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ABSTRACT 

Robots have become an essential element in industry and have drew the attention of 

researchers and manufacturers. Many companies are competing in the robotics 

manufacturing field. Kuka is one of the leading innovative companies in the manufacture 

of industrial robots. However, Kuka robots do not have a direct communication with PC 

to send and receive data. To overcome this problem Kuka introduces an additional 

communication package to establish a communication between the robot and PC. 

However, the package requires the user to calculate the forward and inverse kinematics 

and send the data as an XML file to the Kuka controller. This Thesis presents a new 

method to program Kuka robots from a remote PC without the need of an additional 

software or the robot kinematics. The method is to use MATLAB functions to program 

the robot. KUKAVARPROXY was used to write and read variables in the robot. 

MATLAB will send data to the KUKAVARPROXY while a KRL program is running, 

Then the robot will move according to the changes in the data. Two case studies are used 

to test the package: the first is to check the motions separately while the second is to 

ensure that the package can be used for robot programming. The results show that the 

developed package is successful in transmitting and receiving data between the PC 

(MATLAB) and Kuka robot. Furthermore, control of point-to-point and linear motions 

using the developed package are tested and validated. 
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List of used abbreviations 

 

RSI Robot Sensor Interface 

Ethernet  Ethernet is a networking technology used in local area 

networks (LAN) for data exchange between the connected devices. 

IP Internet Protocol 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

KCT Kuka control toolbox 

KVP KUKAVARPROXY 

KRL Kuka robot language 

PTP Point-to-point motion 

LIN Linear motion 

CRC Circular motion 

XML Extensible Markup Language 

KRC Kuka robot controller 

 

  

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Local_area_network
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CHAPTER 1: INTRODUCTION 

Robot arms or manipulators are widely used devices especially in industries; these robots 

are deployed in heavy industries that require high precision. Robots do tasks that are 

difficult for a person to do, whether these actions are dangerous or boring tasks. In 

addition, manipulators help to get rid of human errors, which can be dangerous and 

sometimes costly.  

Robots can be seen in areas and tasks that have the three Ds: Dirty, Dull and Dangerous. 

For example, environments that contain high temperatures and heavy machinery that can 

threat labors life, mine exploration or dirty jobs as sewer reconnaissance [1]. Therefore, 

it is better to have a robot working in these environments instead of a human. Moreover, 

with the development of sensors and interaction between robots and humans, it is possible 

to use manipulators in high precision surgical procedures [2]. For example, many 

companies produce industrial robots such as Kuka, which are widely used in industry and 

Medrobotics, which produces medical robots. 

Robot manufacturers often focus on aiming their robots to the industrial market and 

neglect the research field, so it has been an important task to develop a solution for this 

problem. Many researchers have tried to create and develop a different type of 

communication platforms with industrial robots. 

Kuka is one of the biggest companies in the robot’s industry, their robots are widely used 

in industry. Kuka is known for introducing the first industrial robot with six 

electromechanically driven axes. Kuka robots can be seen in many industrial fields such 

as the automotive industry, energy, and metal industry. Figure 1-1 shows the KR 1000 

titan, which was the world’s largest and strongest 6-axis industrial robot in 2007 [3]. 
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Figure 1-1: Kuka KR 1000 titan 

1.1 LITERATURE REVIEW 

Kuka robots are programmed using KRL, which is a proprietary programming 

language similar to Pascal. It has a simple interface with industrial robots, it uses a fixed 

and controller specific set of instruction, which makes it limited to research purposes. In 

addition, Kuka robots can be programmed by teaching the robot the point and position, 

which the robot will follow during its operation, and the user can clarify the movement 

type the robot will use [4, 5]. However, this technique may be tedious and may take a 

long time especially for long programs that contain many movements. Also, it is not 

suited for real-time remote applications. It does not support graphical interfaces and 

advanced mathematical operations such as: Matrix operations and optimization [6].    

To overcome these problems researchers tried to build MATLAB abstraction layer upon 

KRL. One of the earlier approaches is the KUKA-KRL-Toolbox which is an extension 

that allows connecting the controller with an interpreter program in KUKA Robot 

Language (KRL) of the KUKA controller and the remote PC which includes MATLAB. 

The toolbox uses serial interface to connect the robot controller with the remote PC. The 

KRL interpreter on the robot controller will establish a bi-directional communication 

between the robot and the remote PC. The interpreter is also responsible for the execution 

of the instruction transmitted to the robot via the serial interface. However, the serial 

interface can limit the real-time control applications, and new controller such as KRC4 

does not support serial interface [7]. 

https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Pascal_(programming_language)
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Newer version of the Kuka controller does not support serial interface, so Kuka offers 

auxiliary software package, which enable the researchers to connect with the robot. Robot 

Sensor Interface (RSI) is a package provided by Kuka, it allows communication and data 

exchanging between the robot controller and an external computer, the communication 

can be made via Ethernet or via I/O system of the robot. However, data transfer must be 

fully consistent with the XML format. The problem with RSI is that the communication 

with the robot must be done at the robot cycle time. Which means that the communication 

will be parallel with the robot program execution, so if the robot fails to receive data 

within the cycle time it could cause errors and the communication will be interrupted 

[8,9]. 

RSI had been used in many approaches to establish a communication between Kuka 

robots and MATLAB. The communication between MATLAB and Kuka robots has been 

concerned by many researchers due to the computational abilities of MATLAB. 

Researchers had been trying to build MATLAB toolboxes to control the motion of the 

robot.  

Kuka Control Toolbox (KCT) is a similar approach to the KUKA-KRL-Toolbox where a 

MATLAB toolbox is developed to control a Kuka robot from a remote PC.  The toolbox 

was compatible with all 6-DOF (Degree of Freedom) small Kuka robots that use RSI. 

The toolbox had a set of functions divided into 6 categories, spanning operations such as 

forward and inverse kinematics computation, point-to-point joint and Cartesian control, 

trajectory generation, graphical display, 3-D animation, and diagnostics [6]. The 

difference between the KCT and the KUKA-KRL-Toolbox is that KCT is not complex 

as KUKA-KRL-Toolbox and it supports TCP/IP protocol.  However, the toolbox was 

designed for the old generation controller, and do not support KRC4 [6]. 

A MATLAB toolbox had been made to control the motion of the Kuka KR6-R900-SIXX 

[8], the toolbox uses a C# code to transfer the position for the robot and the data were 

stored as an XML file. The toolbox performance was tested by using an Xbox controller. 

However, this approach requires the user to be familiar with several programming 

languages and require the forward and inverse kinematics of the robot so it is not effective 

for all models. 
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RoBo2L is a cross-platform mode-based that allows offline programming of a Kuka robot 

using MATLAB. RoBo2L uses RSI for the communication between the PC and the robot, 

in this case the sensor was replaced and emulated by MATLAB. The RoBo2L allows the 

user to move the robot to a specific point with a specific speed. Also, it allows the user to 

open and close the gripper and the user can read the tool current position and the gripper 

state. However, the RoBo2L uses RSI so it requires the robot kinematics, beside the RSI 

only support UDP/IP connection, which does not send a feedback in case of a 

transmission error, and if there was an error during data transfer in worst case a wrong 

packet can lead to wrong movement and incorrect and uncontrolled movement harm 

surroundings or destroy the manipulator [10]. 

Due to these problems in RSI researchers tried to find another communication platform 

that will be easier to use and does not require knowledge in different programming 

languages, KUKAVARPROXY (KVP) is a multi-client server that serves up to 10 clients 

simultaneously. KVP interface with the Kuka CrossComm class, this interfacing makes 

it possible to read and write variable along with different tasks. The variable that needs 

to be accessed must be declared in the predefined data file $CONFIG.DAT. 

JOpenShowVar is a java open source cross-platform, it is a Java library for accessing 

KVP, and has implemented classes for all KRL variable types [11]. 

KVP can be considered as a successful approach to communicate with Kuka robots 

because it eliminates the need for the robot kinematics and does not require so much 

knowledge in many programming languages. It has been used in many research projects 

as well as commercial software like roboDK [12]. 

RoboDK is a program for simulation and offline programming for industrial robots. The 

program has a user interface and the programs can be written in python or can be created 

graphically also it can generate robot specific languages like KRL. The program supports 

all Kuka controllers since KRC2. In addition, the program uses KUKAVARPROXY to 

communicate with Kuka robots by introducing a source code written in KRL and some 

global variables that the user should write in the configuration file in order to move and 

control the robot [13]. 
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1.2 AIM 

The aim of the thesis is to control Kuka robot from a remote PC without the need of an 

additional software provided by Kuka, in order to eliminate the need of the forward and 

inverse Kinematics. 

1.3 OBJECTIVE 

This Thesis is dedicated to use KVP to establish connection between a Kuka robot and 

MATLAB so that users can program the robot through MATLAB without using any 

additional softwares provided by Kuka (RSI).  The Thesis will focus on developing a 

MATLAB package, which the user can use to program the robot. The package is easy to 

use because it does not require the user to use KRL. Also, the functions will not use 

mathematical data so the user will be able to program the robot without the need of any 

mathematical information about the robot. 

1.4 STRUCTURE OF THE THESIS 

The thesis is divided into five main chapters, chapter 2 presents the robotic system that 

had been used and the forward and inverse kinematics and the singularity for Kuka robots. 

Beside it discusses the robot controller and the methods of programming the robot. 

Chapter 3 discusses the package design and how to establish the connection between the 

PC and the robot. Also, it presents how to use the package and the functions syntax for 

the functions with the method of configuring the package. Chapter 4 presents the 

experiment along with the results of the experiment. Chapter 5 presents a brief conclusion 

for the thesis with some proposed future works to improve the package. 
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CHAPTER 2: ROBOTIC SYSTEM 

This chapter present some basics in robotics like the robot kinematics and the Kuka robots 

singularity along with an overview of the Kuka robot controller and the type of data that 

the controller accepts and the chapter also present the type of motions in Kuka robots.  

2.1 BACKGROUND 

Due to the scientific development, the topic of robots has increased to be an important 

topic for researchers and developers. The Oxford dictionary describes the robot as “a 

machine capable of carrying out a complex series of actions automatically, especially 

one programmable by a computer” [14]. 

Robots are classified according to the environment in which they operate, but generally, 

robots can be classified into mobile and fixed robots.  Most fixed robots are called 

manipulators and they are industrial robots that are used in a robot-oriented environment 

and do certain and repetitive tasks such as assembling parts or in some applications in the 

automotive industry [2].  

Mobile robots operate in a wider and unspecified environment and deal with unknown 

circumstances. These environments may contain unknown entities such as animals, 

humans, or non-living objects. An example of moving robots is self-driving cars [2]. 

Mobile robots have also been used in exploration such as NASA's Mars Exploration 

Rovers: Spirit and Opportunity, which have been used to explore the planet mars [15].  

2.2 ROBOT KINEMATICS 

Kinematics describes the movement of objects and points regardless the mass or force 

that caused the movement. Robot kinematics describes the relation between the joint 

movement and the resulting movement of the robot. There are two kinematics for 

manipulators, forward and inverse kinematics. Forward kinematics is used to determine 

the position and orientation of the end-effector given the value of the joint variable. On 

the other hand, inverse kinematics is concerned in determining the joint variable value 

given a desired position and orientation of the end-effector. The forward and inverse 
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kinematics of the Kuka KR-R900-Sixx can be seen in Appendix A. The Figure 2-1 

represents the forward and inverse kinematics [16].  

 

Figure 2-1 : Forward and inverse kinematics representation 

2.2.1 Homogeneous transformation 

The transformation of frames is a fundamental concept in the modelling and programming 

of a robot. This section presents a notation that describes the relationship between 

different frames and objects of a robotic cell [17]. 

 Transformation matrix is used to display the coordinates of a point in a different frame 

from the original point’s frame. Robot frames can be classified into three frames: 

reference frame, joints frame and tool frame. Reference frame is normally attached to the 

robot base, joints frame is attached to each joint of the robot and the tool frame is attached 

to the end-effector. Frames are used to present points; points can be presented by their x, 

y and z coordinate according to a specific frame. It could be represented as a vector: 

 

The transformation matrix is a 4x4 matrix, which is represented as: 

 𝑻 =
𝑹 𝑷
𝟎 𝟏

 (2) 

Where R is the rotational matrix and P is the position vector. 

To find the transformation matrix through multiple frames, the transformation matrix for 

each frame with respect to its previous frame must be multiplied. For example, the 

transformation matrix for frame 3 with respect to frame 0 will be: 

 𝑷 =  

𝑷𝒙

𝑷𝒚

𝑷𝒛

 (1) 
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 𝑻𝟑
𝟎 = 𝑻𝟏

𝟎𝑻𝟐
𝟏𝑻𝟑

𝟐 (3) 

Rotational matrix is a matrix that display the rotation of a frame with respect to another 

frame, the rotation matrix can change according to the axis of rotation. 

 

• If the rotation is around the x-axis the rotation matrix is: 

 𝑹𝒙(𝜽) =
𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔 𝜽 − 𝒔𝒊𝒏 𝜽
𝟎 𝒔𝒊𝒏 𝜽 𝒄𝒐𝒔 𝜽

 (4) 

• If the rotation is around the y-axis the rotation matrix is: 

 𝑹𝒚(𝜽) =
𝒄𝒐𝒔 𝜽 𝟎 𝒔𝒊𝒏 𝜽

𝟎 𝟏 𝟎
− 𝒔𝒊𝒏 𝜽 𝟎 𝒄𝒐𝒔 𝜽

 (5) 

• If the rotation is around the z-axis the rotation matrix is: 

 𝑹𝒛(𝜽) =
𝒄𝒐𝒔 𝜽 − 𝒔𝒊𝒏 𝜽 𝟎
𝒔𝒊𝒏 𝜽 𝒄𝒐𝒔 𝜽 𝟎

𝟎 𝟎 𝟏
 (6) 

Figure 2-2 shows a frame 1 rotating around the z-axis the rotation of frame 1 with respect 

to the previous frame 0, this rotation can be presented using matrix (6). 

 

Figure 2-2 : Frame rotation 

2.2.2 Euler Angles 

In robotic systems, the robot orientation is a tricky thing because unlike the translation 

movement orientation could be described in different forms and these forms can refer to 

the same orientation. The most common way to describe robot orientation is the Euler 
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angles. Euler angles are introduced by Leonhard Euler they describe the orientation of a 

frame with respect to a fixed frame. Euler angles consist of three angles (𝛼, 𝛽 , 𝛾) and 

have many representations depends on the order of the rotation. For example, the 

representation Z-Y-X means that the tool will rotate around the z-axis then will have a 

rotation around the current y-axis then will rotate around the current x-axis again. This 

corresponds with the final rotation matrix: 

 𝑅(𝛼, 𝛽 , 𝛾) = Rot(z, α) Rot(y, β) Rot(x, γ)       (7) 

 

Rot(z, α), Rot(y, β) and Rot(x, γ)  are the rotation matrices (6), (5) and (4) respectively.  

2.2.3 D-H Parameters 

The Denavit-Hartenberg Convention is a systematic general method to define the relative 

position of two consecutive links. The method can be applied by determine two frames 

attached to two links and compute the coordinate transformations between them [8].  

Figure 2-3 [18] shows the D-H parameters. The D-H parameters are a, d, α, and Ө. To 

calculate these parameters, the frame of each link must be defined first, to define the link 

frame the D-H representation rules must be applied, the rules according to [18] are: 

• Choose axis 𝑧𝑖 along the axis of joint i+1. 

• Locate the origin 𝑂𝑖 at the intersection of axis  𝑧𝑖  with the common normal to axis  

𝑧𝑖−1 and  𝑧𝑖 . Also, locate 𝑂𝑖  at the intersection of the common normal with the axis  𝑧𝑖−1. 

• Choose axis 𝑥𝑖 along the common normal to axes 𝑧𝑖−1 and   𝑧𝑖  with the direction 

from joint I to joint i+1. 

• Choose axis 𝑦𝑖 so as to complete a right-hand frame. 

When each frame is defined the pose (position and orientation) of each frame with respect 

to the previous frame can be specified by the D-H parameters: 

• 𝑎𝑖 is the distance from 𝑧𝑖−1   to 𝑧𝑖 measured along  𝑥𝑖 . (𝑎𝑖 is always positive) 

• 𝑑𝑖  is the distance from 𝑥𝑖−1   to 𝑥𝑖 measured along  𝑧𝑖−1. (𝑑𝑖 can be negative) 

• α𝑖   is the skew angle from 𝑧𝑖−1   to 𝑧𝑖 measured about  𝑥𝑖. 

• Ө𝑖  is the angle from 𝑥𝑖−1   to 𝑥𝑖 measured about  𝑧𝑖−1. 
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Figure 2-3 : D-H parameters 

2.3 SINGULARITY IN KUKA ROBOTS 

Singularity is the configuration where the robot loses a degree of freedom. Inverse 

kinematics can have many solutions, so the robot can have many ways to reach the desired 

position and orientation. If the optimal solution is not chosen, the robot can stop working 

because some of these ways can be impossible for the robot to take; this problem is called 

the kinematic singularity [19]. 

Singularity also occur when two or more joints are aligned, which means that two or more 

joints are no longer independently control the position and orientation of the tool. In 

standard Kuka robot’s kinematics, Kuka robots have three different singularity positions, 

the overhead singularity, the extended position, and the wrist axis singularity.  

2.3.1 Overhead singularity 

This type of singularity occurs when the intersection of axis A4, A5, and A6. Is positioned 

on axis 1. Figure 2-4 shows the overhead singularity [20]. 
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Figure 2-4 : Overhead singularity 

During the overhead singularity, the position of Axis 1 cannot be determined by means 

of the inverse kinematics. In this situation, the controller offers two solutions: axis 1 is 

moved to the default position (0- degree) or axis 1 angle remains the same for the start 

and end points [20]. 

2.3.2 Extended position singularity 

While the arm is fully extended, the robot will be on the limit of its work. Even though 

inverse kinematics can provide a solution, this position is considered a singularity 

position because in order to maintain a low Cartesian velocity the joint velocity have to 

be high which. Figure 2-5 shows the extended position singularity for a Kuka robot [20]. 

 

Figure 2-5 : Extended position singularity 
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2.3.3 Wrist axis singularity 

When axis 4 and axis 6 are aligned, inverse kinematics cannot present a clear solution, 

as there will be an infinite number of axis positions for A4 and A6 for which the sum of 

the axis angles is identical. Figure 2-6 shows the wrist axis singularity [20]. 

 

 

Figure 2-6 : Wrist axis singularity 

If the end point of a PTP motion result in this singularity and axis5 is ±0.01812°, the 

controller can provide two options, either axis 4 is moved to default position during PTP 

motion or axis 4 angle remains the same for the start and end points [20]. 

2.4 KUKA ROBOT OPERATIONS 

2.4.1 Robot Controller 

A controller is a device that receives input and adjusts the output of the device it controls.  

KRC4 is a Kuka controller that have long time efficiency and flexibility. The KRC4 

software architecture integrates four control processes in one controller, it integrates robot 

control, PLC control, motion control, and safety control. Besides, the KRC4 can 

understand PLC and CNC (G-code) languages. It features intelligent, flexible and 

scalable application potential. Figure 2-7 shows the architecture of the KRC4 [21]. 
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Figure 2-7 : KRC4 software architecture 

The high-end Soft PLC option provides full access to the entire controller the I / O system 

and has high performance. It allows I / O to handle a robot, a complete robot cell or a line 

of robots. In addition, variables such as axis positions and velocities can be read and 

processed through function blocks. Furthermore, KUKA.CNC enables direct 

programming and operating the robot by G-code. It can process complex CAD/CAM 

systems with high accuracy. Safety function and safety-oriented communication are 

executed via Ethernet protocols [21]. 

 KRC4 consists of many elements such as control PC and the smart pad. The control PC 

is responsible for many functions such as the graphical user interface, program creation, 

correction, archiving, and maintenance, monitoring and communication with external 

devices (other controllers, PC’s or network) [21]. 

The smart pad allows the user to operate and program the robot. The user can move the 

robot manually or by programming the robot in KRL. The user operates and program the 

robot on the Human Machine Interface (HMI). However, the KRC4 have a windows 

interface to allow communication with other devices. Unlike previous versions of the 

Kuka controllers, the KRC4 only has Ethernet communication interface, it does not have 

a serial communication [21]. 
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2.4.2 Kuka robot motions 

Kuka robots have three types of motions. Each type can be programmed by the user and 

they differ from each other either by the speed of the motion or by the way they are 

programmed in the controller. The motions are Point-To-Point motion (PTP), Linear 

motion and Circular motion.  

2.4.2.1 Point-To-Point motion 

The PTP motion is the quickest way to move the tool because the robot guide the tool in 

the fastest path to the end point. However, the fastest path is not the shortest because the 

robot axes are rotational thus a curved path is faster than a straight path. Therefore, while 

using PTP motion it is necessary to reduce the robot speed especially in the presence of 

obstacles and objects [22]. Figure 2-8 shows the path of the PTP motion. 

 

 

Figure 2-8 : PTP motion path 
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2.4.2.2 Linear motion 

In linear motion, the controller will guide the tool at a defined velocity along a straight 

line from the starting position to the end point [22]. Figure 2-9 shows the linear motion. 

 

Figure 2-9 : Figure 2 9: Linear motion path 

 

2.4.2.3 Circular motion 

In circular motion, the robot will guide the tool in circular path, the circular motion needs 

three points to be programmed start point, auxiliary point and end point [22]. As seen in 

figure 2-10. 

 

Figure 2-10 : Circular motion 

2.5 ROBOT PROGRAMING  

Kuka robot can be programmed by either teaching the robot the position or orientation of 

the tool or by programming the robot using KRL language. However, to avoid any 

confliction and avoid accident, the user has to specify the tool and the base that will be 

used. Any KRL code consists of two files: movement command file, which contains 
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movement commands that the robot will use to move, and a data file which stores the data 

to be used in the movement commands file. KRL is similar to other programming 

languages regarding the data types, it has four common data types which are shown in 

table 4 below [4, 5]. 

Table 1 : Data types in KRL 

 

For motion programming, KRL have data types AXIS, E6AXIS, E6POS, POS, and 

FRAME. To declare a new variable in KRL the user has to define the data type and the 

data value preceded by DECL. However, for structured data type (motion programming 

data types) the user has to define the motion data type with the data type for the variable 

and the variable data preceded by STRUC.  

In E6POS and POS the user can defined the axis positions by using the status and turn 

bits. They represent a specific known robot position. This option can help in some 

singularity situations where several axis positions are possible for the same point. It is 

important to program the status and turn for the first motion to define a clear initial 

position. The status and turn bits are specified only for PTP motion with axis coordinates 

because they are not taken in consideration in continuous path motion [20]. 

The turn is a 6-bit integer number written in binary form (0 and 1), each bit describes the 

sign of the axis individually. If the bit value is 0 then the axis angle is greater or equal to 

0°, on the other hand, if the bit is 1 then the axis angle is less than 0°. Table 5 shows what 

the turn bits means [20]. 

 

Data type Keyword Meaning Range of values 

Integer INT Integer −231 − 1 … 231 − 1 

Real REAL Floating point number ±1.1E-38 ... ± 3.4E+38 

Boolean BOOL Logic state TRUE, FALSE 

Character CHAR character ASCII character 
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Table 2 : Turn bits meaning 

Value Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 A6 ≥ 0° A5 ≥ 0° A4 ≥ 0° A3 ≥ 0° A2 ≥ 0° A1 ≥ 0° 

1 A6 < 0° A5 < 0° A4 < 0° A3 < 0° A2 < 0° A1 < 0° 

Therefore, the entry T ‘B 101100’ means that axes 6, 3 and 2 are negative and axes 4, 2 

and 0 are positive. 

On the other hand, status bit describes the state and position of the robot, the robot can 

take a position other than what the user wants due to the multiple solution problem in 

inverse kinematics (Figure 2-11) [20]. 

 

Figure 2-11 : Unclear robot kinematics 

Status is a 3-bit integer number written in binary form, each status bit represents different 

things. Bit 0 represents the position of the wrist root point, Bit 1 represents the arm 

configuration, and Bit 2 represent the wrist configuration. Table 6 shows the function for 

each bit [20]. 
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Table 3 : Status bits meaning 

Value Bit 2 Bit 1 Bit 0 

0 0° ≤ A5 < 180° 

A5 < −180° 

A3 < ∅ 

(∅ depends on robot model) 

Basic area 

1 −180° ≤ A5 < 0° 

A5 ≥ 180° 

A3 ≥ ∅ 

(∅ depends on robot model) 

Overhead area 

 

Kuka robots have three types of motions: Point-to-point (PTP), linear (LIN) and circular 

(CRC). The user can program these motions either by moving the robot manually and use 

the touch down option and then the coordinates will be saved as a point. This method can 

be used to program PTP and linear motions but for circular motions the user has to teach 

an extra point because circular motions need an auxiliary point in order to be 

programmed.  

The other method is to program these motions by using the point coordinates, any point 

can be considered as a variable even if the point is a structured data type. So, if the user 

programmed a motion for a specific variable the controller will understand that the 

variable is a point and will move towards it. To program a motion, the user only have to 

declare the motion type and the end point of the motion.  

Motions could also be programmed by using another method, the user can declare a 

variable (i.e. position) with the type POS, then it is possible to declare the coordinates 

separately.  

This means that the x-coordinates for the point has this specific value and it could be used 

for all other coordinates, after declaring this the user can use the motion commands to 

move to the point. 
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CHAPTER 3: KUKA PACKAGE 

In this chapter, the package design will be reviewed as well as the elements used for 

communication and programming will be reviewed with the method of communication 

between the Kuka robot and MATLAB. The design of this package was based on the 

Jopenshowvar, which is a java cross-platform communication interfaces to Kuka robots 

that uses KUKAVARPROXY (KVP) to write and read Kuka variables.  

 

The architecture for the package is shown in figure 3-1. It is a client-server network where 

MATLAB works as a client and the KVP works as server. The MATLAB send commands 

to KVP via TCP/IP, according to these commands the KVP change a set of global 

variables in the Kuka’s $CONFIG.DAT file, at the same time a KRL program will be 

running so based on the changes of the variables the robot will move.  

 

Figure 3-1: Package architecture 

 

 

In order to be able to program the robot from a remote PC, it was necessary to develop a 

KRL program to move the robot. A new set of global variables had been introduced to 

avoid any errors that can occur when using any robot variables. The added variables set 

were divided into two sets, one for the motion commands and the other is for the 

coordinates that the user will enter for the movement.  
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3.1 COMMUNICATION PROTOCOL 

The communication protocol is a TCP/IP connection, in order to connect the (KVP) with 

MATLAB, the user needs to define the robot IP and the communication port. Generally, 

KVP listens on TCP port 7000. KVP receives a formatted message from the user to access 

the variable. The message is sent as an array where each element of the array stands for a 

specific data. For the reading command, the user has to specify two parameters in the 

message the type of the desired function and the variable name. However, for the writing 

command, the user needs to specify one more parameter, which is the variable value. 

3.2 THE KRL PROGRAM  

Kuka robot can only be programmed using KRL so it was necessary to write a KRL 

program to be able to move the robot. Also, Kuka robots have many motion types such 

as point-to-point motion or linear motion, so when designing this package, it was 

necessary to take the type of movements in consideration. 

The KRL program consists of IF loops that uses global variables as the loop’s conditions, 

each global variable has a specific task. It either describes a movement or it is used to 

describe the position of the robot. For example, the variable $MPT is the condition for 

the loop that is responsible for the point-to-point motion. Table 7 shows the motion’s 

global variables and their descriptions. The KRL program can be seen in Appendix B. 

 

Table 4 : Description of the motion's global variables 

Variable Variable description 

$MPT Point-to-point motion without tool rotation 

$MPS Point-to-point motion with tool rotation and status and turn 

$MPT3 Point-to-point motion with tool rotation 

$MLN Linear motion without tool rotation 

$MLN3 Linear motion with tool rotation 

$MCR Circular motion without tool rotation 

$CRC3 Circular motion with tool rotation 
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3.3 MATLAB FUNCTIONS 

To give the user the freedom to program the robot, it was necessary to produce functions 

similar to those used in KRL, these functions will be reviewed in detail in the next parts. 

While developing these functions the connections errors had been taken in accord, so the 

connection had to be opened at the start of the command and closed when the instructions 

are finished. The user will simply use the functions from the package to program the robot 

from MATLAB. Figure 3-2 shows the general layout of the package. Table 5 shows the 

functions and their descriptions. 

 

Figure 3-2 : Package general layout 

 

Table 5 : The MATLAB functions description 

Function Function description NO. of inputs 

KUKACNCT Establish communication with the robot. - 

Kukaerr Calculate the error between the intended position and 

the current position. 

- 

Kukastrt Allows the KRL program in the robot controller to run. - 

Kukaclose Stop the KRL program in the controller. - 

Ptp Move the robot in Point-To-Point motion. 3, 6, 8 

Lin Move the robot in linear motion. 3, 6 

Crc Move the robot in circular motion. 6, 12 

Kukard Read the current position of the robot. - 
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3.3.1 KUKACNCT 

This function uses the TCP/IP command in MATLAB to establish the connection 

between the MATLAB and the robot. This function is an auxiliary function and it was 

developed to facilitate the process of connecting the robot and the MATLAB to the user, 

the user only needs to change the IP address in the function to the robot’s IP address and 

save the changes. It is important that the user enters the right IP address because this 

function is used in every function of the package.  

3.3.2 Kukaerr 

This function calculates the error between the entered coordinates and the robot 

coordinates. It is used to make sure that the robot goes to the specified point and to avoid 

skipping the robot for any movement especially for programs that contain many 

movements. This function is invoked in the movement functions so the user does not need 

to use it. The acceptable error is 1 mm, this error was selected based on the speed of the 

robot. Because when a smaller error is chosen, the robot will take longer to reach the 

requested point and the robot may stuck, especially if the error is less than 0.5mm. 

3.3.3 kukastrt and kukaclose 

The robot cannot sense the objects around him so if the user changes the base of the robot 

and run the program before specifying a point, the robot will move to a previous point, 

which could cause harm to the user or the robot. To avoid this problem these functions 

were developed. These functions reset the global variables that are used as movement 

conditions. Therefore, the robot will not move until the user enter kukastrt and will not 

stop until the user enters the kukaclose.  

3.3.4 ptp, lin and crc 

These are the movement functions; the user will use these functions to move and program 

the robot. Those functions accept variable input arguments this is because the robot can 

move by specifying the coordinates or by specifying the coordinates with the tool rotation. 

The ptp function stands for point-to-point and it accepts three, six and eight inputs. Three 

inputs mean that the user want the robot to move according to X, Y and Z coordinates, 
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but six means that the robot will move according to X, Y, Z A, B, and C, while eight 

inputs means the robots will take in consideration the status and turn bit with the 

coordinates and the tool rotation.  

The lin function stands for linear movement and it is similar to the ptp function, but the 

lin function does not have a status and turn option so it only accepts three and six inputs. 

The crc function stand for circular motion and it is different from the previous two 

functions because it needs two points auxiliary point and a final point. It accepts six and 

twelve inputs, six means that the two points entered as coordinates only, but twelve means 

that the points are entered as coordinates and the tool rotation. 

At first, a connection to the robot will be made using the KUKACNCT function. Then 

the user will choose the type of motion along with the exact coordinates. The function 

then will construct the array and prepare it to be send to the KUKAVARPROXY. After 

that the connection will open and the data array will be sent to the robot. According to the 

coordinates the robot will start moving. However, during the robot movement the error 

function (kukaerr) will be reading the robot position and calculating the error between the 

robot position and the intended position. When the error is less than 1 mm the loop will 

be break and the robot will stop.  Figure 3-3 shows the flow chart for the three functions. 
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Figure 3-3 : Flow chart for the movement functions 

3.3.5 kukard 

This function reads the position of the robot by reading the global variable $POS_ACT 

and sends it to the MATLAB. The user can only read $POS_ACT and cannot write it this 

is a restriction from the robot controller [10], so it could not be used to move the robot. It 
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is better to read $POS_ACT than reading the coordinates send by the user to make sure 

that the robot actually reached the needed position, also sometimes the user can move the 

robot manually so if the user read the sent coordinates it will give a wrong position for 

the robot. Figure 3-4 shows the read function flow chart. 

The read function is similar to the movement function, at first it uses the KUKACNCT 

function to connect with the robot, the array to read the $POS_ACT will be prepared to 

send, then the connection will open and the array will be sent to the robot. After that the 

MATLAB will receive the exact position of the robot from the KUKAVARPROXY. 

 

Figure 3-4 : Read function flow chart 
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3.4 GRAPHICAL USER INTERFACE 

The graphical user interface (GUI) allows the user to interface with the package, and 

make it easier for the user to use the package. The user can choose any motion type and 

enter the needed coordinates. Figure 3-5 shows the GUI of the package. 

 

Figure 3-5 : Package GUI 

Using the GUI, the user can move the robot without writing the functions on the command 

window. However, the GUI can be used to move the robot. As seen the GUI includes all 

motion types. After choosing the motion type and setting the coordinates the user can 

click on the “move” button to make the robot move to the needed coordinates.  
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3.5 PACKAGE CONFIGURATION AND USAGE 

This section shows how the user has to use the package to program the robot from the 

PC. As mentioned before the package consist of three parts: KUKAVARPROXY, KRL 

program and the MATLAB functions. 

3.5.1 KVP configuration 

1. First the user has to put the KUKAVARPROXY on the windows layer of the 

robot, then run the program. To enter the windows layer, the user has to follow 

the path: Kuka → Start-UP → Service → Minimize HMI. Then copy the KVP to 

the needed folder (desktop is recommended to make accessing it easier).  

2. Open port 7000 (KVP normally uses port 7000). To open the port:  

a) Select the HMI. 

b) KUKA →Start-up→Network configuration→Advanced 

c) NAT→Add port→Port number 7000. 

d) Set permitted protocols: tcp/udp  

3. Start the KUKAVARPROXY.EXE program on the robot controller (running on 

Windows). 

3.5.2 KRL configuration 

The Kuka can only be programmed using KRL. To prepare the KRL program follow these 

steps: 

1. Copy the Matlab.dat and Matlab.src to the needed location. The user will only use 

the src file but it is important to copy the dat file because it contains all the needed 

data. 

2. Copy the text in the Global.txt (could be found in the package folder) in the end 

of the $config.dat file to prepare the global variables. Note: any changes in the 

global variables requires changes in the MATLAB functions. 
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3.5.3 MATLAB functions syntax 

The package has eight functions. However, the user only has to deal with six functions 

three of them are movement functions, two of them are safety functions and the read 

function. The functions are the ptp, lin and crc. 

1. The ptp function is the function responsible of the PTP motion for the robot, this 

function accepts either three, six or eight inputs as follows: 

a) ptp (x, y, z) this syntax uses the three input as the point coordinates. 

b) ptp (x, y, z, a, b, c) the six inputs in this syntax are the point coordinates 

and the tool orientation. 

c) ptp (x, y, z, a, b, c, s, t) the eight inputs in this syntax are the point 

coordinates and the tool orientation with status and turn bits. 

2. The lin function is responsible of the LIN motion for the robot, this function is as 

same as the ptp function. Unlike the ptp function the lin function do not have a 

status and turn bits. The lin syntax is: 

a) lin (x, y, z) the three inputs are the point coordinates 

b) lin (x, y, z, a, b, c) the six inputs in this syntax are the point coordinates 

and the tool orientation. 

3. The crc function is responsible for the CRC motion, unlike the previous functions 

crc requires two point because the CRC motion needs two points and end point 

and an auxiliary point. The user will have to specify two points either by the point 

coordinates or by the coordinates and the tool orientation. The crc syntax are as 

follow: 

a) crc (xa, ya, za, x, y, z) the first three points are the auxiliary point 

coordinates, the last three are the end point coordinates. 

b) crc (xa, ya, za, aa, ba, ca, x, y, z, a, b, c) the first six inputs are the auxiliary 

point coordinates and the tool orientation, the last six are the end point 

coordinates and tool orientation. 

4. The safety functions kukastrt and kukaclose are used to reset the global variables 

used in the program to avoid any problem when starting the robot. Beside the 

while loop in the Matlab.src file will not break unless the user uses the 

kukaclose command. 
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5. Kukard is a function to read the actual position of the robot it does not require 

any input. However, if the user uses the function will the robot is moving the 

function will represent the position of the robot at that specific time. 

3.6 ROBOT PROGRAMMING 

After configuring the KVP and the KRL, the robot is ready to be programmed from the 

MATLAB. To start programming the user has to follow some steps: 

1. Open the KUKAVARPROXY.EXE in the window layer in the robot. The KVP 

will detect the connection with the PC automatically. 

2. Use the kukastrt to reset the global variables. 

3. Run the Matlab.src file on the robot. The user has to change the base in the 

Matlab.src file otherwise the robot might not work as intended. 

4. Start programming the robot from the MATLAB, the user has to start by running 

the kukastrt function to reset the global variable to avoid running into any 

problems. 

5. After finishing the robot programming, the user has to use the kukaclose function. 

Because the Matlab.src program has a while loop and the loop will not break until 

the user run the kukaclose function.  
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter the Kuka package will be tested by using it to program a robot, the quality 

of the package will be determined by certain criteria, the criteria are: 

• The robot will be able to perform the motions exactly as they are executed in 

normal KRL program. 

• The robot will be able to execute a full program not only one movement 

command. 

• The robot will move to the exact position given in the program. 

To determine the quality of the robot, the experiment will be divided into two tests. First, 

the motions will be tested separately, the test will only determine whether the robot can 

move as it is intended or not. Then a full program will be tested and will be compared to 

an exact KRL program. The data from the experiment will be collected by using the trace 

option in the KRC, which records the robot movement. Then the data will be viewed in 

MATLAB by using a premade function in [23]. 

4.1 MOTIONS TEST 

It is necessary that the robot moves in the exact motion needed, in this test the motions 

will be tested separately, the objective of this test is to make sure that the robot can 

perform the motions as intended. Before starting the experiments, the base and the tool to 

be used were calibrated. 

4.1.1 PTP motion test 

As mentioned in chapter 2 during the PTP motion the robot will guide the tool in the 

fastest path and because the axes are rotational a straight line is not necessarily the fastest.  

The PTP test will be performed by programming the robot to move from the origin point 

(0, 0, 0) to the point (544,113,1). Figure 4-1 shows the tool path using ptp motion. 
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Figure 4-41: Tool path using ptp motion 

As seen in the figure the ptp function from the package works exactly as the ptp motion 

using KRL. It is clear that the robot does not move in a straight line and it reached the 

needed point. 

4.1.2 Linear motion test 

The linear motion is slower than the PTP motion, during the motion the robot will guide 

the tool in a linear path. The test will be performed by moving the robot to the same points 

in the PTP test (0,0,0) and (544,113,20). Figure 4-2 shows the tool path using linear 

motion. 

Pstart 

Pend 
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Figure 4-2: Tool path using linear motion 

According to the figure above the linear motion function works fine however sometimes 

MATLAB sends the coordinates separately, so sometimes the robot will move along the 

x-axis and will not wait for the other coordinates. So, the robot will move in x-axis until 

the robot receives the other coordinates. 

4.1.3 Circular motion test 

Circular motion is different than the previous motions because the robot needs an 

auxiliary point to move through. The test will be performed by moving from point                                                

(2.55, 196.68,0) to point (121,314,0) with the auxiliary point (38.11,280,0). Figure 4-3 

shows the tool path using circular motion. 

Pstart 

Pend 
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Figure 4-3: Tool path using circular motion 

The circular motion function moves the robot in a circular path, however, there was an 

error with the function, where after completing the movement the program stops and 

forces the user to close the connection and ends the movement process. So, it is not 

possible to use this function in a program. 

4.2 PROGRAMING TEST 

This test is made to make sure that the package can be used to execute large programs, 

the robot will be programmed using the smart pad first then the package will be tested. 

The robot will try to follow the path shown in figure 4-4. Unfortunately, the circular 

motion will not be implemented in the program because after executing the function the 

robot will stuck and the user will be required to close the connection and run the program 

again. Table 8 shows the points coordinates.  

Pstart 

Pend 
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Figure 4-4: Intended robot path 

Table 6 : Test points coordinates 

Point X Y Z A B C 

P1 0 0 0 0 0 180 

P2 2.55 196.68 0 0 0 180 

P3 38.11 280 0 0 0 180 

P4 121 314 0 0 0 180 

P5 504.49 312.4 0 -0.45 -0.705 -156.3 

P6 544.46 113 0 0 0 180 

P7 426.09 -4.41 0 0 0 180 

 

The points were chosen according to the calibrated base and the tool that was used for 

this experiment.  To test the tool orientation point P5 has been placed outside the robot 

workspace so it had to be reached be rotating the tool. Figure 4-5 shows the tool path 

using a normal KRL program. 
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Figure 4-5: Tool path using a normal KRL program 

To program the robot using the package, the program was written as a script which is 

shown in figure 4-6. To make sure that the package works fine the test was held for three 

times. Figure 4-7 shows the result for the robot motion when programmed using the 

package. 

 

Figure 4-6: Robot movement program written in MATLAB 
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Figure 4-7: Tool path using the package 

The result of the program was the same as the normal KRL program. However, due to the 

error function, the robot will take longer time than normal. Because the robot will not 

perform the next motion until it reaches the needed position. This is represented in figure 

4-8 which shows the time it took the robot to reach the needed positions and end the 

program.  
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Figure 4-8: (a) Robot axis movement when programmed using the package.                                                

(b) Robot axis movement when programmed using KRL. 

As seen when programming the robot using KRL the robot will be faster, the robot took 

less than 20 seconds to finish the program, unlike the MATLAB program which takes up 

to 50 seconds to finish the program. It is also clear that when using the MATLAB 

package, the robot does not move in a continues path it has to stop to make sure that it 

reached the right position then continue to the next position. 

4.3 DISCUSSION 

The package was able to perform motions and perform full programs, so based on the 

pre-set criteria the package can be considered as acceptable. However, the program 

execution in the package is longer than the execution and some problems with the circular 

and linear motions. While using the linear function with low speed, sometimes the robot 

will not move in a linear motion instead it will move in axis motion means it will move 
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to the point by moving in the axes separately. This can be solved by sending the 

coordinates before the sitting the linear motion global variable, this way the robot will 

receive all the coordinates before moving. However, this solution can make it longer to 

execute the movement because the robot will have to receive the new coordinates before 

moving. 

Also, in order to change the tool orientation, the user must declare a mid-point and make 

the robot changes ton. As seen on figure 4-6 commands in line 5 and 7 were only added 

for the tool orientations. This will not be a problem if the points are located on the work 

space, but in the experiment point, P5 is not in the work space so mid points had to be 

added. Figure 4-9 shows an approach without using mid-points.  

 

Figure 4-9: Tool path without using mid-points 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

The aim of this Thesis was to find a way to program a Kuka robot from a remote PC and 

eliminate the need of additional software from Kuka and eliminate the need of the robot 

kinematics. The package was tested and it can be used to program the robot the result was 

compared with the results of a normal KRL program and the results were nearly the same  

 The package is easy to use, and unlike RSI based connections it does not need the robot 

kinematics and does not require any knowledge in other programming language. And 

because the KVP is compatible with every controller since KRC2 the package can work 

on various types of Kuka robots that uses KRC2, KRC3 and KRC4. 

The package was tested for the three motions, the point-to-point and linear motions were 

tested and were successful. However, the circular motion showed a Problem where after 

executing the motion the robot get stuck, the developed package was validated by 

comparing the performance of the package and the performance of a normal KRL. The 

results shows that the developed package will move the robot to a specific point s same 

as a normal KRL. However, a normal KRL is faster than the developed package.  

The program execution takes longer time than normal KRL because the error function 

will keep calculating the error until the robot reaches the intended position. Also, the 

robot motions will be unpredictable until the movement is over, because the controller is 

the one responsible for calculating the kinematics, so the user cannot predict the 

movement especially in linear and circular motions because they have no status and turn 

bits. Beside circular motion had a problem were the robot was stuck after execution the 

motion. 

There are some suggestions for future works and adjustments need to be done: 

• Improving the error function to decrease the execution time of the robot can 

improve the performance of the package. 

• Solving the problem with the circular motion. 

• Adding a function to control the speed of the robot during the movement 

execution. 

• Developing a new set of functions to control the axes of the robot. 
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APPENDIX A: KUKA KR-R900-SIXX KINEMATICS 

➢ D-H parameters 

To determine the D-H parameters for the robot it is necessary to represent the robot’s 

frames. The frames are shown in figure 6-1 [6]. 

 

Figure 6-1: Manipulator frames 

The D-H parameters for the Kuka KR-R900-Sixx are presented in table 3 [6]. 

Table 7 : D-H parameters for the KUKA KR-R900-Sixx 

i+1 θi+1 di+1 [mm] ai+1 [mm] αi+1 [rad] 

1 𝜃1 400 25 𝜋

2
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2 𝜃2 0 455 0 

3 𝜃3 0 35 𝜋

2
 

4 𝜃4 420 0 −
𝜋

2
 

5 𝜃5 0 0 𝜋

2
 

6 𝜃6 80 0 0 

KR-R900-Sixx is a manipulator produced by Kuka robotics and belongs to the KR 

AGILUS series and its controller is KRC4, KR-R900-Sixx is a 6-DOF manipulator and 

it is the used manipulator in this work. Figure 6-2 shows the KR-R900-Sixx [24].  

 

Figure 6-2: Kuka KR-R900-Sixx  

Table 2 shows the specification of the KR-R900-Sixx [24]. 
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Table 8 : Specification of the KR-R900-Sixx 

Specification Value 

Max reach 901.5mm 

Max payload 6kg 

Pose repeatability ±0.03mm 

Number of axes 6 

Mounting position Floor 

Robot footprint 320mm x 320mm 

Weight approx. 52 kg 

 

The robot’s axes   cannot rotate for a full 360° turn as its axes have limitations, table 2 

shows the axis limitations for the manipulator [24].  

 

Table 9 : Axis and Axis Range for the manipulator 

Axis Axis Range 

 (A1) +/- 170° 

 (A2) - 190°/+45° 

 (A3) -120°/+156° 

 (A4) ±185° 

 (A5) ±120° 

 (A6) ±350° 

 

➢ Forward Kinematics 

To calculate the forward kinematics for the robot it is necessary to find the transformation 

matrix of the tool with respect to the reference frame [6]. The tool transformation matrix 

is: 
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 𝑻𝒆
𝟎 = 𝑻𝟔

𝟎𝑻𝒆
𝟔 = 𝑻𝟏

𝟎𝑻𝟐
𝟏𝑻𝟑

𝟐𝑻𝟒
𝟑𝑻𝟓

𝟒𝑻𝟔
𝟓𝑻𝒆

𝟔 (8) 

The result of these matrices multiplication will be a 4x4 matrix and can be expressed as 

[6]. 

 𝑻𝒆
𝟎 =  

𝒍𝒙 𝒎𝒙

𝒍𝒚 𝒎𝒚

𝒏𝒙 𝒑𝒙

𝒏𝒚 𝒑𝒚

𝒍𝒛 𝒎𝒛

𝟎 𝟎

𝒏𝒛 𝒑𝒛

𝟎 𝟏

     (9) 

Where: 

lx = s1(s4c5c6 + c4s6) + c1(−s23s5c6 + c23(c4c5c6 − s4s6))  

ly = −c1(s4c5c6 + c4s6) + s1(−s23s5c6 + c23(c4c5c6 − s4s6))  

lz = −c6(s23c4c5 + c23s5) + s23s5s6 

mx = c6(s1c4 − c1c23s4) − s6(s1s4c5 + c1(c23c4c5 − s23s5)) 

 
my = c1(−c4c6 + c5s4s6) − s1(−s23s5s6 + c23(s4c6 + c4c5s6))  

mz = s23s4c6 + s6(s23c4c5 + c23s5)                                                

nx  = −s1s4s5  − c1(s23c5  + c23c4s5) 

ny = −s1s23c5 + s5(−s1c23c4 + c1s4)                                                     

nz = −c23c5 + c4s23s5 

ps = −d6s1s4s5 + c1(a1 + a2c2 − s23(d4 + d6c5) + c23(a3 − 
d6c4s5)) 
 
py = d6c1s4s5 + s1(a1 + a2c2 − s23(d4 + d6c5) + c23(a3 − d6c4s5)) 

pz = d1 − c23(d4 + d6c5) − a2s2 + s23(−a3 + d6c4s5) 

Where: 𝑠𝑖 = sin 𝜃𝑖 , 𝑐𝑖 = cos 𝜃𝑖 ,  𝑠23 = sin(𝜃2 + 𝜃3) and           

𝑐23 = cos(𝜃2 + 𝜃3). 

 

➢ Inverse Kinematics 
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Inverse kinematics is used for the control of manipulators. Solving the inverse kinematics 

takes a very long time in the real time control of manipulators. However, when singularity 

exists and the kinematics equations coupled it is difficult to solve inverse kinematics 

problem.  Manipulator’s tasks are in the Cartesian space, which includes orientation 

matrix and position vector. However, actuators work in joint space, which is represented 

by joint angles. The conversion of the position and orientation of a manipulator end-

effector from Cartesian space to joint space is called as inverse kinematics problem [16]. 

Kuka KR-900-Sixx is a 6-DOF manipulator with a spherical wrist, with these 

characteristics the inverse problem could be divided into two sub problems: inverse 

position and inverse orientation. [25], This is called kinematics decoupling. This 

technique gives a close solution for the inverse kinematics problem and makes it easier 

to find the joint angles for a desired position, the first three joint could be found with the 

position information and the last three could be found using Euler angles and the 

knowledge of the desired orientation. 

The first three joint angles for the KR-900-Sixx can be found by simplifying the robot 

inverse kinematics into a two-link manipulator kinematic figure 6-3 shows the top and 

front view of the robot [25]. 

 

Figure 6-3: Kinematic analysis 

The center of the wrist is represented in the Cartesian point [𝑥𝑐 , 𝑦𝑐, 𝑧𝑐], and the plane  
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(r, z) is a plane parallel to z-axis and passing throw 𝑙4. The last three angles can be found 

by using the Euler angles. Only the result for the inverse kinematics will be represented 

in this thesis, a more detailed solution for the inverse kinematics could be found in [25]. 

The robot inverse kinematics as expressed in [25] are: 

 

 𝜽𝟏 =  𝒂𝒕𝒂𝒏𝟐(𝒚𝒄, 𝒙𝒄) (10) 

  𝜽𝟐 =  −(𝜶 +  𝜸) (11) 

Where: 𝛼 = 𝑎𝑡𝑎𝑛2(𝑧𝑐, 𝑟𝑐 ) &  𝛽 = acos (
𝐿3

2+𝐿1
2−𝐿2

2

2∗𝐿1∗𝐿2
) 

 𝜽𝟑 =  𝝅 –  𝜷 (12) 

Where: 𝛽 = acos (
𝐿1

2+𝐿2
2−𝐿3

2

2∗𝐿1∗𝐿2
)   

After finding the first three angles using the position of the end-effecter the last three 

angles could be found by using the inverse orientation. As mentioned, robot orientation 

could be represented using Euler angles. The Euler angles has different representation. 

The representation used to find the last three angles is the Z-Y-Z representation [25]. 

 𝜽𝟒 =  𝒂𝒕𝒂𝒏𝟐(𝒔𝟐𝟑, 𝒔𝟏𝟑) 𝑎𝑡𝑎𝑛2(𝑠23, 𝑠13) (13) 

 𝜽𝟓 = 𝒂𝒕𝒂𝒏𝟐(√𝒔𝟏𝟑
𝟐 + 𝒔𝟐𝟑

𝟐 , 𝒔𝟑𝟑) (14) 

 
𝜽𝟔 =  𝒂𝒕𝒂𝒏𝟐(𝒔𝟑𝟐 − 𝒔𝟑𝟏) (15) 
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APPENDIX B: KRL CODE FOR KUKA MANIPULATOR 

&ACCESS RVO 

&REL 209 

&PARAM EDITMASK = * 

&PARAM TEMPLATE = C:\KRC\Roboter\Template\vorgabe 

&PARAM DISKPATH = KRC:\R1 

; =============================================== 

DEF matlab( ) 

; =============================================== 

; Declaration of KRL variables 

DECL POS POSITION 

DECL POS PAUX 

;FOLD INI;%{PE} 

  ;FOLD BASISTECH INI 

    GLOBAL INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ( ) 

    INTERRUPT ON 3  

    BAS (#INITMOV,0 ) 

  ;ENDFOLD (BASISTECH INI) 

;FOLD SPOTTECH INI 

USERSPOT(#INIT) 

;ENDFOLD (SPOTTECH INI) 

;ENDFOLD (INI) 

 

; Move to Home position 
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;FOLD PTP HOME Vel=100 % DEFAULT;%{PE}%R 

8.3.34,%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP, 2:HOME, 3:, 5:100, 

7:DEFAULT 

$BWDSTART=FALSE 

PDAT_ACT=PDEFAULT 

FDAT_ACT=FHOME 

BAS(#PTP_PARAMS,100) 

$H_POS=XHOME 

PTP XHOME  

;ENDFOLD 

 

WHILE $STR==1 

$BASE= BASE_DATA[11] 

$TOOL= TOOL_DATA[11] 

; Move Point-To-Point with tool Orintation and status & ;turn   

IF $MPS == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

POSITION.a= $RAA 

POSITION.b= $RBA 

POSITION.c= $RCA 

POSITION.s= $RSS 

POSITION.t= $RST 

PTP POSITION 

ENDIF 

 

; Move Point-To-Point with tool Orintation  

IF $MPT == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

POSITION.a= $RAA 

POSITION.b= $RBA 

POSITION.c= $RCA 

PTP POSITION 

ENDIF 

 

; Move Point-To-Point  

IF $MPT3 == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

PTP POSITION 

ENDIF 

 

; Move Linear Motion with tool Orintation  

IF $MLN == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

POSITION.a= $RAA 

POSITION.b= $RBA 

POSITION.c= $RCA 



 

53 

 

LIN POSITION 

ENDIF 

 

; Move Linear Motion  

IF $MLN3 == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

LIN POSITION 

ENDIF 

 

; Move Circular Motion with tool Orintation  

IF $MCC == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

POSITION.a= $RAA 

POSITION.b= $RBA 

POSITION.c= $RCA 

PAUX.X=$XAX 

PAUX.Y=$YAX 

PAUX.Z=$ZAX 

PAUX.A=$AAX 

PAUX.B=$BAX 

PAUX.c=$CAX 

CIRC PAUX, POSITION 

ENDIF 

 

; Move Circular Motion 

IF $CRC3 == 1 THEN 

POSITION.X= $XAC 

POSITION.Y= $YAC 

POSITION.Z= $ZAC 

PAUX.X=$XAX 

PAUX.Y=$YAX 

PAUX.Z=$ZAX 

CIRC PAUX, POSITION 

ENDIF 

 

IF $GRP == 1 THEN 

;FOLD SET GRP 1 State=OPN GDAT1;%{PE}%R 

8.3.1,%MKUKATPGRP,%CGRP,%VGRP,%P 2:1, 4:1, 5:#NO, 6:GDAT1, 8:0, 

10:0 

H50(GRP,1,1,GGDAT1) 

;ENDFOLD 

ENDIF 

IF $GRP ==0 THEN 

;FOLD SET GRP 1 State=CLO GDAT2;%{PE}%R 

8.3.1,%MKUKATPGRP,%CGRP,%VGRP,%P 2:1, 4:2, 5:#NO, 6:GDAT2, 8:0, 

10:0 

H50(GRP,1,2,GGDAT2) 

;ENDFOLD 

ENDIF 

ENDWHILE 
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;FOLD PTP HOME  Vel= 100 % 

DEFAULT;%{PE}%MKUKATPBASIS,%CMOVE,%VPTP,%P 1:PTP, 2:HOME, 3:, 

5:100, 7:DEFAULT 

$BWDSTART = FALSE 

PDAT_ACT=PDEFAULT 

FDAT_ACT=FHOME 

BAS (#PTP_PARAMS,100 ) 

$H_POS=XHOME 

PTP  XHOME 

;ENDFOLD 

END 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C: MATLAB PACKAGE FUNCTIONS 

❖ KUKACNCT.m 

function [t] = KUKACNCT() 
%This function is used to connect matlab to KUKAVARPROXY on the 

robot 
%Please enter the robot ip address to establish connection between 

matlab 
%and the robot 
%This function is invoced in the movment functions so the user only 

have to 
%change the ip address. 
%----------Robot Ip------port 
%           ||            || 
%           \/            \/  
t= tcpip('172.31.1.147', 7000,'Timeout', 1); 
t.OutputBufferSize = 100; 
t.InputBufferSize = 100; 
end 

 

❖ Kukaerr.m 

function [err] = kukaerr(varargin) 
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%This function calculates the error between the needed position and 

the  
%actual position of the robot. 
M1=kukard; 
        x= varargin{1}; 
        y= varargin{2}; 
        z= varargin{3}; 
pos=[x, y, z]; 
for i=1:3 
    posi=['X','Y','Z']; 
    Str = [M1]; 
Str(strfind(Str, '=')) = []; 
Key   = posi(1,i); 
Index = strfind(Str, Key); 
Value(i) = sscanf(Str(Index(1) + length(Key):end), '%g', 1); 
end 
err1=abs(Value(1)-pos(1,1)); 
err2=abs(Value(2)-pos(1,2)); 
err3=abs(Value(3)-pos(1,3)); 
err= (err1 +err2+err3) /3; 
end 

 

 

 

❖ Kukastrt.m 

function [open] = kukastrt() 
%this function is used to reset all the commands global variables 
%this function must be used before moving the robot to avoid any 

problems 
%with the robot. 
[t] = KUKACNCT(); 
mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
str=[0, 99, 0, 10, 1, 0, 4, 36, 83, 84, 82, 0, 4, 49]; 
MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3,str}; 
for MV=1:8 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 

  

  
end 
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❖ Kukaclose.m 

function [dis] = kukaclose() 
%this function is used to reset all the commands global variables 
%this function must be used after working on the robot to avoid any 
%problems with the robot when used again 
[t] = KUKACNCT(); 
mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
str=[0, 99, 0, 10, 1, 0, 4, 36, 83, 84, 82, 0, 4, 48]; 
MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3,str}; 
for MV=1:8 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 
end 

 

 

 

 

❖ Ptp.m  

function [pos] = ptp(varargin) 
%This function is for the point to point motion command 
%   this function can work with three inputs  were in this case the 

inputs are X 
%   Y & Z 
%Also it can work with six inputs were in this case the inputs are 

X 
%   Y Z A B & C 
%Also it can work with eight inputs were in this case the inputs 

are X 
%   Y Z A B C and the status and turn bits 
%note : status and turn bits needs to be enterd as decimal values 

not 
%binary. 
[t] = KUKACNCT(); 
t.OutputBufferSize = 2000; 
fclose(t); 
error=1; 
while error == 1 
x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
pos=[x,y,z]; 
[err] = kukaerr(varargin{1},varargin{2},varargin{3}); 
if err>1 
error=1; 
switch nargin 
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case 0 
fprintf(2,'\nNo inputs have been given\n') 
fprintf(2,'\nFunction can not procced\n') 
case 3 
%sending the motion variables values 
disp('PTP with three points') 
x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
mpt=[0, 1, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
mps=[0, 2, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
mln=[0, 3, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
mcc=[0, 4, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
mpt3=[0, 5, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 49]; 
mln3=[0, 6, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
for MV=1:7 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 
%Sending the coordinates 
for g=1:3 
    if g==1 
        bx = unicode2native(x); 
        h=numel(bx); 
        f=9+h; 
        X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,X); 
    end 
    if g==2 
        by = unicode2native(y); 
        h=numel(by); 
        f=9+h; 
        BS=f+4; 
        Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Y); 
    end 
    if g==3 
        bz = unicode2native(z); 
        h=numel(bz); 
        f=9+h; 
        Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Z); 
    end 
    fclose(t); 
end 
pos=[x,y,z]; 
case 6 
disp('PTP with no S&T') 



 

58 

 

x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
a= num2str(varargin{4}); 
b= num2str(varargin{5}); 
c= num2str(varargin{6}); 
mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 49]; 
mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
for MV=1:7 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 

  
for g=1:6 
    if g==1 
        bx = unicode2native(x); 
        h=numel(bx); 
        f=9+h; 
        X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,X); 
    end 
    if g==2 
        by = unicode2native(y); 
        h=numel(by); 
        f=9+h; 
        BS=f+4; 
        Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Y); 
    end 
    if g==3 
        bz = unicode2native(z); 
        h=numel(bz); 
        f=9+h; 
        Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Z); 
    end 
    if g==4 

  
        ba = unicode2native(a); 
        h=numel(ba); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 65, 65, 0, 4, ba]; 
        BS=f+4 
        t.OutputBufferSize = BS; 
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        fopen(t); 
        fwrite(t,S); 
    end 
    if g==5 
        bb = unicode2native(b); 
        h=numel(bb); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 66, 65, 0, 4,bb]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    if g==6 
        bc = unicode2native(c); 
        h=numel(bc); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 67, 65, 0, 4,bc]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    fclose(t); 
end 
pos=[x,y,z,a,b,c]; 

  
case 8 
disp('PTP with S&T') 
x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
a= num2str(varargin{4}); 
b= num2str(varargin{5}); 
c= num2str(varargin{6}); 
st= num2str(varargin{7}); 
tr= num2str(varargin{8}); 
mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 49]; 
mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
for MV=1:7 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 
for g=1:8 
    if g==1 
        bx = unicode2native(x); 
        h=numel(bx); 
        f=9+h; 
        X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
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        fwrite(t,X); 
    end 
    if g==2 
        by = unicode2native(y); 
        h=numel(by); 
        f=9+h; 
        BS=f+4; 
        Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Y); 
    end 
    if g==3 
        bz = unicode2native(z); 
        h=numel(bz); 
        f=9+h; 
        Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,Z); 
    end 
    if g==4 
        ba = unicode2native(a); 
        h=numel(ba); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 65, 65, 0, 4, ba]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    if g==5 
        bb = unicode2native(b); 
        h=numel(bb); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 66, 65, 0, 4,bb]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    if g==6 
        bc = unicode2native(c); 
        h=numel(bc); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 67, 65, 0, 4,bc]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    if g==7 
        bs = unicode2native(st); 
        h=numel(bs); 
        f=9+h; 
        S=[0, 60, 0, f, 1, 0, 4, 36, 82, 83, 83, 0, 4,bs]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
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        fopen(t); 
        fwrite(t,S); 
    end 
    if g==8 
        btr = unicode2native(tr); 
        h=numel(btr); 
        f=9+h; 
        S=[0, 99, 0, f, 1, 0, 4, 36, 82, 83, 84, 0, 4, btr]; 
        BS=f+4; 
        t.OutputBufferSize = BS; 
        fopen(t); 
        fwrite(t,S); 
    end 
    fclose(t); 
end 
pos=[x,y,z,a,b,c,st,tr]; 
end 
else 
error=0; 
end 
end 
end 

 

 

 

❖ lin.m 

function [pos] = lin(varargin) 
%this function is for the linear motion command 
%   this function can work with three inputs  were in this case the 

inputs are X 
%   Y & Z 
%also it can work with six inputs were in this case the inputs are 

X 
%   Y Z A B & C 

  
[t] = KUKACNCT(); 
t.OutputBufferSize = 2000; 
fclose(t); 
error=1; 
while error == 1 
x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
pos=[x,y,z]; 
[err] = kukaerr(varargin{1},varargin{2},varargin{3}); 
if err>1 
error=1; 
switch nargin 
case 0 
    fprintf(2,'\nNo inputs have been given\n') 
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    fprintf(2,'\nFunction can not procced\n') 
case 3 
    %sending the motion variables values 
    disp('LIN with three points') 
    x= num2str(varargin{1}); 
    y= num2str(varargin{2}); 
    z= num2str(varargin{3}); 
    mpt=[0, 99, 0,10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
    mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
    mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
    mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
    mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
    mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 49]; 
    crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
    MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
    for MV=1:7 
        fopen(t); 
        fwrite(t,MOV{1,MV}); 
        fclose(t); 
    end 
    %sending the coordinates 
    for g=1:3 
        if g==1 
            bx = unicode2native(x); 
            h=numel(bx); 
            f=9+h; 
            X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,X); 
        end 
        if g==2 
            by = unicode2native(y); 
            h=numel(by); 
            f=9+h; 
            BS=f+4; 
            Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,Y); 
        end 
        if g==3 
            bz = unicode2native(z); 
            h=numel(bz); 
            f=9+h; 
            Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,Z); 
        end 
        fclose(t); 
    end 
    pos=[x,y,z]; 
case 6 
    disp('LIN with six points') 
    x= num2str(varargin{1}); 
    y= num2str(varargin{2}); 
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    z= num2str(varargin{3}); 
    a= num2str(varargin{4}); 
    b= num2str(varargin{5}); 
    c= num2str(varargin{6}); 
    mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
    mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
    mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 49]; 
    mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
    mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
    mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
    crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
    MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
    for MV=1:7 
        fopen(t); 
        fwrite(t,MOV{1,MV}); 
        fclose(t); 
    end 
    for g=1:6 
        if g==1 
            bx = unicode2native(x); 
            h=numel(bx); 
            f=9+h; 
            X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,X); 
        end 
        if g==2 
            by = unicode2native(y); 
            h=numel(by); 
            f=9+h; 
            BS=f+4; 
            Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,Y); 
        end 
        if g==3 
            bz = unicode2native(z); 
            h=numel(bz); 
            f=9+h; 
            Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,Z); 
        end 
        if g==4 

  
            ba = unicode2native(a); 
            h=numel(ba); 
            f=9+h; 
            S=[0, 99, 0, f, 1, 0, 4, 36, 82, 65, 65, 0, 4, ba]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,S); 
        end 
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        if g==5 

  
            bb = unicode2native(b); 
            h=numel(bb); 
            f=9+h; 
            S=[0, 99, 0, f, 1, 0, 4, 36, 82, 66, 65, 0, 4,bb]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,S); 
        end 
        if g==6 

  
            bc = unicode2native(c); 
            h=numel(bc); 
            f=9+h; 
            S=[0, 99, 0, f, 1, 0, 4, 36, 82, 67, 65, 0, 4,bc]; 
            BS=f+4; 
            t.OutputBufferSize = BS; 
            fopen(t); 
            fwrite(t,S); 
        end 
        fclose(t); 
    end 
    pos=[x y z a b c]; 

  
end 
else 
error=0; 
end 
end 
end 

❖ crc.m 

function [fpos,auxpos] = crc(varargin) 
%this function is for the circular motion command 
%   this function works with 6 were the first three inputs are the 

final 
%   position coordinates and the last three inputs are the auxulary 

point 
%   coordinats 
%also it can work with 12 inputs were the first six inputs are the 

final 
%   position coordinates and the last six inputs are the auxulary 

point 
%   coordinats 
[t] = KUKACNCT(); 
fclose(t); 
error=1; 
while error == 1 
x= num2str(varargin{1}); 
y= num2str(varargin{2}); 
z= num2str(varargin{3}); 
pos=[x,y,z]; 
[err] = kukaerr(varargin{1},varargin{2},varargin{3}); 
if err>1 
error=1; 
switch nargin 
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    case 6 
        %sending the motion variables vaues 
        disp('CRC with three points') 
        x= num2str(varargin{1}); 
        y= num2str(varargin{2}); 
        z= num2str(varargin{3}); 
        xax= num2str(varargin{4}); 
        yax= num2str(varargin{5}); 
        zax= num2str(varargin{6}); 
        mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
        mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
        mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
        mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
        mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
        mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
        crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 

48]; 
        MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
        for MV=1:7 
            fopen(t); 
            fwrite(t,MOV{1,MV}); 
            fclose(t); 
        end 
        %Sending the coordinates 
        for g=1:6 
            if g==1 
                bx = unicode2native(xax); 
                h=numel(bx); 
                f=9+h; 
                X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 88, 0, 4,bx]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,X); 
            end 
            if g==2 
                by = unicode2native(yax); 
                h=numel(by); 
                f=9+h; 
                BS=f+4; 
                Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 88, 0, 4,by]; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Y); 
            end 
            if g==3 
                bz = unicode2native(zax); 
                h=numel(bz); 
                f=9+h; 
                Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 88, 0, 4,bz]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Z); 
            end 
            if g==4 
                bx = unicode2native(x); 
                h=numel(bx); 
                f=9+h; 
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                X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,X); 
            end 
            if g==5 
                by = unicode2native(y); 
                h=numel(by); 
                f=9+h; 
                BS=f+4; 
                Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Y); 
            end 
            if g==6 
                bz = unicode2native(z); 
                h=numel(bz); 
                f=9+h; 
                Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Z); 
            end 
            fclose(t); 
        end 
        mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
        crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 

49]; 
        MOV={mcc,crc3}; 
        for MV=1:2 
            fopen(t); 
            fwrite(t,MOV{1,MV}); 
            fclose(t); 
        end 
        fpos=[x,y,z]; 
        auxpos=[xax,yax,zax]; 
    case 12 
        disp('CRC with three points') 
        x= num2str(varargin{1}); 
        y= num2str(varargin{2}); 
        z= num2str(varargin{3}); 
        a= num2str(varargin{4}); 
        b= num2str(varargin{5}); 
        c= num2str(varargin{6}); 
        xax= num2str(varargin{7}); 
        yax= num2str(varargin{8}); 
        zax= num2str(varargin{9}); 
        aax= num2str(varargin{10}); 
        bax= num2str(varargin{11}); 
        cax= num2str(varargin{12}); 
        mpt=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 84, 0, 4, 48]; 
        mps=[0, 99, 0, 10, 1, 0, 4, 36, 77, 80, 83, 0, 4, 48]; 
        mln=[0, 99, 0, 10, 1, 0, 4, 36, 77, 76, 78, 0, 4, 48]; 
        mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
        mpt3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 80, 84, 51, 0, 5, 48]; 
        mln3=[0, 99, 0, 11, 1, 0, 5, 36, 77, 76, 78, 51, 0, 5, 48]; 
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        crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 

48]; 
        MOV={mpt,mps,mln,mcc,mpt3,mln3,crc3}; 
        for MV=1:7 
            fopen(t); 
            fwrite(t,MOV{1,MV}); 
            fclose(t); 
        end 
        for g=1:12 
            if g==1 
                bx = unicode2native(xax); 
                h=numel(bx); 
                f=9+h; 
                X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 88, 0, 4,bx]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,X); 
            end 
            if g==2 
                by = unicode2native(yax); 
                h=numel(by); 
                f=9+h; 
                BS=f+4; 
                Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 88, 0, 4,by]; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Y); 
            end 
            if g==3 
                bz = unicode2native(zax); 
                h=numel(bz); 
                f=9+h; 
                Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 88, 0, 4,bz]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Z); 
            end 

  
            if g==4 

  
                ba = unicode2native(aax); 
                h=numel(ba); 
                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 65, 65, 88, 0, 4, ba]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,S); 
            end 
            if g==5 

  
                bb = unicode2native(bax); 
                h=numel(bb); 
                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 66, 65, 88, 0, 4,bb]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
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                fopen(t); 
                fwrite(t,S); 
            end 
            if g==6 

  
                bc = unicode2native(cax); 
                h=numel(bc); 
                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 67, 65, 88, 0, 4,bc]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,S); 
            end 
            if g==7 
                bx = unicode2native(x); 
                h=numel(bx); 
                f=9+h; 
                X=[0, 90, 0, f, 1, 0, 4, 36, 88, 65, 67, 0, 4,bx]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,X); 
            end 
            if g==8 
                by = unicode2native(y); 
                h=numel(by); 
                f=9+h; 
                BS=f+4; 
                Y=[0, 80, 0, f, 1, 0, 4, 36, 89, 65, 67, 0, 4,by]; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Y); 
            end 
            if g==9 
                bz = unicode2native(z); 
                h=numel(bz); 
                f=9+h; 
                Z=[0, 70, 0, f, 1, 0, 4, 36, 90, 65, 67, 0, 4,bz]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,Z); 
            end 
            if g==10 

  
                ba = unicode2native(a); 
                h=numel(ba); 
                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 82, 65, 65, 0, 4, ba]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,S); 
            end 
            if g==11 

  
                bb = unicode2native(b); 
                h=numel(bb); 
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                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 82, 66, 65, 0, 4,bb]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,S); 
            end 
            if g==12 

  
                bc = unicode2native(c); 
                h=numel(bc); 
                f=9+h; 
                S=[0, 99, 0, f, 1, 0, 4, 36, 82, 67, 65, 0, 4,bc]; 
                BS=f+4; 
                t.OutputBufferSize = BS; 
                fopen(t); 
                fwrite(t,S); 
            end 
            fclose(t); 
        end 
        mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 49]; 
        crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 

48]; 
        MOV={mcc,crc3}; 
        for MV=1:2 
            fopen(t); 
            fwrite(t,MOV{1,MV}); 
            fclose(t); 
        end 
        fpos=[x,y,z,a,b,c]; 
        auxpos=[xax,yax,zax,aax,bax,cax]; 

  
    case 0 
        fprintf(2,'\nEnter inputs as array\n') 
        fprintf(2,'\nFunction can not procced\n') 
end 
fclose(t); 
else 
error=0; 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
MOV={mcc,crc3}; 
for MV=1:2 
    fopen(t); 
    fwrite(t,MOV{1,MV}); 
    fclose(t); 
end 
end 
mcc=[0, 99, 0, 10, 1, 0, 4, 36, 77, 67, 67, 0, 4, 48]; 
crc3=[0, 99, 0, 11, 1, 0, 5, 36, 99, 114, 99, 51, 0, 5, 48]; 
MOV={mcc,crc3}; 
for MV=1:2 
fopen(t); 
fwrite(t,MOV{1,MV}); 
fclose(t); 
end 
end 
end 
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❖ kukard.m 

function [POS] = kukard(varargin) 
%This function reads the actual position of the robot  
% This function reads the global variable $POS_ACT 
switch nargin 
case 0 
    [t] = KUKACNCT(); 
    t.OutputBufferSize = 200; 
    t.InputBufferSize = 200; 
    fopen(t); 
    x=[0, 99, 0, 11, 0, 0, 8, 36, 80, 79, 83, 95, 65, 67, 84]; 
    fwrite(t,x); 
    c=fread(t); 
    fclose(t); 
    n=c(4,1); 
    b=(n+4)-3; 
    h=c(8:b); 
end 
POS = native2unicode(h'); 

 


