

Let us check each view and determine the best view can solve one of SIS challenges

1. The Logical Architecture:

This view concerns about the functions and services that are provided to clients. The logical

architecture primarily supports the functional requirements. Logical view can be formulated by

one question: “what the system should provide in terms of services to its users”. The system is

decomposed into a set of key abstractions, taken (mostly) from the problem domain.

2. The Process Architecture:

The process architecture takes into account some non-functional requirements, such as

performance and availability. It addresses issues of concurrency and distribution, of system’s

integrity, of fault-tolerance, and how the main abstractions from the logical view fit within the

process architecture “on which thread of control is an operation for an object actually executed”.

3. The Development Architecture: The development architecture focuses on the actual software

module organization on the software development environment. The software is packaged in

small chunks—program libraries, or subsystems; that can be developed by one or a small number

of developers. The subsystems are organized in a hierarchy of layers, each layer providing a

narrow and well-defined interface to the layers above it. The development architecture of the

system is represented by module and subsystem diagrams, showing the ‘export’ and ‘import’

relationships. The complete development architecture can only be described when all the

elements of the software have been identified. It is, however, possible to list the rules that govern

the development architecture: partitioning, grouping, visibility.

26

 4. The Physical Architecture:

The physical architecture takes into account primarily the non-functional requirements of

The system such as availability, reliability (fault-tolerance), performance (throughput), and

scalability. The software executes on a network of computers, or processing nodes (or just nodes

for short). The various elements identified— networks, processes, tasks, and objects need to be

mapped onto the various nodes. We expect that several different physical configurations will be

used: some for development and testing, others for the deployment of the system for various sites

or for different customers. The mapping of the software to the nodes therefore needs to be highly

flexible and have a minimal impact on the source code itself.

 it can be seen there is a relationship between SIS challenges and 4+1 view models. This

 relationship that between logical view and the first reason of increasing complexity of

 software- intensive systems which increase in functionality. So, logical view is concerned

 about the system functions and it can be seen the main reason of the increasing

 Complexity which is increasing the functionality in SIS.

27

CHAPTER FOUR

(ANALYSIS AND DESIGN)

28

4-analysis and design

In this chapter we will be touching and explain the analysis and design

of this research and some important paragraphs and the relations among them.

4.1 Analysis the research problem

This research aims to solve one of the Software Intensive System (SIS) challenges. This challenge is

“Increasing complexity of software-intensive systems”.

There are many criteria can effect on reasons for the increase in the complexity of software intensive

systems are, among others:

a) Increase in functionality: As observable, e.g., in the automotive or telecommunication industry,

the functionality of software increases dramatically.

b) Increase in quality needs: The time where the delivery of faulty software or software requiring a

significant, not intended adaptation of its environment still satisfied the customer is over.

c) Mass customization of software: Customer demands an adaptation of the software-intensive

product to their needs – like with other products like cars.

The challenge that will be solved in this research is “Increase in functionality” which is a very important

reason for complexity of software-intensive systems.

4.2 Solving the problem

Software architecture deals with the design and implementation of the high-level structure of the

software. It is the result of assembling a certain number of architectural elements in some well-chosen

forms to satisfy the major functionality and performance requirements of the system, as well as some

other, non-functional requirements such as reliability, scalability, portability, and availability. The

logical architecture primarily supports the functional requirements what the system should provide in

terms of services to its users. The system is decomposed into a set of key abstractions, taken (mostly)

from the problem domain. This research will use the logical view to solve the main reason of increasing

the complexity in SIS which is the increasing in functionality.

29

4.2.1 Design of the New Pattern (template)

Now it can be seen that is one the challenges that faces the SIS which is the complexity of functions.

After studying the main purpose of the logical view, it can be seen there is a relationship between the

challenge and the logical view, especially both logical view and the challenge are concerned about the

functions. So, logical supports the functional requirements and what the system should provide in terms

of services to its users. So, the new pattern (template) will consist of solving the SIS problem by using

the logical view as shown in (figure (4-1.)).

The basement of the new pattern is solving the increase complexity of SIS by using logical view.

 Fig 4-1 General pattern (template) for relationship between SIS and Logical view

SIS Challenges

Increasing complexity of
software-intensive systems

 By using software
 architecture

Why Logical View? Because this view
concerns about the functions and
services that are provided to clients

Select best view is "logical view "of
"4+1 view model" to solve one
challenges "complexity function" in
software intensive systems

Because increasing in
functionality of software-
intensive systems

Select one model is "4+1 view
model" to solve complexity function
in software intensive systems

30

4.3 Example of Logical View Modeling by UML

This example will show how to model the logical view via UML. It is a case study for a system to

visualize measurements at junctions. Measurements obtained by sensors and the effects of the

application of actuators are important quantities to be visualized for decision makers. Thus, having

application systems that can visually show numerical values resulting from measurements is

fundamental. This case study is about a system that provides visualization of road traffic measurements

at junctions controlled by traffic signals. It can be seen as a decision support tool for traffic operators,

providing reliable, real-time information of road traffic measurements, which can be useful to improve

traffic signals planning. This application will be used as a subsystem for other road traffic management

systems. The location where is traffic can change its routes, directions and sometimes even the mode of

travel is named Junction as shown in (figure (4-2.).

 Fig. 4-2 A junction representation (soares et al, 2009)

A junction comprises the outgoing Main link and the incoming Access or links of a crossing or

motorway. Each Main link and Access or link only belongs to one specific junction. For each direction

of the Access or link (turn left, go ahead, or turn right), information about velocity, waiting time,

intensity and density. So each system needs to list all requirements in order to know what the system

should provide. In this example, there are many requirements listed as following:

31

 1. For each direction, the user wants to visualize information about split factor and waiting time.

 2. The number of directions depends on the number of Access or links.

 3. The symbol “-” should be used in the place of numerical values when there is no direction.

 4. Junction must have an automatic created image based on Links information;

 5. Junction image must be by default on the geographical map (Trinivision).

 6. Junction image on the geographical map (Trinivision) must be shown in a small form

 7. Clicking in the junction image will result in an overview from this image containing the junction

 information.

 8. The junction image must have an understandable and represent-able layout.

 9. The information shown shall be from all Access or links into the junction.

 10. The information shall be shown for each traffic stream into the junction.

 11. Access or link information should contain the split factor.

 12. Information about intensity and waiting time must be shown when there is a Direction with

 an actuator or sensor from the Access or link.

As it has been explained the main purpose of logical view which is concerns about the functions and

services that should the system. So, in this example there are two main functions (junction and

direction). (Figure 4-3)) is a class diagram and shows the main functions and the relationships between

them.

 Fig. 4.3 UML class diagram for representing of logical view

32

CHAPTER FIVE

(SYSTEM MODELLLING,

CASE STUDY MODELING)

33

5.1 Introduction

The idea of the research will be implemented in this chapter, which is the implementation of software
architecture model "4+1 view model "to solve the SIS challenges. In order to check the efficiency of
the new pattern (Template) , architecture the research consider the “Air Traffic Control System” as a
case study and implementation issue Components mean the parts of the system depend on the 4+1 view
model.(Table (5.1) shows the meaning of components for each view.

Table 5.1: "4+1 architecture model"

 View View Logical Process Development Physical Scenarios

Components Class Task Module Subsystem Node Step Scripts

In this research the logical will be used. So, the components of logical can be seen as:

1- Class.
2- Class Utility
3- Parameterized Class

In order to check the efficiency of the new pattern, “Air Traffic Control System” will be implemented
using the logical view as shown in figure (5-1). in this research based on the principle of 4+1 view
models. As shown (figure (5-1))

The basement of the new pattern is solving the increase complexity of SIS by using logical view.

 Fig 5-1 ATC by using pattern (template)

ATC Challenges

Increasing complexity of current
system and in per future vision of
ATC there will be very complex
system software-intensive

 By using software
 architecture

Why Logical View? Because this view
concerns about the functions and
services that are provided to clients

Select best view is "logical view "of "4+1
view model" to solve "complexity function"

in ATC services are being simplified by
dividing it in to three 3 groups

Because increasing in functionality ATC
activities contain 7 phase of services
which interact with each either so that
each activity depend on the previous one

Select one model is "4+1 view model"
to solve complexity function in
software intensive systems

34

5.2 Air Traffic Control (ATC) (Prasad Rahul,2011)

ATC system is a service that gives guidance to airplane, prevents collisions and manages safe and

orderly traffic flow. ATC system has been developing since 1945; it is a vast network of people and

equipment that ensures safe operation of airplanes. The first air traffic control (ATC) system was

originally built in the 1960s; since then, air traffic has increased immensely, and has become

increasingly more difficult to maintain safety in the sky. As air travel has become an essential part of

modern life, the ATC system has become strained and overworked. The ATC system has been in a

process of continuous improvement change. In the earliest days of aviation, few airplanes were in the

skies that there was little need for automated control of airplane. As the volume of air traffic increased

and the control was still fully manual; the system was considered unsafe as human error has been cited

as a major factor in the majority of aviation accidents and incidents. In today’s Air Traffic Control

system, air traffic controllers are primarily responsible for maintaining airplane separation. Every

airplane follows several activities during a flight. The primary role of an air traffic controller is to

separate airplane and provide them safe, orderly, and expeditious movement from one place to the next.

Air Traffic Controllers are responsible for virtually every bit of airspace around the world. Most of the

major facilities are staffed 24 hours a day, seven days a week, 365 days a year. This means air traffic

controllers are subject to long hours, shift work, and working on holidays.

Air Traffic Controllers can be employed by various agencies. In the United States, the Federal Aviation

Administration (FAA) employees the most controllers, staffing the nations busiest facilities. The

Department of Defense, military, and other private contractors are responsible for staffing all of the

other facilities. Though the FAA doesn't employ every controller, they oversee and provide the

guidelines to which all air traffic controllers in the United States must adhere by. As many new air

traffic controllers enter the workforce, more and more are coming from professions outside the aviation

industry. The most common facilities a new hire with the Federal Aviation Administration can be

assigned are: Center/EnRoute, Tower only, TRACON only, or Tower/TRACON combined. The tower

handles the entire airplanes on the airport and immediately surrounding the airport. Once the airplane

leaves the boundaries of the tower, the tower controller hands them off to the TRACON. The TRACON

is responsible for the area immediately surrounding the airport and extending from 20 to over 100 miles

and generally from 10,000 to 15,000 feet. Once the airplane passes those boundaries, they are handed

off to the Center/En Route controller. This process repeats itself backwards as the airplane begins its

descent to its destination.

35

5.3 ATC as example of SIS

ATC systems are highly complex pieces of machinery, they employ standard verification and modeling

technique to coordinate, distribute and track airplane as well as weather information. The currently used

systems need to employ procedures for improved safety and efficiency which include flexibility,

potential cost savings and reduction in staffing. As per future vision of air traffic control there will be

large number of aircraft and their route will be quite busy and very complex. This means that there is a

lack of advanced technology and desire to support the controller. Thus there is a need to build ATC

system based on a method which can handle increased air traffic capacity/congestion to provide a safety

critical interactive system. The following are the major Obstacle of current ATC system: (Prasad

Rahul, 2011)

a) Lack of well-defined human/software interface – The idea of full automation or minimum human

intervention of the ATC system still remains unfulfilled. The existing systems do require human

interaction as the system only guides but actual decision is taken by the controller’s in charge

(ground, local).

b) Need for high maintenance – Maintenance of the system is also an issue which can cause

problem as about an incidence in which voice communication between the pilot and controllers

broke down and the reason behind this was found to be a lack of maintenance.

c) Outdated design/technology – Obsolete software design and programming language are major

barriers to upgrades and efficient software maintenance of the currently used ATC systems

because of which improved capacity and efficiency can’t be achieved with the current system.

The current computer software limits the number of airplane that can be tracked at any given

time, and the dated architecture makes enhancements, troubleshooting and maintenance more

difficult. Computer outages, planned or unplanned, are covered by a backup system that cannot

handle the same level of air traffic as the main system. The result is significantly limited capacity

during backup mode.

d) Mixed communication – The communication between the controllers and pilot currently is a

 combination of voice and data link. The results of test conducted show that the mixed

 communication leads to slow speed which can be overcome only when the whole

communication takes place in a well defined manner.

 5.4 ATC system services

 There are seven activities for this system. (figure (5-2)) shows these seven activities.

36

 En route

 departure descent

 takeoff approach

 preflight landing

 Fig. 5-2 ATC activities

5.4.1 Activities should be controlled

ATC system will control each main activity for the plane starting from preflight to landing. So the main

function for this system is preventing accidents happen in the air traffic. (lubos ,2008)

 These activities for ACT are explain below, figure 5.2 shows these activities

a) Preflight -This portion of the flight starts on the ground and includes flight checks, push-back

from the gate and taxi to the runway.

b) Takeoff - The pilot powers up the airplane and speeds down the runway.

c) Departure - The plane lifts off the ground and climbs to a cruising altitude.

d) En route - The airplane travels through one or more center airspaces and nears the destination

airport.

e) Descent - The pilot descends and maneuvers the airplane to the destination airport.

f) Approach - The pilot aligns the airplane with the designated landing runway.

g) Landing - The airplane lands on the designated runway, taxis to the destination gate and parks

 at the terminal.

5.4.2 Grouping ATC Activities

ATC system activities aim to provide control on three main services:

1- Airplane departure control service

This service will include the following activities:

a) Preflight

b) Takeoff

c) Departure

2- Airplane en route control service

3- Airplane landing control service

37

This service will include the following activities:

a) Descent

b) Approach

c) Landing

 (Figure (5-3)) shows grouping activities in three main services for ATC system

 En route

 Departure landing

 Fig. 5-3 ATC services simplified by grouping

These services will be the objects of system classes and they will be modeled using UML in order to

provide the main functions. Logical view focuses on the services for any system that will provide them

for system users. In this chapter, ATC will be designed using 4+1 view model in order to implement the

system without error and failure.

5.5 Use case ATC:
 Now will explain the use case and the scenario of the system and to clarify all the

 functions of the system and the results of this work, Show figure (5-4).

 Shows Use Case Model diagram for all function the ATC.

 Fig 5.4 UML Use Case Model by tool on all function the system

 Fig 5-4 UML Use Case Model on all function the system

38

5.6 Design the system using 4+1 view model in UML
The ATC systems are quite complex and inefficient. To adapt to the changing demands of speed and

efficiency a reliable software system for ATC is required to be developed. Software architecture based

on UML models will help in handling complexities and drawbacks of existing ATC systems and also

help to better understand the domain. The complexity of the problem domain requires extensive efforts

for the clarification of the initial problem statement. Moreover, due to the extremely long lifespan of

ATC systems, stable and robust analysis models enabling the integration of new operational scenarios

are needed which can be efficiently obtained using UML models. The diagrams obtained using the UML

models are highly optimized which is one of the main requirements for the design of a cooperative ATC

system.

5.7 Logical View and ATC Modeling
In order to implement 4+1 view model of logical view on the ATC, all services of ATC should be

placed. Logical view in the 4+1 view model will primarily supports the functional requirements of Air

Traffic Control system which means what the ATC system should provide in terms of services to

controller and airplane. The system is decomposed into a set of key abstractions, taken from the air

traffic control domain, in the form of objects or object classes for ATC services. The principles of

abstraction, encapsulation, and inheritance will be exploited based on ATC requirements. This

decomposition of ATC is not only for the sake of functional analysis, but also serves to identify

common mechanisms and design elements across the various parts of the ATC system.

5.7.1 Modeling Departure Control Services
In order to model this service, many of UML symbols will be used to present the actors, process and
 relationships.
-The following is a description in the introduction for each notation which will be used in presenting
 Departure, En route, landing services in ATC.
 (Table 5.2 notation)

Number

Notation

 Description

 1- Initial node. The filled circle is the starting point of the diagram. An initial node
isn’t required although it does make it significantly easier to read the diagram.

 2- Activity final node. The filled circle with a blod border is the ending point. An
activity diagram can have zero or more activity final nodes.

 3-

Activity. The rounded rectangles represent activities that occur. An activity may be
physical, such as Inspect Forms, or electronic, such as Display Create Student

Screen.

 4-

 Flow/edge. The arrows on the diagram. Although there is a subtle difference
between flows and edges I have never seen a practical purpose for the

39

Based on the system requirements of the ATC, all services that should provide to their users be molded,
logical view will concern each class and activity should be involved. The following activity should be
presented as classes in order to provide this service.

 There are two main actors for providing this service which is “airplane departs” from pilot to the
controller. Actors and process will be presented based on UML standard.

1st Step: determine the two users (actors) for this system:

Airplane (Pilot)
Controller

Relations between actors will be presented as Arrow

2nd Step: airplane (pilot) send request for controller to get permission for pushback clearance.

3rd step: controller will give the airplane a pushback clearance.

4th step: craft will pushback from gate then it will leave the ramp area. (Hint: then here means process
after process)

5th step: airplane will request from controller the clearance taxi permission.

6th step: airplane taxing

7th Step: airplane requests a departing permission from controller

8th Step: Controller gives airplane departure clearance.

9th Step: airplane departs.

(figure (5-5)) shows UML activity diagram of departure services

difference although I have no doubt one exists. I’ll use the term flow.

 5-

 A fork node. Is a control node that splits a flow into multiple concurrent
flows.

 6-

 A join node. Is a control node that synchronizes multiple flows.

 7-
 Branches - These divide the sequence into several alternatives specified by

different conditions (guards).

40

 Fig. 5-5 UML activities for departure control service

Consequence process of Departure Service

While ATC system is SIS contains complex function varied with many circumstances, it shouldn’t has

no chance to happen any error or accident in the system. There are 5 actors will be involved in the

departure service. Each actor will communicate with airplane to insure the fight departures safely

without accidents.

Airplane

Request pushback
clearance

Pushback from gate

Leave ramp area

Request taxi clearance

Taxing

Request departure
clearance

Grant pushback
clearance

Depart

Grant pushback
clearance

Grant departure
clearance

Controller

41

The following section will show the relationships between airplane and others actors.

1- Gate Controller with Airplane.

2- Ramp Controller with Airplane.

3- Ground Controller with Airplane.

4- Local Controller with Airplane.

Subsystem 1:

This will include the airplane and gate controller. ATC will make airplane communicate the gate

controller to assign which gate will the airplane takes.

 start notation

 No

 Yes

 Fig. 5-6 communicate the gate controller

Airplane Controller

Request for gate
Assignment

Assign gate for
departure Gate Clearance

Request for
pushback
clearance

Check Clearance

Pushback

Enter Ramp
Area

 Entering Subsystem 2

End notation1

Confirm clearance

42

Subsystem 2
This subsystem will take over the next step of ATC system that will control the communications and

functions between airplane and ramp and guarantee

 Start

 No

 Yes

 End 2

 Fig.5-7 communicate the ramp controller

Airplane

Enter Ramp
Area

Ramp controller

 Sequencing at
 ramp

Request to
leave ramp

Grant Clearance

Leave ramp area

Enter Taxiway

Entering subsystem 3

Grant clearance

43

Subsystem 3

The main function for this subsystem is controlling the communication between airplane and both of
ground controller and local controller in order to provide the information to airplane, at the end of this
subsystem, the airplane will be processed safely to be on runway.

 No

 Yes

 End 3

 Fig. 5-8 communications both of ground controller and local controller

Airplane

Enter Taxiway

Request taxi
clearance

Updated pre-
departure
information

Assignment
for runway

Runway
assignment

 Taxing

 Issue taxi
clearance Selection for

departure

Provide
information

Airplane on
runway

Ground Local

Entering subsystem 4

Issue taxi

Clearance

44

Subsystem 4

It will detect, track and display the progress of airplane in the runway and start departure. This
subsystem will include airplane, ground controller and local controller.

 Join

 No

 Yes

 End 4

 Fig.5-9 detect track in the runway and start departure.

Airplane on
runway

Airplane Ground Local

Track Progress

Detect Progress

Display Progress

Display Position Check Position

Request for
departure clearance

Start Departure

Entering subsystem 5

Request pushback
clearance

Grant departure

 Clearance

45

Subsystem 5

It is final phase for departure. It will detect if there is another flight will departure or conflict. If there is
any conflict instructs controller or pilot himself will decide what to do when conflict alert arises. At the
end of this process the fight will departure safely. If there is any conflict alert, the pilot can send alert in
emergency condition for local controller.

 Fig.5-10 Final phase for departure.

Start Departure

Airplane Ground Local

Conflict alert

Raise conflict
alert

Deviation

Recovered
planned route

Airplane
departs

46

5.7.2 Modeling En-Route Control Services

 After each plane departs, terminal controllers notify en route controllers, who take charge next.

 Airplanes usually fly along designated routes; which center is assigned a certain airspace containing

many different routes. En route controllers work either individually or in teams of two, depending on

how heavy traffic is; each team is responsible for a sector of the center’s airspace. As the plane proceeds

on its flight plan to its destination it is handed off from sector to sector both within the center and to

adjoining centers. To prepare for planes about to enter the team’s sector, the radar associate controller

organizes flight plans output from a printer into strip bays. If two planes are scheduled to enter the

team’s sector in conflict, the controller may arrange with the preceding sector unit for one plane to

change its flight path or altitude. As a plane approaches a team’s airspace, the radar controller accepts

responsibility for the plane from the previous sector. The controller also delegates responsibility for the

plane to the next sector when the plane leaves the team’s airspace. Based on the requirement of this

service, the following steps will show how to control this service:

1st step: Airplane flies along designated routes

2nd step: terminal controller will notify en route controller

3rd step: airplane sends strip bay to controller based on the designated routes

4th step: if there is conflict between two airplanes, controller will arrange with the preceding sector unit

for one plane to change its flight path or altitude.

All these steps will provide control for En route service. (Figure (5.11)) shows the activity diagram for

controlling en route service.

47

 Start

 Fig 5-11 UML activity diagram of en route service controlling

Airplane

Flying along
designated routes

Terminal controller
Send designated route of
airplane

En route
Controller

Monitor the airplane
based on designated
route

Is there
conflict

Arrange with the preceding
sector unit for one plane to
change its flight path or
altitude

Change one airplane to
a new path

Yes

Keep Mentoring

No

48

5.7.3 Modeling Landing Control Services

When the plane is approximately 50 miles from the destination airport, it is handed off to that airport’s

terminal radar arrival controller who sequences it with other arrivals, and issues an approach clearance.

As the plane nears the runway, the pilot is issued a clearance to contact the tower. The local controller

issues the landing clearance. Once the plane has landed, the ground controller directs it along the

taxiways to its assigned gate. The local and ground controllers usually work entirely by sight, but may

use airport surface radar if visibility is very poor. Both airport tower and en route controllers usually

control several planes at a time, often making quick decisions about completely different activities. For

example, a controller might direct a plane on its landing approach and at the same time provide pilots

entering the airport’s airspace with information about conditions at the airport. While instructing these

pilots, the controller also might observe other planes in the vicinity, such as those in a holding pattern

waiting for permission to land, to ensure that they remain well separated. In addition to airport towers

and en route centers, air traffic controllers also work in flight service stations at 17 locations in Alaska.

These flight service specialists provide pilots with preflight and in-flight weather information, suggested

routes, and other aeronautical information important to the safety of a flight. Flight service specialists

relay air traffic control clearances to pilots not in direct communications with a tower or center, assist

pilots in emergency situations, and initiate and coordinate searches for missing or overdue airplane. At

certain locations where there is no airport tower or the tower has closed for the day, flight service

specialists provide airport advisory services to landing and departing airplane. However, they are not

involved in actively managing and separating air traffic.

The following steps show how to control the landing service

1st Step: airplane informs the controller of airport destination at 50 miles away and then request for

approach clearance.

2nd Step: controller provides airplane with approach clearance.

3rd Step: pilot is issued a landing clearance.

4th Step: controller provides landing clearance for the airplane.

5th Step: pilot request taxi clearance

6th Step: controller provides the clearance and directs it along the taxiways to its assigned gate.

(Figure (5-12)) shows UML activity diagram of landing services

49

 No

 Yes

Fig. 5-12 UML activities for landing control service.

Airplane

Inform controller for
landing at 50 miles away
of destination airport

Request for
approach clearance

Request for landing
clearance

Request for taxiway
clearance

Airplane will be
directed to its gate

Grant approach
clearance

Grant Landing
clearance

Controller

Receive the information
from pilot

Grant Taxiway
clearance

Landing

conform

50

 Start notation

 No

 Yes

 Fig. 5-13 communicates the controller on the landing.

Airplane

Approach
clearance request

Assign gate
for approach

Gate Clearance

Request for
landing
clearance

Check Clearance

Gate clearance

for landing

Gate Ground Local Ramp

Enter Taxiway

Request taxi
clearance

Updated landed
information

Assignment gate

for ramp and land

Gate clearance
for landing

Confirm

 Clearance

51

If two planes request landing clearance, what the system should do?

In this case, the plane which is moving faster than the other will get the clearance. This condition
concerned about the speed for each plane. The other plane will slow down till the first plane lands then
get the clearance, The result in the final will be according to existing condition the controller on the
takeoff and landing in system .

5.8 ATC UML Class Diagram

Class diagram identifies and describes the static structure of the system i.e. the system architecture. The
purpose of a class diagram in this research is to depict the classes within ATC model. ATC classes have
attributes (member variables), operations (member functions) and relationships with other classes.
(Figure 5-14)) Shows UML class diagram

 Fig 5-14 UML Class Diagram

Implemented class diagram for ATC system means there are two classes

1- Controller
2- Airplane

Each class will contains variables and functions, these classes integrated together in order to provide
departure control service.

5.8.1 Controller UML Class Diagram

 A-Controller class members will consist of:
 1-Controller name
 2-Location
 3-Area

 B-Controller class functions will consist of:
1- monitor
2- grant clearance
3- tracking
4- movement handling

5.8.2 Airplane UML Class Diagram

A. Airplane class members will consist of:
1- Airplane name
2. Airline name
3. Departure time

Class Name

Class attributes

Class Functions

52

B. Airplane class functions will consist of:
1- Push back
2-Taxi
3-Depart

After determining each class members and functions now we can model the class diagram by UML and
the relationships between them and it is this generalization type as Shown in (figure (5-15.)) This
diagram will help the developer and programs to make basement for implementing this services.

 Control- of

 Fig. 5-15 Departure UML Class Diagram

5.8.3 Class diagram for ATC departure service

In order to achieve this purpose, we have to show all attributes for each UML class diagram to be
complete and all class compatible with each other. By doing this strategy, SIS will be more efficient and
easy to implement because all attributes are fully defined in independent classes. Each class contains its
main name, attributes and functions. In addition, there define for each function such as long, string and
Boolean. There will be no more complex in the process of implementing SIS such as ATC.

The main advantage of describe the type of each variable is preventing the error and conflict between
the classes in the future. As it’s be mentioned before, logical view will decompose the ATC system into
a set of key abstractions, in the form of objects or object classes. After we figured out the main classes
for departure service of ATC, it can be easy to involve logical view concept and implement the software
architecture model.

 (Figure (5-16)) shows UML class diagram for ATC departure service.

Controller

Controller name

Location

Area

Monitor ()

Grant clearance ()

Tracking ()

Movement handling ()

Airplane

Airplane name

Airline name

Departure time

Push back ()

Taxi ()

Depart ()

1 0..*

53

 ramp area : Long

 Fig. 5-16 UML class diagram of departure service

Control

Control

Control
1

1

0..*
1

1 Consist of

0..*

0..*

+taxi
Clearance
 granting

+assigned
Airplane

+ramp clearance
 Granting

+departure clearance
granting

Clearance_ delivery_ controller

Ramp_ controller

Local _controller

Ground _controller

Gate_ controller

Airplane

Gate name: Variant

 Ramp area: Long

Control ramp
operations ()
Sequencing at ramp ()
Airplane servicing ()
Airplane loading ()

Ramp clearance ():
Boolean

Airplane: String
Clearance limit: Long
Departure frequency: Integer
Route assigned: Variant
Altitude assigned: Double

Giving information () :
Variant
Clearance ()
Select from queue ()
Handle emergencies ()
Sectorization ()
Runway assignment ()
Monitor runway incursions ()

Holding point sequencing ()

Route checking ()
Final departure clearance ():
Boolean

Sector: String
Location: Variant
Active runway name: String
Radar coverage: Long
 Location: Variant

Area: Integer
Inactive runway name:
String
Monitoring device: String

Holding gareas ()
Control ground traffic ()
Prote ctcriti cal areas ()
Departure
queuesequencing ()
Handle emergencies
() Taxi clearance () :
Boolean

Gate assignment ()

Make gate available ()

Pushback clearance () :
Boolean

Airline name: String
Airplane number: Variant
Airplane type: String
Position: Variant
Altitude: Integer
Departure time: Date
Departure airport: String
Speed: Integer
Distance: Integer
Route: Variant
Call sign: String
Traj event list : Variant
Latitude: Integer
Longitude: Integer

Depart ()
Taxiing (taxi-out-plan, assigned-
runway)
Push back ()
Get departure time ()
Assign flight crew ()
Maneuvering ()
Delay flight (number of
minutes)
Set call sign (string call sign
value)
Get call sign (string call sign
value)
Add trajevent ()

54

5.9 Logical View to Process View

The process architecture takes into account some non-functional requirements of ATC system, such as
performance and availability.

It addresses issues of:

a) ATC concurrency and distribution.
b) ATC system’s integrity.
c) ATC fault-tolerance.

The main point important of process view is addressing how the main abstractions from the logical view
fit within the process architecture on which thread of control is an operation for an object actually
executed. The following section shows the addressed issues. Bad weather conditions like wind, rain and
snow can pose threats for planes ATC and shows some faults between airplane and controller.
Terminal controllers keep pilots informed about weather and runway conditions.

5.9.1 Process view fit logical view abstraction

Services of ATC are addressed and the process that involved in these services is located between
airplane controller (pilot) and local controller (tower). For example logical view addressed the
departure service and the process involved in this abstraction is how to make communication between
controller with airplane controller and with the others airplane controllers while there are many airplanes
departure at the same time. Other service is the controller are immediate concern is safety, but
controllers also must direct planes efficiently to minimize delays. So the process will be executed
immediately. Some regulate airport traffic through designated airspaces; others regulate airport arrivals
and departures. Terminal controllers watch over all planes traveling in an airport’s airspace. Their main
responsibility is to organize the flow of Airplane into and out of the airport. They work in either the
control tower or the terminal radar approach control room or building. Relying on visual observation,
the tower local controllers sequence arrival Airplane for landing and issue departure clearances for those
departing from the airport. Other controllers in the tower control the movement of Airplane on the
taxiways, handle flight data, and provide flight plan clearances. Terminal radar controllers manage
Airplane departing from or arriving to an airport by monitoring each Airplane’s movement on radar to
ensure that a safe distance is maintained between all Airplane under their control.

In order to accomplish the goals of safety, efficiency, and cost-effective operation, the present ATC
system offers the following services to the aviation community:

1- Separation assurance: tracking Airplane in flight, primarily with surveillance radars on the
ground and airborne transponders, in order to ensure that adequate separation is maintained
and to detect and resolve conflicts as they arise;

55

2-navigation aids —maintaining a system of defined airways and aids to navigation and
establishing procedures for their use

3-weather and flight information— informing users of the conditions that may be expected along
the intended route so they may plan a safe and efficient flight;

4-Traffic management-processing and comparing the flight plans, distributing flight plans to
allow controllers to keep track of intended routes and anticipate potential conflicts, and ensuring
the smooth and efficient flow of traffic in order to minimize costly congestion and delays.

5-Landing services-operating airport control towers; instrument landing systems, and other aids
that facilitate the movement of air traffic in the vicinity of airports and runways, particularly
during peak periods or bad weather that might affect safety or capacity.

These services together comprise an integrated program, no part of which can be fully effective without
the others. Flight plans must take into account weather and traffic, for instance, and traffic must be
routed to destinations so that it arrives on time and can be handled at the airport with a minimum of
delay. Similarly, clearances have to be modified so that traffic can be routed around severe weather or
away from bottlenecks that develop in the system. In a practical sense, the aircrew and ground
controllers cooperate as a team using various human and electronic resources to maintain safety and to
move traffic expeditiously. While the ultimate responsibility for safety of flight rests with the pilot, he
remains dependent in many ways on data or decisions from the ground.

56

 CHAPTER SIX

 EVALUATION

57

6.1 System Evaluation

Table 6-1 shows the results of systems evaluation by compare the function of the current research with
previous works. Table 6-1 "Table Evaluate Comparison"

FUNCTION Current Research Others

1 Pattern (template) design
Yes (create new pattern (template)
based on 4+1view model , Ch4

 No (they did not use pattern
(template)) and Sys ML
extended UML(soares ,vranken

2009)

2 Complexity reduction

Yes (simplified enhancement on
architecture by using pattern template
and enter 4+1 view model decrease
function)

(only description)

(soares ,vranken 2009) and
(kruchten 1995)

3
Construction
simplification

Yes (simplified to be grouping 3
phases in ATC activities)

Ch5

No (It is more complicated by
using 7 phases in ATC
activities)

(lubos 2008)

4
Software Engineering
Approach

Yes (standard work phases are
integrated through 4 +1 view to
produce pattern (template)

(Standard work phases-
description only)

(soares ,vranken 2009) and
(kruchten 1995)

5 synchronization

Yes (Full synchronized)

As using activates diagram in
functionality at using activities
diagram ,so that will be concurrent
interaction between multi function .

 (Not fully Synchronized)

(lubos 2008)

,(Vipin ,Saxena 2009)

6 Automatic
Full Automatic (ATC)

(no human interaction)

Semi- Automatic (existing of
human interaction) (Vipin

Saxena 2009)

58

7 Development
Yes (Full development of integration
among all activities in ATC system)

No (one function is covered in
the whole ATC system)

(Vipin,Saxena 2009)(lubos
2008) glenn(2003)

8 Flexibility

Yes (enables the implementation to
achieve executable code , such that it
can be customized to any environment
and technology)

(No pattern template is
developed to achieve
executable code)

(soares ,vranken 2009) and

(Vipin Saxena 2009) and
(kruchten 1995)

9 Advanced Approach
Yes (the benefit of using Pattern
(template) architecture is to solve the
challenges in SIS)

No (their approach does not
solve the challenges in SIS)

(soares ,vranken 2009) and

(Vipin Saxena 2009) and
(kruchten 1995) and (Tiako
2008)

10 Cost Reduction of SIS
Yes(by providing adequate
methodology and tools)

(No methodology provided)

(Tiako 2008)

59

 CHAPTER SEVEN

CONCLUSIONS AND FUTURE WORKS

60

7-1 CONCLUSION:

7.1.1- The current proposed research, we produced a new pattern (template) that solved one of the

challenges in SIS (software intensive system) which is the increasing complexity. Show (Figure (4-1)).

Through using the proposed pattern (template) we can enhance the architecture model "the 4 +1 view

model" to provide an enhancement of how to design and implement SIS, besides having a flexible

approach to be adapted in SIS.

1.1- Monitoring and Control of Large Systems or Environments: These applications are

characterized by the need to collect data from environment which can also be partially control

the environment. For example: Systems controlling such as ATC monitoring and check.

1.2- Integration and composition of highly complex software systems: These applications are

 characterized by the need to adapt in response to unforeseen changes of requirements,

 technology, or environment, and to integrate highly dynamic unpredictable diverse

 knowledge as the integration of the functions of ATC activities.

7.1.2- The new pattern (template) enhance the 4+1 view model by providing it a new feature that

 allows to design and implement tow type (1.1 and 1.2) that are mentioned above of software

 intensive system like ATC .

7.1.3 -In order to prove the proposed pattern (template), we applied the use case diagram, activity

 diagram and class diagram, knowing that the Unified modeling language (UML) is involved in

 this research because it will be the official modeling language in the use case.

61

7.2 Future Works:

 Our work can be extended and developed in future to:

1-Study and analysis the other reasons (Mass customization of software, Increase in quality

 needs, Differentiation between the constructions, in–cooperation of variability at all

 levels) that affect the complexity of SIS.

2-Increasing the development and the enhancement on 4+1 view model architecture by

 focusing the studies and making deep analysis on the other views (Process view, Physical

 view and Development view).

3- The proposed pattern (template) can be modified and customized to be reused in new

 technologies such as Cloud Computing and applied in institution of higher education.

4- Developing a new pattern (template) that combines and integrates more than one plane, so that

we can create an integrated and synchronized pattern (template) for multiple planes in the same

airport. Further, we can we can have an integrated and synchronized pattern (template) between

different ATC systems in multi-airports among the world.

62

References

- André, C., Mallet, F., de Simone, R.,(2007) Modeling Time(s), Proceedings of the ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems (MoDELS/UML),
USA. Springer Verlag, LNCS 4735, pp. 559-573(2007).

- Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.(2006) “Experiences from introducing UML-based
development in a large safety-critical project”, Empirical Software Engineering 11(4), 555-581.(2006).

- Booch, G., (2007). “The Economics of Architecture- First”. IEEE Software, 24(5) 18-20(2007) .

- Boehm, B. and Valerdi, R., (2011) Impact of Software Resource Estimation Research on Practice:
Achievements, Synergies, and Challenges.

-Buettner, Douglas John, (2008), designing an optimal software intensive system acquisition: A
 game theoretic approach, ProQuest Dissertations and Theses; Thesis (Ph.D.)--University of
 Southern California, 2008. Publication Number: AAI3341575; ISBN: 9780549969211; Source:
 Dissertation Abstracts International, Volume: 69-12, Section: B, page: 7639; 391 p.

- Booch, G. (1993). Object-oriented Analysis and Design with Applications (2nd ed. Ed.). Redwood
 City: Benjamin Cummings. (1993)

- Clements, P., Garlan, D., Bass, L. Stafford, J., Nord, R., Ivers, J. Little, R. (2002), Documenting
 Software Architectures: Views and Beyond, Pearson Education.

 - Dobing, B., Parsons, J., (2006). “How UML is used”. Communications of the ACM 49(5), 109-
 113(2006).

- Harel, D., Rumpe, B., (2004) “Modeling languages: Syntax, semantics and all that stuff (or, what's
 the semantics of "semantics"?)”. , IEEE Software (2004).

- Henderson-Sellers, B., Cook, S., Mellor, S., Miller, J., Selic, B. (2005). “ UML the Good, the Bad or
 the Ugly? Perspectives from a panel of experts”. Software and Systems Modeling 4(1) 4-13(2005).

- ISO/IEC, ISO/IEC 42010: (2007). Systems and Software Engineering - Recommended practice for
 architectural description of software-intensive systems, (2007).

- Glenn brown, (2003)"remote intelligent Air traffic control systems for non-controlled Airports"
 thesis of Griffith University, 29 January 2003.

-Kruchten P., (1995). " The 4+1 View Model of Architecture", IEEE Software 12(6) 42-50, November
(1995).

- Kruchten, P., (2003).The Rational Unified Process: An Introduction, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA(2003).

- Hwang, K., (2008)"from grids and p2p to clouds", The 3rd International Conference on Grid and
 Pervasive Computing – gpc -workshops.

63

- Kruchten, P. (1995), "The 4+1 View Model of architecture", published by IEEE Software, 1995, vol.
 12, iss. 6, pp. 42-50.

- Klaus pohl "challenges for the design of software –intensive system", university of
 Duisburg.essen, 45117 Essen, Germany.
- Lapham, M.A, Acquisition Support Program, (2006), Contributor: Carol Woody, PhD, Technical

Note CMU/SEI-2006-TN-007. (2006).

-Luboh. A, (2010). “Trends in government services in the GCC countries”. A Middle East point of
 View, 2010, PP: 32 to 37\.

- Lapham, M. A., (2006). "Sustaining Software-Intensive Systems ". Published by the U.S.
Department of Defense, 2006, U.S.

- Lubos brim (2008),"fundamentals of air traffic control ". Paradise seminar, 25 February 2008.

- Muller, G., (2011), the Role of Software in Systems, Buskerud University College.
- OMG,(2003) "Unified Modeling Language: Superstructure", (final adopted spec, version 2.0,
2003-01-02). Object Management Group (2003).

- OMG, (2003), "UML for Systems Engineering RFP", OMG: Request for Proposal, ad/03-03-41.

- OMG, (2007), Systems Modeling Language (OMG Sys ML) v1.0. OMG available specification.
Document number: formal/2007-09-01.

- Prasad Rahul, (2011). "Recent Advancement in Air Traffic Control system". University of petroleum
and Energy studies, July 2011.

- Soni, D., Nord, R., Hofmeister, C. (1995), “Software Architecture in Industrial Applications,” Proc.
 17th Int’l Conf. Software Eng. (ICSE 95), ACM Press, 196–207.

- Soares, M.S., Julia, S., Vrancken, J., (2009). “ Rea l-time Scheduling of Batch Systems using Petri
 Nets and Linear Logic”, Journal of Systems and Software 81(11) 1983-1996(2008,2009).

- Simons, A.J.H., (1999). "Use cases considered harmful", Proceedings of Technology of Object-
Oriented Languages and Systems, pp.194-203(1999).

- Soares, M. S, Vrancken, J., (2009). “ Including Sys ML in the 4+1 View Model of Architecture for
Software-Intensive System”.7th Annual Conference on Systems Engineering Research, 2009, Lough
borough University, UK.

- Tiako (2009), mentioned in “Designing Software-Intensive Systems”.(2009) ,Langston University,
 USA.

64

- Website /flyingway.com/air lecture/airspace%20 control.pdf, Appendix B
 " AIR SPACE AND AIR TRAFFIC CONTROL" .
-
http://symposium.itea2.org/symposium2006/main/publications/TNO_IDATE_study_ITEA_SIS_in_the_
future_Final_Report.pdf TNO/IDATE, “Software intensive systems in the future”, September (2005)
V5.

- Wisnosky, D.E., Vogel, J. (2004). DODAF Wizdom: a Practical Guide to Planning, Managing and
Executing Projects to Build Enterprise Architectures using the Department of Defense Architecture
Framework, Wizdom Systems, Inc.2004.

- Wirsing, M., and Ronchaud, Rémi, (2004). “Engineering Software Intensive Systems”, European
Commission US National Science Foundation, Edinburgh, UK, 22 - 23 May 2004.

65

 @ABCDا

FGH JِLّFM JِND أَو JِRSTU امWAXYإ [B\ دةW_` JُbLcd Wecd f ghأ ib_H Fً`F\ Fً`cGk` تFbm`اTnDا JَSرFCp` TnXpd.

 FqGhأ iqbr ،تFqbm`اTnDا JqYWtه vqw JَSورTxqDوا JَbybzTDدوارَ ا{ا Wrأ Jk|}CDت اFbmِ`اTnDا JC~hأ �pBd ءFqtnDوا ، �ِbC�qXDا [qB\ Tُ�ّ�qdُ,

�`Fآ �}�H ِمF~tDا TSc�d [Dإ JwF��FH �SزcXDء، واF�hوا�.

� اFSWq_XDت) 1+4(و اTNDض `� ه�� اJDFYTD هc اcCh [B\ �ِby_XDذج `_Wqد وهcqCh cqذج qbBRXD �qDوذ Jqk|}CDا`� اTqnDا JqC~hأ vqw ,

 �CtqD WqRXkd FqGhأ Jqk|}CDا`� اTqnDا JC~hأ �` JB}�CDا) �qDF� (تFqbm`اTnDا. �CtqD ا�qوه) �qDFRDذج) اcqCh [qB\ �yq_S أن �qmS WqSWmDا

)4+1 (�b\cqh �ktSو �C�S �b}D ذجcCtDا WSو�d ل�M �`) ةT�byqDوا Jqnا�TCDا(,) �qاآTXDوا �q`F}XDا (Jqk|}CDا`� اTqnDا JqC~hا �q` ,

 �َCh ءF�h�H FtC� WRw �D�D)�DF� (Tآ�Dا Jkhت ا�FSW_XDا �r gD�M �` �XS ib_H WSWe.

� \�zFXtD , �qCh [qB ا�GD Jp�cXCDا اJDFYTD و`� ا �q_tY Fqthأ) �qDF� (ي�qDا �}�qDFH �qb}XBD JqBHF� JqRSTUأو JqbmGt` �CxqSَ iqb_H WqSWe

�� و�Sُا`َ� آَُّ`F}Sُ ْأَن �ُ}ِCْSُ Jk|}CDا`ِ� اTnDم اF~h تFUF�h.

66

YZــ[\ــ^_Z\ `aرcZdZe) 4+1(
fـghــــie `ــjـkـlت آcـkopqـrـeا

`tــuاvw

xـkـــZy xـkــــzر رvــــ\

 z|wـــــqاف

pــ�aـــــx �ـ�ــــــ~.د

e �ًcZ��uا `ecـــuqeه_� ا �px� fi�]� qـk��itـrـcت ا��eـvل ��i در^` اeـcZ^�ـZ
 اvuc�eب

ckـــــideت اcـــuراxeـــ[واZideـ� ا�reدة اcــZ�

ckــjeد�k� `dpc^

2012

