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Abstract   

 

 

 

The development of proper algorithmic solution for a given class of problems requires a deep 

understanding of some optimization algorithms and this process is time consuming. In this study, we 

investigate the hyper-heuristic methodology which is a high-level search methodology that operates 

on search space of heuristic/meta-heuristic algorithms. Hyper-Heuristic aims at finding the most 

suitable algorithmic solution for a given class of problems. Hyper-heuristic is classified into two major 

classes: selective and generative hyper-heuristic. Our focus is on generative hyper-heuristic, 

especially on generative hyper-heuristic that operates on the meta-heuristic components of Particle 

Swarm Optimization (PSO) and Real-Coded Genetic Algorithm (RCGA). The study uses a modified 

Tree-based Grammar-guided Genetic Programming (TG3P), in order to generate adaptive hybrid PSO 

and RCGA solvers for continuous global optimization problems. We compared our results with two 

prominent PSO algorithms, and the results show that our proposed hyper-heuristic has very 

competitive efficiency. 
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1.1. Introduction  

 

This chapter defines optimization problems and their characteristics. It spotlights the 

Heuristic and Meta-Heuristic strategies and their associated problems, then, it introduces the 

Hyper-heuristic strategy in its both approaches: the selective and the generative. Finally, we 

present the research problem along with its motivation and objectives.  

 

1.2. Optimization Problems 

 

Before introducing the hyper-heuristic methodology, we have to understand the relation 

between conventional methodologies and hyper-heuristic methodologies. Hyper-heuristic 

does not replace the conventional approaches, on the contrary, it emphasizes their power. It 

answers the question of which technique should we use to solve a given problem? And at 

which manner should we apply it? What is the suitable algorithm’s configuration? But again, 

before discussing any technique that may solve any problem, we should understand the 

problems that we are trying to solve, for instance, the classes of the problems, the hardness 

of problems, etc. So, we give at first more insight on the types of problems that may be 

solved by heuristic, meta-heuristic, and hyper-heuristic, then, we introduce each approach 

separately.       

 

Optimization problems are the problems in which we try to find the optimal solution 

(possibly more than one exists) from a set of all feasible solutions. Typically, in these kinds 

of problems we are not able to find the optimal solution or to determine if a solution is the 

optimal one. So, in practice, we try to find a near-optimal or an acceptable solution using 

heuristic, meta-heuristic or other stochastic techniques. Optimization problems can be 

divided mainly into two classes: continuous or discrete optimization problems. The two 

classes have an objective or multiple objectives which we try to minimize or maximize.  

 

As an example of discrete optimization problem is the Traveling Salesman Problem (TSP) 

in which we try to find the minimum path for delivery vehicle visiting all the cities on a 

given map only once and then returning to the source city. The TSP is discrete since the set 
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of feasible solutions is finite, and it is simply the enumeration of all possible paths. In a map 

where each city is connected to all the other cities (complete graph) the size of this set would 

be equal to N!, where N is the number of cities in the map.  

 

An example of continuous optimization problem is the Vehicle Crashworthiness Problem 

(VCP) where crashworthiness means the capability of a vehicle to protect its occupants 

during a crash (Bois et al. 2004). In this problem, we have three objectives which we try to 

minimize. The objectives are namely: weight, acceleration characteristics, and toe-board 

intrusion of the vehicle. Any solution to this problem has to set the values of five decision 

variables, each of which is bounded in upper-bound and lower-bound constraints, this 

formulation of VCP is presented in (Zhang 2007). 

 

Combinatorial problems (discrete optimization) and continuous problems are further divided 

in the literature, for instance, we may classify combinatorial problems based on the type of 

the produced solution as follows: 

  

 Selection problems (binary vector): Where we have a set of items and we want to 

select a subset from them. E.g. the knapsack problem.  

 Ordering problems (permutation vector): Where we have a set of items and we 

want to impose order on them. E.g. the traveling salesman problem, process 

allocation in single CPU system.  

 Resource allocation problems (graph): Here, we have two distinct sets of entities, 

a set of resources and a set of resources consumers, and we want to allocate the 

set of consumers to the set of resources. The resources and consumers may have 

different types and attributes. E.g. university courses timetabling problem, etc.  

 

Our focus in this study is more on continuous optimization problems which are formulated 

as follows: 

 

Minimize f(x) subject to: 𝑥 ∈ 𝛺 
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Where x is a continuous vector with the domain 𝛺 ∈ ℝ𝑛, and 𝑓(𝑥):𝛺 → ℝ is a continuous 

real-valued function. Each element in the vector x is called decision variable where each 

decision variable may have constraints defined upon it such as upper and lower bounds. If 

the problem contains constraints on its definition we call it ‘constrained optimization 

problem’, on the other hand, if the problem is constraints-free we call it ‘unconstrained 

optimization problem’.    

 

Continuous optimization problems have many characteristics that describe them. One 

property that may be used to describe a given problem is the modality of its objective 

function. Modality relates to the landscape of the objective function. Modality has three types:  

 

 Uni-modal problems: The problems where a single local maxima (peak) exists. 

 Bi-modal problems: The problems where two local maxima (peaks) exist. 

 Multi-modal problems: The problems where more than two local maxima exist. 

 

Additionally continuous optimization problems can be described by their dimensionality and 

separability. Dimensionality refers to the number of decision variables inside the problem, 

while separability means how much the decision variables are correlated together. Separable 

function is easy to solve compared to a non-separable function because it can be decomposed 

into multiple simpler functions that can be solved and combined linearly. More in 

separability can be found in (Tang et al. 2009). 

 

Optimization can be performed on two levels, the first level is local optimization which only 

aims at finding local minima/maxima, and the second is global optimization which aims at 

finding the global minima/maxima. Later, we find that heuristic techniques are more like 

local optimizer i.e. cannot escape from local minima/maxima, while meta-heuristic and 

hyper-heuristic are more like global optimizer i.e. have the capability of escaping local 

maxima/minima.   

     

The majority of optimization problems cannot be solved with an exact solution in polynomial 

time due to the large search space of such problems. For instance, the previously mentioned 
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problem, TSP, is a NP-Hard problem with the worst-case time complexity O(n^2*2^n) (using 

dynamic programming solution). So, while solving such problems, we usually seek an 

acceptable solution. For this reason, optimization problems are tackled conventionally using 

heuristic techniques, meta-heuristic techniques, stochastic techniques, or more recently, 

using hyper-heuristic techniques. Although each technique performs differently from the 

others, none of them guarantees optimality. But differently from the conventional techniques, 

hyper-heuristic has the advantage of generality since it can handle more than one class of 

problems. Also, hyper-heuristic reduces the efforts of development and tuning of an 

algorithmic solution to solve a specific problem type. In the next two sections, we shall have 

a quick glance on the heuristic and meta-heuristic techniques with their advantages and 

limitations, then, we introduce the hyper-heuristic methodology in depth.     

 

1.3. Heuristic Strategy  

 

When you engage with a problem, you gain some knowledge, and when you face the same 

problem again you apply this knowledge to solve the new problem. So, you have exploited 

the problem structure. This knowledge is what we call a heuristic, so, heuristic is a rule of 

thumb used to solve a particular problem without a grantee of optimality. Heuristic 

algorithms have no capability of escaping local maxima/minima, thus, they are not 

appropriate for complex problems. Typical applications of heuristic are when a fast solution 

is required, or it may be applied in conjunction with other techniques such as meta-heuristic 

algorithms, this hybridization produces what we call a Memetic Algorithm.   

 

To illustrate the nature of heuristic algorithm more clearly, we give an example. We will 

continue with the TSP problem, a simple heuristic to solve the problem is simply to pick the 

nearest city from the current city, regardless of the future impact of this decision. For instance, 

the solution of the complete graph given in Figure 1 according to the Nearest Neighbor 

heuristic will be (A → D → C → B → E → A), where A is source city. 
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Although heuristic techniques are more common for combinatorial optimization problems, 

heuristic techniques for continuous optimization problem exist such as the ‘Nelder-mead 

method’ (Nelder and Mead 1965).  

 

1.4. Meta-Heuristic Strategy  

  

While heuristic approach requires you to have some knowledge about the problem, meta-

heuristic does not. As the name suggests, Meta means more an abstract heuristic, a heuristic 

that can be applied regardless of the underlying problem. In (Boussaïd, Lepagnot, and Siarry 

2013) the authors mentioned some of the features that characterize meta-heuristic algorithms: 

 

 They are nature inspired, 

 Have components that are stochastic, 

 Have control parameter.   

 

The source of inspiration may be physics, biology, sociology, etc. The stochastic components 

of the algorithm may range from a single random variable to a complete operator, an example 

of stochastic operator is the mutation operator that can be found in the Genetic Algorithm 

‘GA’.    

 

Meta-heuristic algorithms operate on two orthogonal dimensions, one of them expresses the 

diversification capability of the algorithm (exploration), while the other expresses the 

 

Figure 1: Complete weighted graph 
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intensification capability of the algorithm (exploitation). In the exploration stages of the 

algorithm’s runtime, the algorithm tries to increase the area covered in the search space 

(explores previously unseen areas). While in the exploitation stages, the algorithm tries to 

intensify the search in specific areas in the search space (usually the more promising areas). 

More about the classification and analysis of meta-heuristic algorithms can be found in 

(Beheshti and Shamsuddin 2013; Boussaïd, Lepagnot, and Siarry 2013). For more insight on 

the nature of meta-heuristic algorithms and how they operate, two prominent meta-heuristic 

algorithms will be presented, namely, the Particle Swarm Optimization (PSO) and the 

Genetic Algorithm (GA). 

 

1.4.1. Particle Swarm Optimization 

  

PSO algorithm was originally proposed by Kennedy and Eberhart in the mid of 1990. The 

inspiration of PSO comes from the flocks of birds and swarms of the insects that search for 

food. In the original PSO algorithm, these are the main constituents: 

 Particles: Which are evolved through the life time of the PSO algorithm. Each 

particle has a state that includes the following components:  

◦ Current Position: It represents the current state of the particle and a possible 

solution to the problem. 

◦ Velocity vector: It is a vector of scalars that determines the movement direction 

and speed of the particle. 

◦ Particle best position pbest: It is the fittest position in the trajectory of the particle.  

  Velocity updating strategy: It determines how the velocity vector of each particle is 

computed. In other word, this strategy specifies how the particles are influenced by 

other particles in the swarm.    

 Swarm: It is simply the set of all particles. The fittest position in the whole swarm is 

retained as the global best position gbest.   
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A noticeable characteristic of PSO is its memorization of state. This memorization is done 

on two levels: On particles level through the pbest, and on swarm level through the gbest. 

PSO as a concept is a set of particles that search in their localities and exchange useful 

information. Although PSO in practice is tuned to handle a class of problems specifically, 

theoretically it is applicable to any optimization problem as long as the problem is structured 

probably, thus, PSO is a meta-heuristic algorithm.      

In the original PSO implementation, the velocity updating strategy is conducted as follows: 

 

𝑉𝑖
𝑑 ← 𝑉𝑖

𝑑 + 𝑐1 ∗  𝑟𝑎𝑛𝑑𝑖
𝑑(𝑃𝑏𝑒𝑠𝑡𝑖

𝑑 − 𝑋𝑖
𝑑) + 𝑐2 ∗  𝑟𝑎𝑛𝑑𝑖

𝑑(𝐺𝑏𝑒𝑠𝑡𝑑 − 𝑋𝑖
𝑑) 

 

Where 𝑋𝑖, 𝑉𝑖 are the current position and velocity of the 𝑖𝑡ℎ particle. Obviously, each field d 

in the velocity vector of the 𝑖𝑡ℎ  particle depends on three components: The previous 

velocity  𝑉𝑖
𝑑 , the global best in the swarm  𝑔𝑏𝑒𝑠𝑡𝑑  , and the local best of the 𝑖𝑡ℎ  

particle  𝑝𝑏𝑒𝑠𝑡𝑖
𝑑 . Additionally, in the above updating strategy there are two acceleration 

coefficients, c1 and c2, and random variable 𝑟𝑎𝑛𝑑𝑖
𝑑.  And after we compute the new velocity 

for the 𝑖𝑡ℎ particle, its current position get updated as follows: 

 

𝑋𝑖
𝑑 ← 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑 

 

The gbest emphasizes the exploration aspect of PSO, while the pbest emphasizes the 

exploitation capability aspect of PSO. The acceleration coefficients control the convergence 

speed of the algorithm. 

 

1.4.2. Genetic Algorithm  

 

GA is inspired from biological procedures, and it is one of the most commonly used 

algorithm in the optimization field. GA operates on a population of solutions called 

chromosomes, each component in the chromosome is called gene, at each iteration of GA a 

new population of children solutions (offspring) are reproduced from a subset of the current 

population (parents). GA exists with many variants. GA search strategy is based on three 
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main concepts: 

 

 Inheritance: Is the process where the children chromosomes inherent the parents 

chromosomes. This is achieved by using the crossover operator which mixes the parts 

of the parents’ chromosomes to form new children chromosomes, Figure 2  shows 

the single-point crossover.   

 Selection: Is the mechanism that determines which individuals are selected for the 

reproduction. 

 Variation: Is a mechanism that provides the individuals with new genetic information 

that does exist in the parent individuals. This is achieved by using the mutation 

operator.  

 

 

 

 

 

 

 

The general structure of GA is given in Figure 3. 

 

Figure 3: GA workflow. 

 

For example, if we have two individuals selected from the population 𝑋1, 𝑋2 with binary 

 

 

1. Initialize the Population 

2. Repeat until stop condition 

3. Select individuals for reproduction 

4. Apply crossover on selected individuals 

5. Apply mutation on individuals with a predefined probability  

5. Update population 

6. End repeat 

 

Figure 2: Single-point crossover 
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encoding, which are: 

 

𝑋1 = (1,0,1,0,1,1,0,0,1,1) 

𝑋2 = (0,0,1,1,0,0,0,0,1,0) 

 

These two individuals (chromosome) with size m may represent a combination from a set of 

items with size m, 0 in the chromosome vector means that we are not selecting the 𝑖𝑡ℎ item 

while 1 means that we are selecting it. Now, if we want to perform a single-point crossover 

operator on these parent chromosomes we get the following child chromosomes: 

 

𝑋𝑛1 = (1,0,1,0,1,0,0,0,1,0) 

𝑋𝑛2 = (0,0,1,1,0,1,0,0,1,1) 

  

Although we choose the crossover-point to be exactly in the middle, it does not have to be 

in the middle, it could be anywhere. Now, we can perform mutation operator on the first 

child individual by inversing the value on a random gene inside the chromosome, for instance, 

the 3𝑡ℎ gene:  

 

𝑋𝑛1 = (1,0,0,0,1,0,0,0,1,0) 

 

Or, we can swap the values of two randomly selected genes. After performing these 

operations, we usually update the population by replacing the parents with the child 

individuals if they have better fitness values. 

 

Since heuristic algorithms may be trapped easily in local-optima, meta-heuristic algorithms 

are more likely to be used because of their capability of escaping local optima. But the 

development of an appropriate meta-heuristic algorithm for new encountered problems 

becomes more challenging because the development now requires a consideration of a huge 

and an increasing number of design aspects. Some of these choices are: 

 

 What algorithm to use? The solvers needs to review the literature with tens of options 
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to make an adequate choice. This review requires too much time and efforts, and 

some previous knowledge in the field.     

 

 What variant of the algorithm should be adopted? The original definition of each 

meta-heuristic algorithm is very general, and this may have an effect on the 

performance. So, many variants of a given algorithm exist, where each variant may 

favor the exploitation aspect over the exploration aspect or via versa. The solver 

needs to make an appropriate choice with respect to the difficulty of the problem or 

other characteristics. 

 

 How to tune algorithm parameters? Every algorithm has multiple control parameters 

whose responsibilities vary according to the algorithm. Currently, the values of the 

different parameters are set according to the result of previous studies, test and 

evaluation, and using automatic learning mechanism. The first option may not be 

suitable, especially if the problem under consideration has features that are different 

from the features of the problem that has been previously solved. The second option 

employs trial and error cycles, obviously this is time consuming and it may lack 

accuracy. The last option is to employ some automatic learning mechanisms (offline 

learning prior to the search process, or online learning during the search process), 

this option provides more powerful results and probably solutions with higher quality, 

but it still needs more expertise to be accomplished.                        

                        

In addition to the previous ones, the solvers need to handle other huge design issues that are 

algorithm specific such as the topology of the population in particle swarm optimization, 

initialization of the population in the genetic algorithm, etc.  

 

These difficulties caused the emergence of hyper-heuristic algorithms. The intuitive idea 

behind hyper-heuristic is the ability to develop acceptable solutions for optimization 

problems with the minimum efforts and with a very high level of generality. In the next 

section, we will discuss hyper-heuristic in more details. 
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1.5. Hyper-heuristic 

 

The authors in (E. K. Burke et al. 2010) defined hyper-heuristics as follows: 

 

“A hyper-heuristic is an automated methodology for selecting or generating heuristics to 

solve hard computational optimization problems”  

Several definitions are proposed in the literature, but the aforementioned one is the most 

adopted definition. Although this definition overlooks that a hyper-heuristic is able to 

generate or select meta-heuristics, this definition is intuitive and general enough to cover the 

majority of researches in the hyper-heuristic field. A more mathematical and formal 

definition of hyper-heuristic can be found in  (Swan et al. 2014): 

 

ℎ:𝑊 → 𝑊 

𝐻:𝑊 → 𝑊 

 

In the above definition, both the low-level heuristics h and the hyper-heuristic H operate on 

workspace W that maintains the state of the heuristics and the state of the search. According 

to this definition, the hyper-heuristic becomes recursive in that the set of heuristics that H 

can access from the workspace may themselves be a hyper-heuristics. Although this 

definition does not make clear the boundary between heuristics and hyper-heuristics, in 

practice, a clear boundary is drawn between the high level strategy (hyper-heuristic) and the 

low-level operators (heuristic).  

 

To give a theoretical structure for this field, the authors in (E. K. Burke et al. 2010) conducted 

a classification and criteria that help in providing a clear reading of the literature. According 

to the authors, there are two major classes that can be found in the literature: 

 

 Heuristic Selection: It is the approach that is concerned with the strategies of 

choosing one or more heuristic from a set of heuristics.  

 Heuristic Generation: It is the approach that is concerned with the strategies of 
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generating new heuristics from basic building blocks of existing heuristics. 

The selective or the generative hyper-heuristic can be of any kind, it may be a heuristic, 

meta-heuristic, rule-based technique or any other technique. There is no constraint about its 

nature. 

Considering the nature of the low-level heuristics that the hyper-heuristic may operate on, 

the authors have classified the low–level heuristics into two classes: 

 Constructive heuristic: It is the heuristic that is intended to grow an incomplete 

solution. 

 Perturbation heuristic: It is the heuristic that is intended to improve an already 

complete solution. 

Perturbation heuristics are neighboring search techniques that are used in hill climbing or 

one of its variants. The solutions that the perturbation heuristics operate on are generated 

either randomly or through using some constructive heuristics. 

Further on, the authors have classified hyper-heuristic approaches depending on whether the 

hyper-heuristic learns or not. If it is a learning hyper-heuristic and if the learning is performed 

during solving one problem instance, then, it is called online learning hyper-heuristic. If the 

learning is performed using a set of training problem instances and the learning 

generalization is applicable to any problem instance, then, the hyper-heuristic is called offline 

learning hyper-heuristic. 

Now we will elaborate more on the major techniques used in heuristic-selection and 

heuristic-generation methodologies.  

 

1.5.1. Selective Hyper-Heuristic 

 

As described earlier, selective hyper-heuristic selects one or more heuristic from a set of 

heuristics. The common case is to use an Acceptance Criterion (AC) in addition to the 
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selection strategy. The main responsibility of the AC is to accept or to reject the new 

produced solution as the new incumbent solution. Usually, all ACs accept the improving 

solutions (solutions with higher quality) and accept the worsening solutions with some 

probability.  The reason behind the acceptance criterion is escaping local optima that may 

occur if we reject all worsening solutions. So, one may review the literature using two 

perspectives: one of them considers the selection technique, while the other considers the 

AC. In our discussion of selective hyper-heuristic, we focus mainly on the selection 

technique and especially the used AC. In Figure 4, a general scheme of selective hyper-

heuristic is given. In this scheme, we start our search by an empty or randomly initialized 

solution then we apply a selected heuristic (either perturbative or constructive) on the current 

solution, and the resultant new solution is either rejected or accepted according to the used 

AC.  

 

 

1.5.2. Generative Hyper-heuristic 

 

The second approach in the hyper-heuristic field is the generative hyper-heuristic approach. 

This approach relates to the field of Automatic Algorithm Design, and it uses similar 

techniques, but the difference is that the automatically designed algorithms are of heuristic 

nature. The source of variability in selective hyper-heuristics comes mainly from the ability 

to select heuristics with different characteristics from the heuristic pool of a given class of 

problems, while in generative hyper-heuristics, the variability may cover the entire generated 

algorithms. In other words, in generative hyper-heuristics, we often have a range of 

possibilities for each design aspect of the algorithms being evolved. In this sense, we can 

• Current  empty or randomly initialized solution. 

• Repeat until some criteria is met.   

• H  Selected heuristic from a heuristic pool. 

• New  Apply H on current. 

• New solution is either: 

• Accepted  if It is better than current 

• Discarded with probability P 

• End repeat. 

Figure 4: Scheme for selective hyper-heuristic. 
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consider selective hyper-heuristics a special case of generative hyper-heuristics. Although 

selective hyper-heuristics do not operate on grammar, they contain the grammar implicitly 

which specifies what pool of heuristics we have for a given problem class. The grammar 

plays the key role in achieving good results in generative hyper-heuristic since the designed 

grammar should allow us to derive a wide range of algorithms with different capabilities 

because the problems that we want to solve have widely varying properties and complexities.  

 

Typically in this approach, Genetic Programming (GP) is used as a hyper-heuristic to 

generate the algorithms. An early review of the employment of GP as a hyper-heuristic can 

be found in (E. K. Burke et al. 2009). GP is similar to the Genetic Algorithm (GA), the main 

difference is that instead of working in search space of solutions, GP works in search space 

of programs. Two common representations of the population’s individuals in GP exist in the 

literature: 

 

 Tree Genetic Programming (TGP) that is the conventional approach where programs 

are represented as a tree in which the leaf nodes are terminals and the inner nodes 

are non-terminals. 

 Grammatical Evolution (GE) is initially proposed in (Ryan, Collins, and Neill 1998). 

It is a variant of GP where the population’s individuals are represented as strings of 

integers (Genotype). Then, these strings are mapped to executable trees (Phenotype) 

using mapping function. This representation facilitates the manipulation procedures 

that operate on the population’s individuals.  

 

Figure 6 and Figure 5 give two examples of the crossover operator and the mutation operator 

of the Tree-based Grammar Guided GP (GGGP) respectively. In Figure 6, the crossover 

operator is applied by selecting one internal node from each parent individual with the same 

non-terminal, then, by swapping these nodes (multiplication) in both parents’ trees we 

reproduce two children individuals. And in Figure 5, one non-terminal is selected from the 

tree and then regenerated randomly according to the used grammar.  
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Figure 5: Example of mutation in tree-based GP. 

 

 

Figure 6: Example of crossover operator in tree-based GP   



17 

 

The Grammatical Evolution (GE) GP is also a Grammar-Guided GP, but it has linear 

representation of the chromosomes. Each gene in the chromosome is called codon. Each 

codon is 8 bit string, and the number of these codons in the chromosomes are not restricted 

in the original GE. The operators of GE, namely, crossover and mutation, are applied to the 

chromosomes (genotypes), and in order to evaluate the fitness of the chromosomes, a 

mapping procedure is employed. The mapping procedure transforms each genotype into its 

corresponding derivation tree (phenotype) by the following procedure: 

 

Starting from the start symbol S of the grammar, use the first codon value to determine the 

rule to be selected,  

 

𝐶𝑂𝐷𝑂𝑁𝑖 % #𝑆 

 

Where # produces the number of rules of a non-terminal. Then, repeat the previous procedure 

with the first left-hand non-terminal, but this time with the next codon value. This process is 

repeated until:  

 

 A complete program is generated. This occurs when all the non-terminals 

in the expression being mapped are turned into elements from the terminal 

set of the BNF grammar. 

 The end of the genome is reached, that is the last codon value that has been used. In 

this case, a wrapping operator is applied. Wrapping operator restarts the genome 

from the beginning. The number of applications of the wrapping operator may be 

limited by some threshold value. 
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Figure 7: An example of GE workflow. 

 

The standard single-point, two-point and uniform crossover may be used in GE to produce 

the offspring individuals. Tree representation does not suffer from the low locality problem 

that GE suffers from. Locality means how much the neighboring genotypes correspond to 

the neighboring phenotypes. High locality means high correspondence, while low locality 

means low correspondence. More on locality can be found in (Rothlauf and Oetzel 2006).  

 

After we have introduced the three strategies which are namely: Heuristic, Meta-Heuristic 

and Hyper-Heuristic in this chapter, we discussed the characteristics of each strategy and 

how the problem of the two former strategies influenced the emergence of the hyper-heuristic 

strategy. Then, we highlighted the different techniques of implementing hyper-heuristic 

strategy (selective and generative). In the next chapter, a literature overview and analysis of 

generative hyper-heuristic is presented. This overview focuses on generative hyper-

heuristics and further classifies the generative hyper-heuristics (GHH) according to the 

nature of the search-space on which they operate, so, we identify two main classes: GHHs 

that operate on heuristic components and GHHs that operate on meta-heuristic components. 
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Also, we present in this overview the last trend on the hyper-heuristic research field. After 

deep analysis of the literature, we concluded with these limitations and gaps:   

 

 The grammar used does not cope with state-of-the-art PSO algorithms such as the 

ones proposed in (Wang et al. 2011; Liang et al. 2006; Mendes, Kennedy, and Neves 

2004). 

 None of the previous studies had investigated the use of crossover with PSO in the 

grammar which is proven to enhance the performance of PSO as in (Chen 2012), 

(Jong-Bae Park et al. 2010) . 

 Adaption capability of the evolved algorithm is not considered in the grammar of any 

of the previous studies. 

 

We will try in our study to overcome the previous limitations by introducing a more powerful 

and flexible grammar that utilizes state-of-the-art techniques for both GA, PSO and the 

possible hybridization of the two algorithms. This allows us to explore the various design 

options and to find the true capability of the hyper-heuristic methodology. So, the main 

objectives of our study can be summarized as follows: 

 Adapting state-of-the-art research techniques in the grammar of the velocity updating 

strategy of PSO such as the ones proposed in (Mendes, Kennedy, and Neves 2004; 

Wang et al. 2011) and (Liang et al. 2006). This makes the hyper-heuristic capable of 

generating solutions that are suitable for different classes of problems. 

 Designing a grammar that allows the incorporation of other search techniques and 

operators with PSO. Specifically, we aim to embed the crossover and mutation 

operators of Real-coded GA inside PSO. This provides the hyper-heuristic with the 

capability of exploring various design options and making use of the strength of the 

different techniques. 

 Designing a grammar that is capable of generating hybrid PSO algorithms that have 

multiple velocity updating strategies. The reasoning behind this is that the cost of 
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generating solution for a given instance of problem by using the hyper-heuristic is 

very expensive, so, by making the generated algorithm adaptive, we allow the 

algorithm to maintain an acceptable performance even with small-mid changes in the 

problem specifications. 

 Providing a friendly framework with high programmability for solvers that eases the 

development of a suitable solutions. The designed framework only requires the 

specification of the problem to be solved as input i.e. problem structure and objective 

function.   
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2.1. Introduction 

 

A prominent survey in the hyper-heuristic field was accomplished in 2013 (E. K. Burke et 

al. 2013), this survey gives a wide overview of the various trends in the field in addition to 

a historical investigation on the origin of the idea of hyper-heuristic. After a wide review of 

the hyper-heuristic literature, we have drawn the following noticeable characteristics: 

 

 The majority of the studies are concerned with selective hyper-heuristics. 

 The studies that handle the generation of meta-heuristic components are 

scarce.  

 More attention is paid recently to the relation between the hyper-heuristic 

methodology and the machine-learning field.    

  

In this section, we provide a general overview of the current state of research in the hyper-

heuristic field. Generative hyper-heuristics (GHH) can be classified based on the nature of 

their search space, which results in two classes: one that operates on the search space of the 

heuristic components, and one that operates on the search space of the meta-heuristic 

components, also another dimension of classification is possible. This alternative 

classification is based on whether the generative hyper-heuristic tries to put a solution for 

combinatorial optimization problems or for continuous optimization problems, but in this 

study we will adopt the first dimension.      

 

2.2. Selective Hyper-Heuristic  

 

In this section, we introduce three prominent techniques (in the selective hyper-heuristic field) 

and some recent studies that tackle them. These techniques are: Choice-Function, Markov-

chain and Multi-armed Bandit.      

 

2.2.1. Choice-Function Based Hyper-heuristics 

 

The most common type of selective hyper-heuristics is the choice-function based hyper-
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heuristic, which is a function that accesses the internal state of the hyper-heuristic and 

assesses all heuristics on which the hyper-heuristic operates. The choice-function is a 

polynomial constituted of multiple weighted terms; the weight reflects the importance of its 

corresponding term. The following function is an example of a choice-function: 

 

𝑓(𝐻𝑘) = 𝑎 ∗ 𝑓1(𝐻𝑘) + 𝑏 ∗ 𝑓2(𝐻𝑘) + 𝑐 ∗ 𝑓3(𝐻𝑘, 𝐻𝑗) 

 

Where: 

a, b, c are weights which reflect the importance of each term. f1(Hk), f2(Hk), f3(Hk, Hj) are 

assessment functions of the heuristic (or meta-heuristic) Hk, where f1 and f2 may measure the 

recent performance of a heuristic, its execution time, or how many times it was invoked, and 

f3 measures the efficiency of a consecutive application of a pair of heuristics.  

After evaluating this choice-function for all candidates of heuristics, we could simply choose 

the heuristic with the maximum evaluation value as follows: 

    𝑀𝑎𝑥(𝑓(𝐻𝑘)) 𝑓𝑜𝑟 𝑘 = 1…𝑛 

The Roulette-wheel strategy may be used also to select a heuristic; where the Roulette-wheel 

strategy associates with each candidate heuristic a probability that is computed as follows: 

    𝑃(𝐻𝑖) =
𝑓(𝐻𝑖)

∑ 𝑓𝑛
𝑗=1 (𝐻𝑗)

 𝑓𝑜𝑟  𝑖 = 1…𝑛 

Then, a heuristic is selected randomly according to the computed probabilities using the 

mechanism presented in algorithm 1. 

The authors in (Cowling, Kendall, and Soubeiga 2001) introduced a choice-function as a 

polynomial composed of three terms f1, f2, and f3. Term f1 measures the previous 

performance of a given heuristic, term f2 measures the performance of the consecutive 

appliance of two given heuristics, while f3 is a term that improves diversification as it 

represents the time that elapsed since the last appliance of a given heuristic. (Drake, Özcan, 

and Burke 2012) proposed a modification of the previous choice function whose name is 
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‘modified choice-function’, this modification unifies the coefficients of f1 and f2 and 

correlates the unified coefficient with the coefficient of f3 using an equation. 

The authors in (Drake, Ozcan, and Burke 2015) further improved the performance of the 

‘modified choice-function’ by adding the crossover operator to the pool of low-level 

heuristics. The crossover operator’s inputs were moderated by the hype-heuristic, where the 

first input solution was the current incumbent solution and the second input was a random 

solution maintained from a set of elite solutions by the hyper-heuristic.  

 

The authors in (Maashi, Özcan, and Kendall 2014) proposed multi-objective choice-function 

based hyper-heuristic. The proposed hyper-heuristic has two ACs, namely, the great deluge 

and the late acceptance criteria. As a heuristic selection technique, the authors used a choice-

function composed of two terms, where the first one values the intensification and the second 

one values diversification. This methodology was tested on the walking Fish Groups 

problem, and on the multi-objective design of vehicle crashworthiness.  

 

2.2.2. Markov Chain based Hyper-heuristic 

 

Markov chain is a statistical model that describes the sequence of possible states, where the 

probability of each state depends on a probability distribution attained in the previous state. 

This model can be a heuristic selection technique by equating the set of states to the set of 

heuristics that may be selected. Figure 9 illustrates an example of Markov chain model, 

where A, B, C are the heuristics to be selected, and the weights of the transitions are used to 

model the probabilities of moving among the different heuristics. Initially, all heuristics have 

equal probability to be selected, or we may select any state randomly. Then, at each decision, 

we have to choose the next state (heuristic) with respect to the probability distribution of the 

current state; one way to achieve this is given in Figure 8, which is based on the Cumulative 

Density Function (CDF). 
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For example: suppose that we are in state B, the randomly generated number r = 0.6 and the 

list of possible next states S are sorted descendingly [(A, 0.5), (C, 0.4), (B, 0.1)]. Then, by 

computing the cumulative probabilities, S becomes: [(A, 0.5), (C, 0.9), (B, 1)] and by 

choosing the state with a probability that is greater or equal to r (state C), we move to state 

C (apply heuristic C).  

 

 

Figure 9: Example of markov-chain model. 
 

In (McClymont and Keedwell 2011), the authors used Markov chain technique with online 

reinforcement learning that adapts the transitions’ weights. The authors used Pareto 

dominance metric to measure the performance of the low-level heuristics. Pareto Dominance 

simply measures the quality of solutions produced (children solutions) over the quality of 

the parent solutions, and according to the measured performance, the weights in Markov 

chain is updated. 

 

 1. Let S be a list of (i,pi) for each state si with the 
transition probability pi.    

 2. Sort S descendingly according to the states’ 
probabilities. 

 3. Compute the cumulative probabilities for each state in S. 

 4. Generate random number r. 

 5. Choose the first state from S with a cumulative 
probability greater or equal to r.   

Figure 8: Sampling technique based on CDF 
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2.2.3. Multi-armed Bandit (MAB) Based Hyper-heuristic  

 

The name comes from imagining a gambler at a row of slot machines having finite amount 

of coins (resources), the gambler has to decide which machines (choices) to play, how many 

times to play each machine and in which order to play them, and whether to continue playing 

the current machine or trying a different one. The objective of the gambler is to maximize 

the sum of rewards. The crucial trade-off that the gambler faces at each trial is between 

"exploitation" of the machine that has the highest expected payoff and "exploration" to get 

more information about the expected payoffs of the other machines. As an analogue, the 

previous description of the problem also applies to the hyper-heuristic selection problem 

where: 

 

 Resources: In the hyper-heuristic methodology the only resource to be consumed is 

computation time. 

 Choices: Are the pool of heuristics that may be applied. 

 Exploration and exploitation:  The trade-off in the search process, where the search 

algorithm has to decide whether to visit new areas or to intensify the search on 

already visited areas.       

 

An Adaptive Operator Selection model based on the MAB named ‘Dynamic Multi-armed 

Bandit (DMAB)’ was proposed in (DaCosta et al. 2008). This model, DMAB, selects the 

arm according to its average reward and the number of invocations, with respect to the total 

number of invocations of all arms. In (Soria-Alcaraz et al. 2017) the authors used DMAB 

embedded in iterated-local search procedure, in each iteration a slight perturbation operator 

is applied to the incumbent solution, then a heuristic is selected using DMAB, then the 

selected heuristic is applied to the perturbed incumbent solution until no improvement is 

made (similarly to a gambler who keeps playing in the same slot machine until no reward is 

made). In this hyper-heuristic, an AC that accepts only improving solutions was used. 

DMAB was also used in (Sabar et al. 2015), but this time with an AC that is grammatically 

evolved and not humanly designed (later, we will discuss generative hyper-heuristic in more 

depth). 
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2.3. Heuristic-based GHH 

 

In (E. K. Burke, Hyde, and Kendall 2012), the authors introduced an initial study of using 

GE as a hyper-heuristic. This hyper-heuristic was tailored for solving the One-dimensional 

Bin Packing problem. This hyper-heuristic evolves a population of local-search heuristics. 

The grammar used in this study is given in Figure 11. The <start> non-terminal represents 

the starting state which specifies how the pieces are removed from the bins by using one or 

more of the five terminals: highest-filled, lowest-filled, etc. and how the pieces are then 

repacked (the same terminals of the <repack>  may be used for the initial configuration of 

the problem). The combinations of the procedures to select the bins and repack the pieces 

along with the different parameters values represent the different local search heuristics that 

can be generated. An example is given in Figure 10 where all pieces are removed from 10 

random bins ignoring the bins that are 99.5% filled, then, the removed pieces are repacked 

by using the ‘first_fit_decreasing’ constructive heuristic. 

 

 
Figure 11: Grammar for the bin-packing problem 

Random-bins(10, 0.995, ALL) 

remove_pieces_from_bins() 

first_fit_decreasing()   

Figure 10: Example of auto-generate 

heuristic for the bin-packing problem 
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In (Sabar, Ayob, and Kendall 2013), the authors employed the GE as a hyper-heuristic, but 

differently from the previous methodology, the grammar used here is more general in that it 

is not tailored to a specific problem class. Basically, this study divides the grammar system 

into three components: The first one is responsible for choosing the appropriate acceptance 

criterion from a set of options for the given problem, the second component is the list of 

candidate neighborhood structures i.e. a pool of local search operators, this second 

component is just a placeholder and it needs to be settled properly for the problem being 

solved. The last component is responsible for mixing different local search operators in one 

structure in different manners. So, for instance, if we want to solve the one-dimensional bin-

packing problem by using this framework, we can do this simply by setting the placeholder 

of neighborhood structures list with the local search operators presented in (E. K. Burke, 

Hyde, and Kendall 2012) 

 

In (Bader-El-Den, Poli, and Fatima 2009), the authors also used the grammar-based hyper-

heuristic to solve the exam timetabling problem, but instead of using chromosomes of 

condones and a mapper procedure of GE, this hyper-heuristic evolves trees and performs the 

different GP operators on those trees. Each evolved tree in this framework is reduced from 

the complete derivation tree to a tree that contains only the terminal symbols (leaf nodes) of 

derivation tree.  

 

In (Tan, Ma, and Mei 2018), the authors proposed genetic programming hyper-heuristic to 

automatically generate suitable heuristic for allocating containers in a cloud for 

homogeneous physical machines on online fashion with the objective being reduced 

accumulated power consumption.    

 

2.4. Meta-heuristic based GHH 

 

The authors in (Miranda, Prudêncio, and Pappa 2017) introduced the so-called Hybrid 

Hyper-heuristic for Algorithm Design (H3AD). In H3AD, the authors employed GP to 

generate PSO algorithms. The grammar used in H3AD is presented in Figure 12. This 

grammar is rich since it considers several types of initialization procedure, several 
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topological structures of swarm, additionally, it utilizes different mutation operators which 

do not exist in the original definition of the PSO.  

 

 

Figure 12: Grammar of H3AD 

 

In (Miranda and Prudêncio 2017), a similar grammar to H3AD is used, but it only uses a 

random procedure to initialize the swarm in contrast with H3AD that employs three different 

procedures. In both studies, each evolved individual is evaluated by binding the individual 

tree in an algorithmic template such as the one given in Figure 13 , this binding results in a 

complete algorithm that can be tested. Both (Miranda, Prudêncio, and Pappa 2017) and 

(Miranda and Prudêncio 2017) constrain the velocity updating strategy in specific forms, 

namely: The interia-weight based strategy and the constriction coefficient based strategy. 

Both strategies are mathematically equivalent which adds more limitation to the variability 

that we can achieve in the design of the velocity updating strategy. 

 



30 

 

 

Figure 13: Template for H3AD framework. 

 

In (Hong et al. 2018), the authors employed GP to generate the mutation operators of the 

Evolutionary Programming (EP) algorithm. In this study, the proposed grammar includes as 

terminal-set three different probability distributions for sampling, namely: The uniform, 

Normal distributions, and Cauchy distributions. And for the non-terminal-set additionally to 

the arithmetic operators, the cos, sin, log, sqrt operators are used.    

 

In this study we are specifically concerned with GHH that operates on PSO, so we list the 

main insufficiencies and gaps found in (Miranda and Prudêncio 2017; Miranda, Prudêncio, 

and Pappa 2017): 

 

 The grammar used does not cope with state-of-the-art PSO algorithms such as the 

ones proposed in (Wang et al. 2011; Liang et al. 2006; Mendes, Kennedy, and Neves 

2004). 

 None of the previous studies had investigated the use of crossover with PSO in the 

grammar which is proven to enhance the performance of PSO as in (Chen 2012), 

(Jong-Bae Park et al. 2010) . 

 Adaption capability of the evolved algorithm is not considered in the grammar of any 

of the previous studies. 
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In the next sub-section, we present the new trends in the hyper-heuristic field.  

 

2.5. New Trends in the Hyper-heuristic Field  

 

In this section, we try to introduce the recent trends in the hyper-heuristic field. There are 

two noticeable trends with varying impacts. In the following subsections, we present them 

along with their related works. 

 

2.5.1. Filtering the Heuristic Pool 

 

This trend is concerned with reducing the number of heuristics that the high-level hyper-

heuristic operates on since a very large pool of heuristics may increase the complexity of the 

hyper-heuristic. In (Soria-Alcaraz et al. 2017), the authors filtered the heuristics by using 

non-parametric test to rank the performance of low-level heuristics, where the performance 

is measured by using two metrics namely: Evolvability that measures the fitness of children 

solutions (which are produced by applying the measured low-level heuristic) in comparison 

with the parents solutions, and landmarking that measures the performance of low-level 

heuristics in the simplest form. Also, in (Gutierrez-Rodriguez et al. 2017), the authors 

applied heuristic filtering that is based on the concept of feature selection in the machine 

learning field. 

 

2.5.2. Generation of Selective Hyper-heuristic 

 

In (Swan, Özcan, and Kendall 2011) and (Swan et al. 2014), the authors notified to the 

recursive definition of the hyper-heuristic which implies that the pool of heuristics that 

hyper-heuristic operates on may contain hyper-heuristics in addition to the low-level 

heuristic, but a criticism of this definition of hyper-heuristic may appear because of the over 

generalization. 

In (Sabar, Ayob, and Kendall 2014), the authors introduced a gene expression programming 

framework that evolves a population of selective hyper-heuristics. Each individual in the 

evolved population contains two components: Heuristic selection mechanism and 
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acceptance criterion. This framework achieved a good generalization and it was tested upon 

the HyFlex (Ochoa et al. 2012) framework which contains 6 problem domains.  

 

In (Sabar et al. 2015), a similar work can be found but instead of evolving complete selective 

hyper-heuristic, the selection mechanism was fixed to the a dynamic multi-armed bandit 

mechanism DMAB (DaCosta et al. 2008), and only the AC mechanism is evolved. Similarly 

to the previous work, this framework was tested upon the HyFlex (Ochoa et al. 2012) 

framework with good results.  
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3.1. Introduction  

In our study, we overcame the limitations mentioned previously by introducing a more 

powerful and flexible grammar that utilizes state-of-the-art techniques for both GA, PSO and 

the possible hybridization of the two algorithms. This allows us to explore the various design 

options and look for the true capability of the hyper-heuristic methodology. The general 

structure of our framework is given in Figure 14 . 

 

 

 

 

 

 

 

 

 

3.2. Tree Grammar-Guided Genetic Programming         

 

The enumeration and evaluation of all possible algorithms from the grammar is not feasible 

because it is too expensive computationally, so, GP is used commonly to evolve a population 

of algorithmic solutions driven from the designed grammar. At each iteration, the known 

genetic operators which are namely: Selection, crossover and mutation are applied to the 

individuals of the population.  

 

In the following sub-section, we will introduce the major headlines of our framework (TG3P). 

As discussed earlier, the grammar is the major design issue while developing a generative 

hyper-heuristic. So, we will start our discussion with our methodology for writing the 

grammar that we intend to use in our framework. 

 

 

 

Problem 

TG3P 

 
Grammar 

Algorithmic 

Solution 

Figure 14: General structure of TG3P. 
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3.2.1. Grammar 

 

Grammar constitutes the core of generative hyper-heuristic since it is the determinant of the 

nature of the algorithms being generated. While developing a grammar for generative hyper-

heuristics, the following trade-off has to be considered:  

 

“The exploration of more generic design decisions, versus the exploitation of more specific 

design aspects.”  

 

To clarify this trade-off more, consider two grammars: The first one has the capabilities of 

generating many variants of a specific meta-heuristic algorithm, while the other has the 

capabilities of generating limited number of variants of multiple meta-heuristic algorithms. 

Clearly, the first grammar favors exploitation over exploration since it allows us to discover 

specific design aspects, like: What is the suitable control parameters settlement to solve the 

problem? The second grammar favors exploration over exploitation, since it allows us to 

discover more general design decisions, like: What is the most suitable algorithm to solve 

the problem?  

 

In order to make a balance between exploration and exploitation in this study, the major 

design decision of “what algorithm should be used to solve the problem?” is solved by 

determining the algorithms beforehand, which are PSO and GA. This hyper-heuristic 

framework is devoted for solving continuous optimization problems. The reason behind 

using PSO and GA is their widespread use and competitive results through the literature.  

 

In each of the subsequent sub-sections, we first analyze state-of-the-art techniques, then, we 

attempt to devise a grammar that is designed in accordance with those techniques. To devise 

our grammar, we disassemble the studied techniques to their basic constructs, then, a 

classification for each construct as terminal or as non-terminal is performed, and finally a set 

of production rules is defined that models the relations between the different constructs.       
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3.2.1.1.Particle Swarm Optimization  

 

The original PSO has a pretty good convergence ability, but it suffers the demerit of 

premature convergence. To overcome this problem, there are many attempts that try to 

improve the performance, specifically, the exploration capability of the PSO algorithm. 

Below we mention some of the techniques that try to improve the performance of the PSO 

algorithm. In the next subsections, we discuss some of those techniques.  

 

 Swarm Topology 

 

The topology constrains the nature of the communication that may occur in the swarm, as a 

result, it affects how the velocity of the particles in the swarm is updated. Some of the well-

recognized topologies are: Star topology, ring topology, focal topology, Von-Neumann 

topology, and additionally as a high level topology, the swarm may be structured as clusters 

or hierarchies. Some work that investigate the effect of the topology in the search capability 

can be found in (Kennedy and Mendes 2002). Below a brief description of each topology is 

given:   

 Ring topology: In this topology, each particle has only two neighbors. The 

convergence of the algorithm through using this topology is slow and it is suitable 

for complex multi-modal problems. Sometimes this topology is referred to as the star 

topology.   

 All topology: This topology is the first and the most commonly used topology where 

each particle is connected to all other particles. This topology has fast convergence 

rate and it is suitable for simple uni-modal problems.  

 



37 

 

 

Figure 15: ALL topology. 

 

Figure 16: Focal topology. 

 

 Focal topology: In this topology, all particles are connected to a focal particle, aka 

proxy particle.   

 Cluster topology: In this topology, the swarm is divided into clusters, usually 4, and 

each cluster communicates with the other clusters by using a representative member 

from the inside of the cluster. The internal structure of the cluster may be ring, star 

or any other topology, but the star is usually used. 

 Von-Neumann topology: In this topology, each particle is connected to four 

neighbors in the four directions, consequently, this makes the particles on the borders 

connected to each other. This topology had achieved good results, and sometimes it 

is referred to as the square topology.    

 Tree topology: In this topology, the swarm is organized as undirected tree with a 

predetermined branching factor.   

More on typologies and their analysis can be found in (Mendes, Kennedy, and Neves 2004). 

In this study, we adopt all the previously mentioned topologies, additionally, we propose a 

new topology for the swarm. The new topology’s name is ‘Wheel’, it allows a flow of 

information in the swarm that is faster than the ring and the focal topology and slower than 

the other topologies (in term of swarm degree). The wheel topology is illustrated in Figure 

19. 
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Figure 17: Von-Neumann topology. 

 

Figure 18: Cluster topology 

 

 

Figure 19: Wheel topology 

 

 Velocity Updating Strategy 

 

Several modifications to the original updating strategy of PSO are proposed in the literature. 

Some modifications suggest adding control parameters to the formula, while others have 

focused on the bases in which the velocity vector gets updated. In the next sub-section, we 

mention some of these modifications.   

 

a. Interia-weight strategy  

 

The original updating equation adopts the past experience as it is, as a consequence, this may 

hugely affect the search result. So, in order to have more control over the past experience, 
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the authors in (Y. Shi and Eberhart 1998) introduced interia-weight parameter 𝜔  so the 

updating strategy becomes as follows:  

 

𝑉𝑖
𝑑 ←  𝜔 ∗ 𝑉𝑖

𝑑 + 𝑐1 ∗  𝑟𝑎𝑛𝑑𝑖
𝑑(𝑃𝑏𝑒𝑠𝑡𝑖

𝑑  −  𝑋𝑖
𝑑) + 𝑐2 ∗  𝑟𝑎𝑛𝑑𝑖

𝑑(𝐺𝑏𝑒𝑠𝑡𝑑 −  𝑋𝑖
𝑑) 

𝑋𝑖
𝑑 ← 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑 

  

b. Comprehensive learning PSO  

 

Another updating strategy variant named Comprehensive Learning Particle Swarm 

Optimization (CLPSO) is proposed in (Liang et al. 2006). CLPSO employs a learning 

strategy in the velocity updating strategy. CLPSO eliminates the gbest from the equation, 

also it makes it possible for each particle in the swarm to be influenced by all pbest of all 

other particles. So, in CLPSO the updating strategy becomes as follows: 

 

𝑉𝑖
𝑑 ←  𝜔 ∗ 𝑉𝑖

𝑑 + 𝑐1 ∗  𝑟𝑎𝑛𝑑𝑖
𝑑 (𝑃𝑏𝑒𝑠𝑡𝑓𝑖(𝑑)

𝑑 − 𝑋𝑖
𝑑) 

𝑋𝑖
𝑑 ← 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑 

𝑋𝑖
𝑑 ← 𝑀𝐼𝑁( 𝑋𝑚𝑎𝑥

𝑑  , 𝑀𝐴𝑋(𝑋𝑖
𝑑 , 𝑋𝑚𝑖𝑛

𝑑 )) 

Where 𝑓𝑖(𝑑)  is a tournament selection procedure that chooses from which particle the 𝑖𝑡ℎ 

particle will learn for the 𝑑𝑡ℎ component. While  𝑉𝑚𝑎𝑥
𝑑 , 𝑉𝑚𝑖𝑛

𝑑  are thresholds that control the 

minimum and maximum velocity of the particles in the swarm. CLPSO provides much 

higher exploration ability than the original PSO. 

c. Difference based velocity updating strategy 

 

This strategy, according to the author in (Wang et al. 2011), is used to quickly adapt to 

changes in the different optimization phases, so, it does not build the velocity vector 

incrementally, but it recombines the velocity vector totally based on some difference 

information. The equation of DbV is given as follows: 
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Where 𝑋𝑗
𝑑 , 𝑋𝑘

𝑑 are the 𝑑𝑡ℎ  variables of two randomly selected particles, and 𝑁(0.5,0.2) 

represents one randomly generated number according to the Gaussian distribution with mean 

0.5 and standard deviation 0.2. 

 

d. Estimation based velocity updating strategy  

 

The authors in (Wang et al. 2011) also proposed an Estimation based Velocity updating 

strategy (EbV). This strategy is developed to achieve a high convergence rate, specifically 

for complex multi-modal problems. This strategy makes estimation of the distribution of the 

population and updates the population distribution according to this estimation. The EbV is 

described as follows: 

 

 

 

Where c is a random coefficient derived from a mixed Gaussian and Cauchy distribution, 

𝑚𝑒𝑎𝑛𝑖
𝑑  is the mean of the 20% best particles in the swarm. 
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e. Modified CLPSO 

 

The modified CLPSO, proposed in (Wang et al. 2011), which is named by the author as PSO-

CL-Pbest is developed to increase the exploitation ability of CLPSO by reintroducing 

the 𝑝𝑏𝑒𝑠𝑡 of the updated particle to the equation. But of course, increasing the exploitation 

means decreasing the exploration ability to some degree. The PSO-CL-Pbest strategy is 

described as follows: 

 

 

 

f. Fully informed PSO 

 

In (Mendes, Kennedy, and Neves 2004), the authors introduced the Fully Informed Particle 

Swarm Optimization (FIPSO). Unlike the original PSO, FIPSO extends the source of 

information that the particle may learn from and that include in the original PSO the local 

best and the global best while in FIPSO it includes all the neighboring particles. FIPSO is 

dependent on the underlying topology of the swarm. Multiple alternative implementations 

of FIPSO exist such as the weighted FIPSO where each neighbor contributes to the updating 

strategy proportionally with its fitness.  FIPSO can be described as follows:  

𝑉𝑖
𝑑 ←  𝜒 ∗ (𝑉𝑖

𝑑 + 𝑐 ∗ (𝑃𝑚
𝑑 − 𝑋𝑖

𝑑)) 

𝑋𝑖
𝑑 ← 𝑋𝑖

𝑑 + 𝑉𝑖
𝑑 

𝑃𝑚 ← 
∑ 𝑊(𝑘) ∗ 𝑐𝑘 ∗  𝑃𝑏𝑒𝑠𝑡𝑘𝑘 ∈𝑁

∑ 𝑊(𝑘) ∗ 𝑐𝑘 𝑘 ∈𝑁
 

𝑐 ←  𝑐1 + 𝑐2 + ⋯+ 𝑐𝑛 

Where 𝑊(𝑘) is a function that weights the influence of each neighbor particle of the 𝑖𝑡ℎ 
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particle. For instance, this function may return the fitness value of the given particle, or it 

may return a constant value for all particles, in this case all particles are treated equally. 

 

Through analyzing the previous velocity updating strategies, we can notice a difference in 

the prospect of what particles to consider while updating the current particle. The following 

are the most common choices:   

 The global best. 

 The local best  

 Aggregation on the local best of the Neighboring particles.  

 Aggregation on the local best of a subset of particles.  

 Local best of a random particle.  

The previous velocity vector exists in all the previous updating strategies except the EbV 

strategy. The control parameters also represent a major design decision in each of the 

previous strategies. The observed parameters and coefficients include: 

 Interia-weight  

 Constriction coefficients 

 Acceleration coefficients  

 Max and Min velocity vectors 

Thus, the proposed grammar is given in Figure 20. In this grammar, the VelocityPool non-

terminal specifies the number of velocity updating strategies that a generated algorithm 

would have, the number of strategies is limited between one and four. The Influencer non-

terminal specifies how an influencer vector is produced to update a particle and to which 
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degree (based on the Φ coefficient). The Scope non-terminal specifies what subsets of 

particles are used to compute the influencer vector. Two scopes are used: 

 Neighborhood: This scope implies that the whole neighborhood of a particle is used 

to update it. 

 Elite: This scope implies that only the elite particles in the swarm are used to update 

a particle. Different values for the elite subset size are possible in this grammar.   

The Influencer non-terminal specifies how a position vector that is used to update the particle 

is obtained. To obtain it, we can use one of the following ways: 

 Average: Compute the average of the local best of a subset of particles.  

 Max: Choose the local best of the fittest particle from the provided set of particles.  

 Random: Choose the local best of randomly selected particle from the provided set 

of particles.    

 Local: Choose the local best of the updated particle. 

The output vector from the influencer non-terminal in each method is highly dependent on 

the scope non-terminal (except for the Local choice which always return the Pbest of the 

updated particle). For example, 𝑀𝑎𝑥(𝐸𝑙𝑖𝑡𝑒) is interpreted as: Select the best position from 

the elite particles subset, while 𝑅𝑎𝑛𝑑𝑜𝑚(𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑) would mean: Select a random 

particle position from the whole Neighborhood. The concrete meaning of the Neighborhood 

scope is determined by the type of topology used in the current version of PSO. The symbol 

𝜔 is the interia-weight, and it is a uniform random number between [0.4- 1), similarly, the 

acceleration coefficient Φ is a random number between (1- 2]. In this grammar, we constraint 

the formula to maximally three terms plus the previous velocity. 
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 Adaptive operator selection 

  

In PSO, different algorithm’s configurations should be considered as the search proceeds. 

For example, in the early stages of the search, more exploration should be done to enlarge 

the covered search space, while in later stages, more exploitation should be done to tune the 

evolved solutions. To achieve this requirement, different approaches exist in the literature, 

some of them employ time-varying inertia weight and acceleration coefficients, such work 

can be found in (Nickabadi, Ebadzadeh, and Safabakhsh 2011). Other approaches employ 

multiple velocity updating strategies which are selected adaptively based on the current state 

of the search, an example of this is SLPSO which can be found in (Wang et al. 2011). In 

SLPSO, the following mechanism is used:  

 

For each strategy, assign an execution probability 𝑝𝑟𝑜𝑆𝑇𝑅𝑖 to determine the probability that 

the 𝑖𝑡ℎ strategy gets selected to update each particle. Initially, assign equal probabilities for 

all strategies, that is 𝑝𝑟𝑜𝑆𝑇𝑅𝑖 =  0.25, 𝑓𝑜𝑟 𝑖 =  1. . . 𝑛 , and set an accumulators for each 

strategy Si =  0 , 𝑓𝑜𝑟 𝑖 =  1. . . 𝑛. At each generation, the particles are sorted based on their 

fitness values. Then, each particle is assigned a weight  𝑤𝑗 =

𝑙𝑜𝑔 (𝑝𝑠 − 𝑗 + 1) (𝑙𝑜𝑔(1)+. . . +𝑙𝑜𝑔(𝑝𝑠)) for j =  1. . . ps⁄ . Finally, the weights are added to 

the accumulators of their associated updating strategies. After a fixed number of generations 

Gs, the following rule is used to update the execution probability of 𝑗𝑡ℎ updating strategy: 

 

𝑝𝑟𝑜𝑆𝑇𝑅𝑗
´ = (1 − 𝛼)𝑝𝑟𝑜𝑆𝑇𝑅𝑗 + 𝛼 𝑆𝑗 𝐺𝑠⁄ , 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑃𝑜𝑜𝑙  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦{1, 4} 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ←  𝜔 ∗  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  +  𝑇𝑒𝑟𝑚𝑠 

𝑇𝑒𝑟𝑚𝑠 ←  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 

𝑇𝑒𝑟𝑚 ← 𝑈(0,1) ∗  𝜙 ∗  (𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 –  𝑋𝑖) 

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 ←  𝑀𝑎𝑥 (𝑆𝑐𝑜𝑝𝑒) | 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑆𝑐𝑜𝑝𝑒) | 𝑅𝑎𝑛𝑑𝑜𝑚 (𝑆𝑐𝑜𝑝𝑒) | 𝐿𝑜𝑐𝑎𝑙 
𝑆𝑐𝑜𝑝𝑒 ←  𝐸𝑙𝑖𝑡𝑒 𝑒𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 | 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖 
𝑒𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 ←  5% | 10% 

𝜔 ←  𝑈(0.4, 1) 

𝛷 ←  𝑈(1, 2) 

 

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑃𝑜𝑜𝑙  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦{1, 4} 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ←  𝜔 ∗  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  +  𝑇𝑒𝑟𝑚𝑠 

𝑇𝑒𝑟𝑚𝑠 ←  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 

𝑇𝑒𝑟𝑚 ← 𝑈(0,1) ∗  𝜙 ∗  (𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 –  𝑋𝑖) 

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 ←  𝑀𝑎𝑥 (𝑆𝑐𝑜𝑝𝑒) | 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑆𝑐𝑜𝑝𝑒) | 𝑅𝑎𝑛𝑑𝑜𝑚 (𝑆𝑐𝑜𝑝𝑒) | 𝐿𝑜𝑐𝑎𝑙 
𝑆𝑐𝑜𝑝𝑒 ←  𝐸𝑙𝑖𝑡𝑒 𝑒𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 | 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖 
𝑒𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 ←  5% | 10% 

𝜔 ←  𝑈(0.4, 1) 

𝛷 ←  𝑈(1, 2) 

 

Figure 20: Proposed grammar for VUS 
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𝑝𝑟𝑜𝑆𝑇𝑅𝑗 = 𝑝𝑟𝑜𝑆𝑇𝑅𝑗
´ (𝑝𝑟𝑜𝑆𝑇𝑅1

´ + 𝑝𝑟𝑜𝑆𝑇𝑅2
´ + ⋯+ 𝑝𝑟𝑜𝑆𝑇𝑅𝑛

´ )⁄  

  

Where 𝑝𝑟𝑜𝑆𝑇𝑅𝑗
´

 is the temporal execution probability; α is the learning coefficient which is 

used to control the updating proportion.   

 

In our framework, the adaptive mechanism of SLPSO is used. According to our knowledge, 

there is not any previous study that addresses the adaptability aspect of the generated 

algorithm.  

 

 

Other techniques that attempt to enhance the performance of PSO exist in the literature such 

as the way the algorithm may initialize the positions and velocity vectors of the particles, 

initialization of coefficients, time varying coefficients, migration of particles, etc. Such 

works can be found in (Vandenbergh and Engelbrecht 2006), (Konstantinos Parsopoulos and 

Michael N. Vrahatis 2002), (Gang, Wei, and Xiaolin 2012).    

 

3.2.1.2.Real-coded GA  

 

Many strategies that try to hybridize PSO with other search techniques exist in the literature, 

but our focus here will be in the possible hybridization of PSO with the Genetic Algorithm 

(GA), more precisely, with the Real Coded Genetic algorithm (RCGA). RCGA represents 

the solutions as chromosomes of real numbers unlike the standard GA. Similarly to GA, 

RCGA does not preserve a memory. RCGA search strategy is based on the same concepts of 

GA, which are: Selection, inheritance, and variation, for more information review page 8. 

Later in this section, the terms GA and RCGA are used interchangeably. 

 

 RCGA operators  

 

In addition to the single, two, and N point crossovers in the traditional GA, several types of 

crossover for RCGA are presented in the literature, in the following sub-sections, we mention 

some of them.    
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a. Parent Centric Crossover  

 

In (Lozano et al. 2004),  a Parent Centric (PBX-α) crossover was introduced. PBX-α is 

described as follows: If we have two real-coded chromosomes X = (𝑥1…  𝑥𝑛)  and Y 

=  (𝑦1…  𝑦𝑛) , (𝑥𝑖, 𝑦𝑖 Є [𝑎𝑖, 𝑏𝑖]  ⊂  𝑅, 𝑖 =  1…  𝑛),  X and Y are selected to undergo the 

crossover operator, PBX-α generates randomly one of two possible offsprings: Z1 = 

(𝑧1
1. . . 𝑧𝑛

1)  or Z2 =(𝑧1
2. . . 𝑧𝑛

2) , where 𝑧𝑖
1  is a uniformly sampled random number from the 

interval [𝑙𝑖
1, 𝑢𝑖

1] with: 

 

𝑙𝑖
1 = 𝑚𝑎𝑥(𝑎𝑖,  𝑥𝑖 − 𝐼. 𝛼), 𝑢𝑖

1 = 𝑚𝑖𝑛(𝑏𝑖,  𝑥𝑖 + 𝐼. 𝛼) 

 

And 𝑧𝑖
2is sampled from the range [𝑙𝑖

2, 𝑢𝑖
2]with: 

 

𝑙𝑖
2 = 𝑚𝑎𝑥(𝑎𝑖,  𝑦𝑖 − 𝐼. 𝛼), 𝑢𝑖

2 = 𝑚𝑖𝑛(𝑏𝑖,  𝑦𝑖 + 𝐼. 𝛼) 

Where: 

 

𝐼 = |𝑥𝑖 − 𝑦𝑖|. 

 

According to the author, PBX-α generates solutions that are closer to their parents, and its 

diversification ability can be increased by adjusting the 𝛼  parameters to higher values. 

Additionally, PBX-α is self-adaptive since it adapts according to the distance between the 

parents solutions.       

 

b. Multi parent crossover 

 

The authors in (Elsayed, Sarker, and Essam 2011) introduced Multi Parent Crossover 

(MPC). The procedures of MPC are as follows: 

 

I. Select three different solutions. 

II. Sort them in an ascending manner according to their fitness values. 

III. Generate three offsprings as follows: 
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o1 = x1 + β * (x2 -x3) 

o2 = x2 + β * (x3 -x1) 

o3 = x3 + β * (x1 -x2) 

 

From the above equations, it can be noticed that the first and the third offspring are generated 

with the aim of being positioned in more promising areas in the search space, while the 

second offspring is generated with the aim of keeping diversity in the swarm. 

 

c. Linear crossover  

 

Linear crossover (LC) is based on the concept of linear combination of vectors. Let the 

vectors 𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , 𝑣𝑛⃗⃗⃗⃗   be vectors in ℝ𝑛  and 𝑐1, 𝑐2,⋯ , 𝑐𝑛  be scalars. Then, the vector �⃗�  , 

where �⃗� = 𝑐1 ∗ 𝑣1⃗⃗⃗⃗ + 𝑐2 ∗ 𝑣2⃗⃗⃗⃗ . . . +𝑐𝑛 ∗ 𝑣𝑛⃗⃗⃗⃗   is called a linear combination of  𝑣1⃗⃗⃗⃗ , 𝑣2⃗⃗⃗⃗ , 𝑣𝑛⃗⃗⃗⃗  . The 

scalars 𝑐1, 𝑐2,⋯ , 𝑐𝑛 are called the “weights”. So, linear crossover can be applied to many 

parent solutions, but two parents are usually used. In case of two-parent linear crossover, the 

weights are usually set to 0.5 (uniform), however, different weights could be used to favor 

the fittest parent.  

 

d. Pbest crossover 

 

Pbest crossover operates on single parent, and it produces a single offspring by computing 

the average of the current position of the parent and its best local position (Pbest) as follows: 

 

𝑋` = (𝑋𝑖 + 𝑃𝑏𝑒𝑠𝑡𝑖)/2 

 

This crossover clearly emphasizes the exploitation capability of the algorithm.  

 

e. Mutation operators  

 

Three types of mutation will be used in our study: Gaussian mutation, Cauchy mutation and  
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Random (uniform) mutation. In the three types, we perform mutation by adding a randomly 

sampled vector (according to the type of mutation) with a size equal to the size of the mutated 

particle, then we add this vector to the current position of the mutated particle.      

 

f. Selection and replacement strategies  

 

Selection and replacement strategies specify how particles are selected to undergo crossover, 

and which particles are selected to be replaced by the new offspring individuals. For both 

selection and replacement, Tournament-based selection is used in this study. In tournament 

selection, a subset of size k is selected randomly from the swarm, then the best/worst particle 

from the subset is selected to undergo crossover or to be replaced.     

 

 Mutation and Crossover Probabilities  

 

The probability of performing crossover and mutation at any iteration is determined by the 

variables PC and PM, different values for both probabilities should be considered depending 

on the problem being solved. So, the value of PC and PM will be automatically tuned by the 

hyper-heuristic.  

 

Accordingly, the grammar that we use for RCGA in our hyper-heuristic framework is given 

in Figure 21.   

 

 

 

 

 

 

CROSSOVER → LC | MPC | PBX-α. | Pbest 

Mutation →Gaussian | Cauchy | Random  

PC → 0 | … | 1 

PM → 0 | … | 0.4 

Figure 21: Grammar for RCGA 
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3.2.1.3.Hybridization Scheme 

 

As we will generate hybrid PSO and RCGA algorithms, we need to decide upon the 

hybridization scheme of the two algorithms i.e. how do they corporate together? What is the 

state that they share? In the literature, two main approaches are found, one approach is to 

treat each algorithm as a black-box while providing some degree of interaction between them. 

While the second approach is to blend the two algorithms into one body and in order to 

achieve this, the two algorithm must share some state variables. More on the possible 

hybridization between PSO and GA can be found in (Thangaraj et al. 2011). 

 

In (Kao and Zahara 2008), the author proposed a hybridization mechanism for PSO with the 

Genetic Algorithm. Figure 22 illustrates how this mechanism works. The repeated cycle of 

the algorithm starts by sorting all population, then, the fittest half is updated by applying the 

GA operators, namely crossover (linear combination of vectors) and mutation, while the 

other half is updated using PSO operators. The cycle is repeated until convergence. 

Apparently, in this framework both algorithms (PSO and GA) are independent from each 

other.      

 

Similarly in (X. H. Shi et al. 2005), the authors proposed the so-called Variable Population 

Size Genetic Algorithm (VPGA). In this framework, VPGA and PSO are run independently 

initially, then, at equal intervals, a migration of N individuals is performed from the swarm 

of PSO to VPGA, and similarly from the population of VPGA to PSO.  
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Figure 22: Hybrid PSO and RCGA 

 

Differently from the two previous studies, the works of (Chen 2012), (Pant, Thangaraj, and 

Abraham 2007), and (Jong-Bae Park et al. 2010) use GA operators alongside the operators 

of PSO. Both hybridization approaches yield an improved and competitive results compared 

to the original algorithms. In this study, similarly to the second approach, both PSO an 

RCGA are generated as single component, where they share the same state i.e. Population, 

Current iteration, etc.   

 

The complete grammar that we use in our framework is given in Figure 23, and the 

algorithmic template is given in Figure 24.   
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Swarm  ALL | Focal | Ring | Von-Neumann | 4-Cluster | Wheel | Tree 
EliteSize  5% | 10% 
 

 

 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑃𝑜𝑜𝑙  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦{1, 4} 
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ←  𝜔 ∗  𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑖  +  𝑇𝑒𝑟𝑚𝑠 

𝑇𝑒𝑟𝑚𝑠 ←  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 +  𝑇𝑒𝑟𝑚 | 𝑇𝑒𝑟𝑚 

𝑇𝑒𝑟𝑚 ← 𝑈(0,1) ∗  𝜙 ∗  (𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 –  𝑋𝑖) 

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑟 ←  𝑀𝑎𝑥 (𝑆𝑐𝑜𝑝𝑒) | 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑆𝑐𝑜𝑝𝑒) | 𝑅𝑎𝑛𝑑𝑜𝑚 (𝑆𝑐𝑜𝑝𝑒) | 𝐿𝑜𝑐𝑎𝑙 
𝑆𝑐𝑜𝑝𝑒 ←  𝐸𝑙𝑖𝑡𝑒 𝑒𝑙𝑖𝑡𝑒𝑆𝑖𝑧𝑒 | 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖 
𝜔 ←  𝑈(0.4, 1) 

𝛷 ←  𝑈(1, 2) 

 

 

 

CROSSOVER → LC | MPC | PBX-α. | Pbest 

Mutation →Gaussian | Cauchy | Random 

PC → 0 | … | 1 

PM → 0 |… | 0.4 

 

Figure 23: Full Grammar that is used in this study 
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Figure 24: Algorithmic template of TG3P. 

 

 

3.2.2. Population initialization 

  

The population in our designed GP is initialized randomly based on the proposed grammar 

(Figure 23: Full Grammar that is used in this study). And we use an elitism by keeping the 

best individual in the population intact from being modified by the genetic operators 

(mutation and crossover) during the algorithm runtime.   

 

Hybrid PSO and RCGA Algorithm: 
 
N: Swarm size 
T: Number of generation  
Swarm  Random initialization of n particles 
Gbest  Null 
For t = 0 to T do 

For each p in Swarm do 
 Evaluate p 
 Update the Pbest of particle p and the Gbest 
End for 
For each p in Swarm do 

Select a velocity updating strategy from the <VelocityPool> 
Apply the selected strategy upon p 

 End for 
If U(0,1) < <PC> then 

Select parents from Swarm using Tournament-based Selection  
Crossover parents according to <Crossover> 
Replace parents using Tournament-based Selection 

End if  
For each p in Swarm do 

If U(0,1) < <PM> then 
Mutate p according to <Mutation> 

End if  
End for 

End for 
Return Gbest 
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3.2.3. Genetic operators 

In our study, the normal sub-tree crossover and mutation are used, but unlike the standard 

sub-tree crossover and mutation, the selection probabilities of the crossover and mutation 

points are not uniformly random, instead, we propose a custom probability distribution that 

assigns a probability of selecting a node is based on its level in the tree, this probability 

distribution favors nodes that are in the low-levels in the tree. The procedure used to generate 

this distribution is given in Figure 25. 

 

  

In our designed GP, we apply crossover at each iteration, but for the mutation, we use time 

varying probability. The reasoning behind this is to emphasize exploration at the earlier 

stages of the algorithm, while emphasizing exploitation in the latter stages. The equation 

used to compute the probability of mutation at each iteration is given as follows: 

 

𝑃𝑀(𝑡) =
(𝑇 − 𝑡)

𝑇
(𝑀𝐴𝑋𝑃𝑀  − 𝑀𝐼𝑁𝑃𝑀) + 𝑀𝐼𝑁𝑝𝑚 

 

Where: T is the maximum number of iteration, 𝑀𝐴𝑋𝑃𝑀, 𝑀𝐼𝑁𝑃𝑀  are the maximum and 

minimum probabilities of doing mutation. 

 

 

 

 

 

 N  Maximum depth of tree 

Generate random list L of size N. 

Sort L ascendingly.  

Probs  
𝐿𝑖

∑ 𝐿𝑖
𝑛
𝑖=1

⁄  

Figure 25: Procedure to generate probability distribution 

for selecting mutation/crossover points. 
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4. Chapter Four: 
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4.1. Introduction 

 

In this chapter, we present the benchmarks that we used and our experimental settings, these 

settings are mainly specific to our hyper-heuristic (Tree-based Grammar-Guided Genetic 

Programming TG3P) and to the generated algorithms. Then, we present the alternative PSO 

variants that we compare with. Finally, we present our results and their discussion.  

 

4.2. Test Functions 

 

All tests in this study are conducted  by the single-objective and unconstrained continuous 

test functions of the Deap framework (Fortin 2012). The list of the test functions in Deap is: 

 

a) Cigar 

 

Minimize:  

 

b) Plane 

 

Minimize:  

𝑥𝑖 ∈ [−100, 100] 

 

c) Sphere 

 

This function is simple and it is easy to solve. The Sphere function is given as follows: 

 

Minimize:  
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d) Ackley 

 

Ackley’s function has one narrow global optimum basin and many minor local optima. The 

Ackley’s function is given as follows: 

 

Minimize:

 

 

 

e) Bohachevsky 

 

The Bohachevsky’s function is uni-modal problem and it has a bowl shape. The 

Bohachevsky’s function is given as follows: 

 

Minimize: 

 

 

 

f) H1 

 

Simple two-dimensional function containing several local maxima. The H1 function is 

given as follows: 

 

Maximize:  

 

 

g) Schwefel 

. 

The complexity of Schwefel’s function is due to its deep local optima being far from the 
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global optimum. It will be hard to find the global optimum if many particles fall into one of 

the deep local optima. The Schwefel’s function is given as follows: 

 

Minimize:  

 

 

h) Griewank 

 

Griewank’s function has a  ∏ cos (
𝑥𝑖

√𝑖
⁄ ) + 1𝑁

𝑖=1  component which cause linkages between 

variables, so reaching the global optimum becomes more difficult. The Griewank’s function 

is given as follows: 

 

Minimize:  

Range:   

 

i) Himmelblau 

 

The Himmelblau’s function is multimodal with 4 defined minimums. The Himmelblau’s 

function is given as follows: 

 

Minimize:  

Range:  

 

 

In this study, we set in all experiment the dimensions of all test functions to be 30. Except 

for the H1 and the Himmelblau functions which will have dimension of 2. Each generated 

algorithm is evaluated in 10 independent runs for any problem.     
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4.3. Experimental settings  

 

The settings of our hyper-heuristic (TG3P) and the settings of the generated Hybris PSO 

and RCGA algorithms (during the training phase) are given in Table 1 and  

Table 2.  

  

Table 1: Settings of TG3P 

Variables TG3P 

Iterations 200 

Population size 300 

Crossover Probability 0.9 

Min Mutation Probability 0.1 

Max Mutation Probability 0.5 

Tournament size 10 

Elite size 1 

 

Table 2: Settings of the generated algorithms. 

Variables Hybrid PSO & RCGA 

Iterations 200 

Swarm size 50 

Tournament size 7 

 

4.4. Comparison   

 

In this study, we compare the best generated algorithms with SLPSO (Wang et al. 2011) and 

CLPSO (Liang et al. 2006) under the same test conditions. For each test function, the average, 

the standard deviation, and the max of 30 independent runs are used to compare our best 

generated algorithm with CLPSO and SLPSO. For both the generated algorithms, CLPSO, 

and SLPSO a swarm of size 50 is used and the maximum number of function evaluation is 

set as 5000, and the bounds on the velocity vector (VMAX, VMIN) are set to 10%  of (b - a) 

where  𝑥𝑖 ∈ [𝑎, 𝑏]. The results for each test function are given in Table 3 and Table 4.    
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Table 3: Mean (with std.) of 30 runs of CLPSO, SLPSO, and TF3P. 

 CLPSO SLPSO TG3P 

Porblem Avg. Std. Avg. Std. Avg. Std. 

Schwefel 8.50E+3 4.67E+2 1.37E+3 4.14E+2 8.58E+3 9.07E+2 

H1 1.04E+0 3.84E-1 1.96E+0 2.27E-2 2.00E+0 4.44E-16 

Cigar 3.66E+10 6.20E+9 3.25E+9 1.22E+9 7.57E+8 2.89E+8 

Ackley 1.81E+1 3.95E-1 1.16E+1 1.07E+0 1.10E+1 1.11E+0 

Sphere 3.63E+4 5.10E+3 3.09E+3 8.57E+2 6.87E+2 2.44E+2 

Plane -1.00E+2 3.42E-2 -1.00E+2 0.00E+2 -1.00E+2 '0.00E+2 

Bohachevsky 1.08E+5 1.58E+4 9.67E+3 3.56E+3 1.10E+3 5.09E+2 

Griewank 3.29E+2 5.15E+1 2.93E+1 8.70E+0 4.06E+0 1.98E+0 

Himmelblau 5.11E-2 8.47E-2 4.77E-5 5.21E-5 5.26E-32 1.97E-31 

 

Table 4: Max and Min of 30 runs of CLPSO, SLPSO and TG3P. 

 CLPSO SLPSO TG3P 

Problem Max Min Max Min. Max Min 

Schwefel 9.32E+3 7.70E+3 2.39E+3 5.33E+2 1.01E+4 6.63E+3 

H1 1.74E+0 4.33E-1 2.00E+0 1.90E+0 2.00E+0 2.00E+0 

Cigar 4.84E+10 2.43E+10 5.91E+9 1.63E+9 1.43E+9 2.69E+8 

Ackley 1.89E+1 1.73E+1 1.36E+1 9.17E+0 1.31E+1 8.61E+0 

Sphere 4.55E+4 2.53E+4 5.11E+3 1.80E+3 1.41E+3 3.71E+2 

Plane -9.98E+1 -1.00E+2 -1.00E+2 -1.00E+2 -1.00E+2 -1.00E+2 

Bohachevsky 1.40E+5 6.85E+4 1.68E+4 4.01E+3 2.39E+3 4.68E+2 

Griewank 4.28E+2 2.10E+2 5.31E+1 1.26E+1 1.08E+1 1.43E+0 

Himmelblau 4.61E-1 6.67E-4 2.48E-4 2.06E-6 7.89E-31 0.00E+2 

 

4.5. Discussion  

 

The results shown in Table 3 and Table 4 clearly emphasize the outperforming performance 

of the generated hybrid PSO and RCGA against SLPSO and CLPSO. We achieved better 

results in seven functions from the nine tested functions. Our poor results of the Schwefel’s 
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function is possibly due to using maximum number of iteration during the training process 

which is different from the maximum number of iteration during the evaluation process. And 

the reason behind using few number of iterations in the training process is the expensive 

computational cost. In Table 5, we show the major design features of the best generated 

algorithms for each solved problem.  

 

Table 5: Features of generated hybrid PSO & RCGA. 

Problem Topology Number of  

VUSs 

Mutation Crossover Elite Size 

Schwefel Grid 1 Cauchy/0.4 MPC/0.7 10% 

H1 All 1 0.0 Linear/0.7 5% 

Cigar 4-Cluster 1 Gaussian/0.05  Linear/0.2 10% 

Ackley Grid 1 Gaussian/0.2 PBXa/0.7 5% 

Sphere Tree 2 Gaussian/0.05 Linear/0.2 10% 

Plane Ring 4 0.0 Pbest/1.0 5% 

Bohachevsky Tree 3 Gaussian/0.2 PBxa/0.2 10% 

Griewank Grid 1 Gaussian/0.2 PBxa/1.0 10% 

Himmelblau Tree 2 Cauchy/0.05 MPC/0.7 5% 
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5. Conclusion 

Hyper-heuristic is an emerging methodology that aims to solve optimization problems with 

a high level of generality. Two main classes of hyper-heuristic exist in the literature: Selective 

hyper-heuristics and generative hyper-heuristics. In this study, we focus on developing a 

general, yet efficient generative hyper-heuristic framework. In this study we proposed a 

modified Tree-based Grammar-guided Genetic Programming (TG3P) as a hyper-heuristic 

that operate on a grammar that has the capability of generating adaptive hybrid Particle 

Swarm Optimization (PSO) and Real-coded Genetic Algorithm (RCGA) for solving 

contentious optimization problems. In this study we compared our results with SLPSO 

(Wang et al. 2011) and CLPSO (Liang et al. 2006), and the results show that our proposed 

hyper-heuristic has very competitive efficiency. In the future we aim to further support other 

classes of problems such as, the constrained and the unconstrained multi-objective 

optimization problems. Also we will try to consider other aspects of Particle Swam 

Optimization (PSO) in the grammar such as, the Island-model (Izzo, Ruciński, and Biscani 

2012), new topologies, etc.     
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 ملخص

 

ان كتابة حل خوارزمي لحل مشكلة ما يتطلب معرفة عميقة بأحد الموجهات التجريدية ويتطلب الكثير من الوقت. سنقوم 

ه الفائق والتيفي هذ جال مق على خوارزمايات طب  ت   ا البحث بدراسة منهجية بحث عالية المستوى المسمّاة بمنهجية الموجِّّ

ه التجريدي. تهدف هذه الدراسة لإيج ه والموجِّّ لفئة معينة من المشاكل. اد الحل الخوارزمي الأكثر ملائمة بحث الموجِّّ

ه الفائق يقسم إلى فئتين رئيستين: موجّه فائق انت ه فائق مولِّّد. ستركز الموجِّّ هقائي وموجِّّ الفائق  هذه الدراسة على الموجِّّ

ه الفائق ا خوارزمية سرب الجزيئات و خوارزمية الجينات. لمولِّّد الذي ي طب ق على مكونات المولِّّد، وبشكل خاص على الموجِّّ

البرمجة الجينية الموجهة من أجل توليد حالّّن خوارزمية ممثلة كبنية الشجرة المسمّاة تستخدم هذه الدراسة قواعد معدلة 

الشاملة المستمرة. في هذه الدراسة قمنا بمقارنة  مشاكل التحسينل الجينات هجينتينسرب الجزيئات وخوارزمية 

 خوارزميتنا مع خوارمييتين رائدتين والنتائج أظهرت ان خوارميتنا تتمتع بكفاءة عالية. 


