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Abstract 

One of the major issues of object-oriented programming languages is the lack of 

reclassification mechanisms. Reclassification allows an object to change its class at 

runtime. Object reclassification is desired in applications whose entities need to change 

dynamically at runtime.  

The previous approaches dealt with object reclassification in different ways. But none 

had approached the notion of real entities evolution, where objects can evolve while 

belonging to the same class. This had led to a large number of classes most of the times; 

making the design and the implementation of the intended system more complex.  

The desired evolution of objects should allow objects to evolve automatically at 

runtime, without changing their classes membership. In this work, we present a new 

approach for objects evolution; inspired by some genetics concepts. Objects that belong to 

the same class can change their structure, functions and behaviors at run time 

automatically, while keeping their membership to the same class. A slight environmental 

influence on the proposed evolution process is introduced.  

 

 

Keywords - Bio-inspired model, evolution, genome, genotype, phenotype. 
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 Object evolution is one of the issues that has been addressed recently in the area of 

object-oriented programming. There have been some works conducted in this filed. In this 

work, we present a new approach to be followed in the area of object evolution. 

1.1 Problem Statement 

 Object-oriented paradigm (OOP) was invented for the purpose of physical modeling. 

However, not everyone agrees that there is a direct mapping between real world concepts and 

OOP, since an object-oriented program is considered in many cases as a model of only some 

parts of the world. Bertrand Meyer argues in Object-Oriented Software Construction 

(B.Meyer, 2000) that a program is not a model of the world but a model of some parts of the 

world. Class-typed programming languages do not usually provide reclassification 

mechanisms that allow objects to change their classes membership. Lack of reclassification 

primitives has long been recognized as a practical limitation of object-oriented programming 

(D.Ancona et al, 2007).  

Many applications, such as graphical user interface (GUI) applications, games, social 

databases, etc., require dynamic changes of objects. It is very common to change the value of 

their attributes; this is done by Setter functions (mutators). But what we really need is beyond 

changing the values of the attributes; we need to be able to change the attributes themselves; 

to add and/or remove some attributes. We also need to be able to change the operations and 

the behavior of the objects over their running time. In other words, what we really need is an 

object that evolves automatically at runtime.   

The previous approaches dealt with objects evolution in different ways. But none had 

approached the notion of real entities evolution (phenotype evolution). This had led to a large 

number of classes most of the times; making the design and the implementation of the 

intended system more complex.  

1.2 State Of the Art 

 There have been some attempts to find a solution for the issue of objects evolution which 

refers to changes in objects at runtime. Some previous research works focused on the area of 

re-classification, where an object may change its class at runtime. This has been undertaken 

through languages like Fickle (D.Ancona et al, 2007). There have been some works that dealt 

with object evolution as a restriction of dynamic object reclassification (T.Cohen and J.Gily, 

2009), where evolution here, allows an object to gain, but never lose capabilities.  
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 Other works dealt with Class evolution (E.Johnsen et al, 2009) which is supporting an 

arbitrary set of changes to classes, which may have large number of persistent objects. In 

object-oriented persistent platforms, the changes conducted on classes require modifying 

existing objects; their contents and behaviors. Some works have been conducted in this area, 

in order to change the classes’ instances to conform to the new descriptions. The work 

conducted in (E.Johnsen et al, 2009), presents a language that can introduce new functionality 

and interfaces for classes. In (M.Piccioni et al, 2011), refactoring units and object 

transformers are used to create an instance of the new class from a serialized instance of the 

old class 

 There have been different approaches for extending traditional object model with role 

mechanisms. Roles define extra properties which are added to objects. During its lifetime, an 

object may adopt and abandon roles. The approach in (A.Jodloowski et al, 2004) and (D.Stein 

et al, 2005) assumes that role arranges a hierarchy similar to classes. An object can have 

many roles which can be added/removed at run time. A role has its own attributes and 

behavior. It dynamically “imports” attributes (values) and behavior from its super-roles, in 

particular, from its parent object. In (A.Caetano et al, 2005) and (T.Halpin, 2010), the role 

has been presented as a static entity (structure without operations). 

 In (S.Ghoul, 2010), a bio-inspired objects evolution principle is presented based on the 

experimentation of (D.Meslati and S.Ghoul, 2005) that dealt with software evolution using 

biological concepts. In (D.Meslati and S.Ghoul, 2005) a software system includes a 

structural, behavioral and an ontogenetic dimension. All changes undergone by a software 

system are considered as its ontogenetic dimension. The model of a software system consists 

of a phenotype and a genome. The phenotype (object) captures its structural and behavioral 

dimensions from the genome; while the genome (class hierarchy) captures all changes that 

shape the system to keep it conform to the changing environment and requirements.  

1.3 Motivation 

Several needs, concerning object evolution, come out from studying previous works: 

- We need objects that can change their structures, operations and behavior at run time 

dynamically, without having to change their class membership. 

- We need a well-defined model for this kind of evolution. 

- We need an object-oriented programming language extension to support this model. 



4 

 

 

 

- We need to be able to handle some kinds of accidents that may occur in the environment 

during objects evolution.  

1.4 Contribution 

 This work aims to solve the problem of object evolution, inspired by real entities 

(phenotype) evolution; reducing the gap between real world concepts and computing 

concepts. So, an object may evolve automatically at runtime while keeping its membership to 

the same class. Our work is built on previous works conducted in (D.Meslati and S.Ghoul, 

2005) and (S.Ghoul, 2010). These two precedent works present only a general evolution 

philosophy. In this work, we complete them by modeling the process of object (phenotype) 

evolution. We are concerned with ontogenesis aspect. The phenotype is considered as an 

instance of a specific class, genotype (D.Hammodeh, 2012).  A phenotype can change its 

structure, operations and behavior without affecting its genotype (the genotype remains the 

same as long as no mutation process takes place). Just like a phenotype, once an object is 

created from a specific class; it can evolve automatically during its lifetime, with the ability 

to handle some kinds of environmental accidents. 

 Our study is limited, in this work, to a static (predefined) genetic evolution plan, with a 

slight environmental influence, that includes some common kinds of accidents. During 

objects lifetime, various types of accidents may occur in the environment and affect the 

evolution process and objects, as well. Accidents should be detected first, and then the 

damage should be assessed, to determine what parts of the object are affected by the accident 

(i.e. an accident may occur and could cause a damage in object’s structures). Different 

mechanisms can be used to remove the damage and restore the object to a safe state 

(I.Sommerville, 2011).  

 To illustrate the need for a new approach to be followed in the area of objects evolution, 

consider a domain that represents a group of humans and their interactions. A class Human 

may have attributes like name, age, gender, etc. The values of these attributes could simply 

be changed at runtime. We should take into consideration that in real world, Human is not a 

static entity, as illustrated in Figure (1-1). Human starts as a Child with specific attributes 

such as name, height, weight, birth date. This Child grows up to become a School_student. 

This student will have extra attributes like school_name, hobby…etc. The student grows up 

into an Undergraduate_student, which will have extra attributes and so on. Note that during 

the growth process, not only the attributes are changed, but also the operations and the 
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behaviors are changed; operations may be either gained or lost. For example the operation 

get_HighSchoolAvg will be gained when the Child grows up (evolves) into a Student. Also 

note, that some attributes may be lost as the object evolves. 

 

Figure (1-1):  Object (Phenotype) evolution example  

This kind of domains is traditionally modeled using many classes, i.e. Human, Child, 

Student, Undergraduate_student, Employee...etc., with an inheritance relationship among 

some classes, i.e., Human is a super-class while the rest of classes are sub-classes. To capture 

the process of human evolution, an object has to change its membership between two classes. 

For example an object of type Child may change its membership to belong to Student class. 

This is not practical; since in real world, the growth (evolution) of an object (phenotype) does 

not actually change its class.   

 Our approach solves this problem differently; by only having one composed class. 

Instances of this class can evolve automatically at run time, while remaining in the same 

class. Instances can change (gain/lose) their attributes, functions and behaviors.  With this 

approach, we aim to enhance the area of objects evolution, by applying some genetics 

concepts that are related to phenotype growth. This enhancement will result in a well-defined 

model for objects evolution.  

In this work, we introduce the following concepts: 

- A genetic evolution process that determines a predefined lifecycle of an object (our 

work is limited to predefined evolution). 

- A genetic evolution program that determines the acquired structures and functions, as 

well as the lost ones, for each evolution. 

- Control rules that interpret the genetic evolution program, according to pre-defined 

genetic relations, into an object. 

- Accidents tolerance to handle some accidents that occur during objects evolution. 

- An object-oriented programming language extension to support our model. 

… … 
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1.5 Thesis Layout  

In the following, we present in Chapter Two a case study that will be used along this 

thesis. Chapter Three is devoted to some significant approaches that are followed in the area 

of object evolution. In Chapter Four, we will present our contribution, a Genetics-Based 

Methodology for Object Evolution. An evaluation of our work is presented in Chapter Five. 

In Chapter Six, we finalize with future works and a conclusion of our work. 
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CHAPTER TWO 

A CASE STUDY  
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In this chapter, we introduce a simple and a common case study that will be used 

throughout this thesis. Mainly, there are two types of lists: static and dynamic lists. Stack, 

queue and Random array, are all different forms of lists. According to its needs, an 

application may need to use a static queue or a dynamic queue, a static stack or a dynamic 

stack and so on. Figure (2-1) and Example 1 below illustrate the traditional way which is 

followed in such cases. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2-1): Hierarchy of List example, in a traditional approach -using UML notations. 

 

Example 1: Java code of Static lists, using a traditional approach  

 

abstract class List  

{ 

 protected num_Of_Items; 

 

abstract void Put(int v); 

abstract int Get( );  

abstract bool Full ( ); 

public bool Empty ( ) 

 {...} 

... 

} 
abstract class Static extends 

List  

{  

 protected int[size] A; 

 protected int capacity; 

public bool Full( ) 

{...} 

... 

} 
Public class Stack extends 

Static 

{ 

private int top; 

 

public Stack( ) {...} 

public void Put(int v) {...} 

public int Get( ) {...} 

  ... 

} 

 

 
public class Queue extends 

Static 

{ 

private int front; 

private int rear; 

 

public Queue( ) {...} 

public void Put(int v) {...} 

public int Get( ) {...} 

 ... 

} 

 

 

public class Random extends 

Static 

{ 

public Random( ){ ...}  

public void Put(int v) {...} 

public int Get( ) {...} 

public void Sort ( ) {...} 

public bool Search (int v) {...} 

... 

 

} 
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Some applications may use an object of type static stack; afterwards it would possibly 

want to change the type of the object into a dynamic queue. To capture this need we use a 

genome class (Example 2), which includes the definition of all potential characteristics 

(structures, operations and behaviors). To capture the differences between dynamic and static 

lists, two different variants (genotypes) are used, which are Static_List (Example 3) and 

Dynamic_List. Objects of previous variations are called phenotypes (Example 4). Phenotypes 

are similar to real entities.  

In addition to structures, operations and behaviors, the genome definition contains 

additional information called genetic evolution relations (GER). Some of them are found in 

Example 2 (AreDominant, AreImplied, AreExclusive, etc.).  
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Class List (Type T, int Size)  

 

  // Potential characteristics 

Instance Data 

int age; 

Struct Node { T value; Node *next;} 

ListStr=Alt{int Front;T A[Size];int Last;} 

//Static 

        {Node *Front; Node *Last ;}  

//Dynamic 

      EndAlt 

 

  Instance Methods 

  PutRandom-A(T val):Alt {//in static list}; 

             {//in dynamic list}; 

          EndAlt 

  PutAtEnd-L(T val):Alt {//of static list}; 

                    {//of dynamic list}; 

         EndAlt 

   

  T GetRandom-A( ): Alt {//of static list}; 

                   {//of dynamic list}; 

      EndAlt  

T GetFromBeg-L( ): Alt{//of static list}; 

            {//of dynamic list}; 

        EndAlt 

T GetFromEnd-L(T val:Alt{//of static list}; 

       {//of dynamic list}; 

    EndAlt 

bool Search(T val):Alt{//in static list};                                         

          {//in dynamic list}; 

      EndAlt 

void Sort( ):Alt{//of dynamic list};  

               {//of Static list}; 

    EndAlt 

bool Empty ( ): Alt{//of dynamic list};  

                  {//of static list};  

EndAlt 

bool Full( ):Alt {//of dynamic list};  

                {//of static list}; 

     EndAlt 

// Control process 

Behaviors 

  Alt  

    { //Static 

Q-Beh0 {…} 

Q-Beh1 {…} 

Q-Beh2 {…} 

S-Beh0 {…} 

R-Beh0 {…} 

} 

{ //Dynamic 

Dy-Q-Beh1 {…}  

Dy-B-Beh0 {…} 

Dy- R-Beh0 {…}  

} 

EndAlt 

 
 

 

 

 

Genetic Evolution Relations 

Dominant 

Front, Last, A /*Default priority. In case 

of conflicts the priority is given, 

respectively, to Front, last, and A.*/ 

 

Enable    A; // A must be always enabled 

 

Imply 

Enable  Front Enable (GetFromBeg-L and 

Empty and Full); // Queue 

Disable Front Disable GetFromBeg-L;  

// Rules of elements coherence 

Enable   Last Enable (PutAtEnd-L and Empty 

and Full);    // Stack 

Disable Last Disable PutAtEnd-L;  

// Rules of elements coherence 

Disable (PutAtEnd-L and GetFromBeg-L and 

GetFromEnd-L)Disable (Front and Last);   

// Rules of elements coherence 

Disable Last Disable (Front and 

GetFromEnd-L);  

// Rules of elements coherence 

Enable GetFromBeg-LEnable (PutAtEnd-L and 

Empty and Full); // queue  

Enable GetFromEnd-LEnable (PutAtEnd-L and 

Empty and Full); // stack  

Exclude 

Disable (Front and Last)Enable (PutRandom-

A and GetRandom-A and Search and Sort);  

// simple array 

Enable GetFromBeg-L Disable GetFromEnd-L; 

// Rules of elements coherence 

Enable GetFromEnd-L Disable GetFromBeg-L; 

// Rules of elements coherence 

Enable   (Front and Last) Disable 

(PutRandom-A and GetRandom-A and Search and 

Sort); // Rules of elements coherence 

… 

End List  

Example 2: A Genome for List objects modelled by an extended class concept. Static and Dynamic lists are 

genotypes (variants) of this genome. Real objects (instances) of Random array, Queue, and Stack will be phenotype 

of corresponding genotypes. 
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Genotype Static_List  

 

 // Potential characteristics 

 

Instance Data //Static 

int age; 

int Front; int Last; T A[Size]; 

 

Instance Methods 

PutRandom-A(T val)//in static list 

PutAtEnd-L(T val)//of static list 

T GetRandom( )// of static list 

T GetFromBeg-L( )//of static list 

T GetFromEnd-L( ) //of static list 

bool Search(T val)//in static list 

void Sort( )//of static list 

bool Empty ( ) //of static list 

bool Full ( ) //of static list 

 

//Control process 

Behaviors 

Q-Beh0 {...} 

Q-Beh1 {...} 

Q-Beh2 {...} 

S-Beh0 {...}   

R-Beh0 {...} 

 

Genetic Evolution Relations 

{...}  

 

End Static-List 

 

Example 3: A genotype (variant) Static_List 

of the genome class List (Example 2).  

// Static Queue State 

 

Instance Data //Static  

 int age; 

 int Front;  

 T A[Size]; 

 int Last; 

 

Instance Methods //Static 

 PutAtEnd-L (T val)   

 T GetFromBeg-L ( ) 

 bool Empty ( )   

 bool Full( )   

   

 

Behaviors 

  Q-Beh0{...} 

  Q-Beh1{...} 

  Q-Beh2{...} 

   

  

Genetic Evolution Relations 

 {...} 

 

Example 4: An object (phenotype) Queue of 

variation Static_List (Example 3)  
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LITERATURE REVIEW 
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In this chapter, we present some current approaches in object evolution, followed by 

some fault tolerance approaches. We finalize this chapter with a conclusion about common 

weaknesses which justify our presented work. 

3.1 Object Evolution Approaches  

There have been different approaches to deal with object evolution. In this section we 

consider some approaches that are most related to our approach. 

Object re-classification (D.Ancona et al, 2007). Object re-classification can be defined as 

changing the class membership of an object while retaining its identity, at run time. This 

work tried to come up with new language features; this was achieved through a language 

called Fickle and its extensions FickleII and FickleIII. The suggested language features allow 

objects to change class membership dynamically. 

State classes are possible targets of re-classifications; they represent object’s possible 

states. Root classes are the super-classes of such state classes and declare all the members 

common to them. Fickle provides some annotations before methods bodies, called effects. 

Effects list the root classes of all objects that may be reclassified by invocation of this method. 

Methods with empty effects may not cause any reclassification.
 
 Our case study could be 

represented using this approach as illustrated in Figure (2-1).  Example 5 illustrates how our 

case study can be applied using Fickle language.  Evolution between dynamic list sub-classes 

could be done in a similar way.  

Object evolution (T.Cohen and J.Gily, 2009). Object evolution allows objects to change 

their classes at runtime. It has been considered as a restriction of dynamic object re-

classification. Object evolution, allows an object to gain, but never lose capabilities.  

A new function was introduced in this work, which is called Evolver function. It is used 

as a complementary mechanism to constructors. It contains the additional initialization code 

that separates an object of one class from an object of another. Like constructors; evolvers 

can accept parameters, indicating that an object cannot be evolved into a new class without 

some additional required information. 
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An object evolution operation replaces, at runtime, the type of an object with the type of 

a selected subclass.  Our case study could be represented using this approach as explained in 

Figure (2-1). Example 6 illustrates how our case study is applied using this approach.  

Evolution between dynamic list sub-classes could be done in a similar way.  

  

 

 

 

 

 

State class Stack extends Static 

{   

int top;  

Stack(int c)  

{  

  top = -1; 

num_Of_Item=0; 

  capacity=c; 

} 

void put( int v) 

{ 

top++;  

A[top] = v; 

num_Of_Item++; 

} 

int get ( ) {Static} 

{ 

 int val = A[top]; 

 top--; 

this!!Queue ; this.front= 0;     

this.rear =  top ;  

  // Stack will turn into Queue [1] 

   num_Of_Items--; 

return val; 

} 

…. // the rest of the class 

} 

 

State class Queue extends Static 

{   

int front; 

int rear; 

Queue(int c)  

{ 

 front = 0; rear = -1;  

 num_Of_Item=0; 

 capacity= c; 

 } 

 void put( int v) 

 { 

rear++;  

A[rear] = v;  

 num_Of_Item++; 

 } 

 int get ( ) {Static} 

 { 

   int val = A[front]; 

 front++; 

    this!!Stack ; this.top= front;   

   // Queue will turn into Stack [2] 

 num_Of_Item--; 

   return val; 

  } 

… // the rest of the class  

} 

 

Example 5:  Our case study using Fickle language. In [1], an object of type Stack will 

evolve into a Queue. In [2], an object of type Queue will evolve into a Stack. 

 

 

abstract class List 

{ 

protected int num_Of_Items; 

abstract void  put (int v ) { };  

abstract  int get ( ) { Static};  

abstract  bool Full ( ) { } ;  

bool Empty ( )  

{ retrun (num_Of_Items==0);}    

….   // the rest of the class 

} 

 

abstract root class Static extends 

List 

{ 

protected int[ ] A; 

protected in capacity; 

 

public bool Full( ) 

{ retrun (num_Of_Items==capacity);}    

…   // the rest of the class 

} 
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Class evolution (E.Johnsen et al, 2009).  Supporting an arbitrary set of changes to classes 

which may have large number of persistent objects. At runtime, class redefinitions gradually 

upgrade existing instances of a class and of its subclasses. An upgrade may depend on 

previous upgrades of other classes. This work came up with a modeling language which 

supports the runtime evolution of distributed object-oriented systems. This language has 

dynamic class operations, which can introduce new functionality and interfaces for classes, 

change data structures and implementations for existing functionality, and remove legacy 

code. Our case study could be represented using this approach as explained in Figure (3-1) 

and Example 7.   

class Stack extends Static 

{   

int top;  

Stack( int c)  

{  

  top = -1;  

   num_Of_Item=0; 

  capacity= c; 

} 

void put( int v) 

{ 

top++;  

A[top] = v; 

 } 

int get ( )  

{ 

 int val = A[top]; 

 top--; 

  this  Queue( 0)  ;  

   // Stack will turn into Queue [2] 

return val; 

} 

… // the rest of the class 

} 

 

class Queue extends Static 

{   

 int front; 

 int rear; 

 Queue(int c )  

 { 

 front = 0; rear = -1;  

 num_Of_Items=0; 

 capacity = c; 

 } 

 Queue( int front )// Evolver [1] 

{ 

this.front=front; 

}  

 void put( int v) 

 { 

rear++;  

A[rear] = v;  

 } 

 int get ( )  

 { 

   int val = A[front]; 

  front++; 

   return val; 

  } 

… // the rest of the class  

} 

 

Example 6:  Our case study using Object Evolution approach. In [1], an Evolver function is defined, 

with additional information (front). In [2], an object in Stack state will evolve into a Queue using the 

Evolver function. 

abstract class List 

{ 

  protected int num_Of_Items; 

abstract  void  put (int v ) ;  

abstract  int get ( ) ;  

abstract bool Full ( ) ;  

public bool Empty ( ) 

{return(num_Of_Items==0);} 

… // the rest of the class 

} 

 

 

abstract class Static extends List 

{ 

protected int[ ] A; 

protected int capacity; 

public bool full ( )  

{return num_Of_items==capacity;)} 

 …// the rest of the class 

} 
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Schema evolution (M.Piccioni et al, 2011). Schema evolution allows old objects to fit into 

new classes. In this work, refactoring units are used to modify the attributes. Refactoring is a 

function modifying at most one attribute; it allows an easy representation of the static 

transformations of a class. In addition to refactoring units, object transformers are used to 

create an instance of the new class from a serialized instance of the old class. The generation 

of object transformers from a class transformation can be expressed as transformation 

functions. The representation of our case study using this approach is illustrated in Figure 

(3-1) and Example 7. 

  
 

 

Roles.  There have been different proposals for extending traditional object model with Role 

mechanisms. Roles define extra properties which are added to objects. During its lifetime, an 

object may adopt and abandon roles (D.Stein et al, 2005). 

Usually, the same object may be perceived differently depending on other objects it is 

collaborating with. Role models identify roles as types and describe the network of roles 

required for a specific collaboration to happen. As a player of collaboration, a role defines 

the set of extrinsic properties and behavior necessary to realize its participating 

collaborations. Roles are modeled as classes and represented in class diagrams. Methods and 

Figure (3-1): Classes and objects hierarchy following class evolution and schema evolution approaches. 
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attributes concerning the specific collaboration context can be included in this class diagram 

(A. Caetano et al, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic role concept as mentioned in (A.Jodloowski et al, 2004) assumes that every 

real or abstract entity during its life can acquire and lose many roles without changing its 

identity. Roles appear during the life of a given object, they can exist simultaneously, and 

they can disappear at any moment. Roles are treated as a special kind of objects. Also, as in 

the case of regular objects, classes describing roles can be specialized. The approach 

followed in (A.Jodloowski et al, 2004) assumes that an object can contain many sub-objects 

called roles which can be added/removed at run time. A role has its own attributes and 

behavior. It dynamically “imports” attributes (values) and behavior from its super-roles, in 

particular, from its parent object. Our case study could be represented using this approach as 

illustrated in Figure (3-2). 

Some works have been conducted in the area of Object Role Modeling (ORM). ORM 

includes graphical and textual language for modeling and querying information at the 

class Queue extends Static 

{   

int rear; // top is renamed into rear 

int front; //New attribute is added  

Queue(int c )//Updating the constructor 

{ front=0; rear= -1   

  num_Of_Items=0; 

  capacity= c; 

}  

void put( int v)//change implementation 

 { 

rear++;  

A[rear] = v;  

 num_Of_Item++; 

} 

int get ( )// change implementation 

{ 

   int val = A[front]; 

   front++; 

 num_Of_Item--; 

   return val; 

  } 

 … // the rest of the class  

} 

 

 

class Stack extends Static 

{   

int top;  

Stack( int c)  

{  top = -1; 

   num_Of_Items = 0;  

   Capacity=c; 

} 

void put( int v) 

{ 

top++;  

A[top] = v; 

num_Of_Items++; 

} 

int get ( )  

{ 

 int val = A[top]; 

 num_Of_Items--; 

 top--;  

 return val; 

} 

…  // the rest of the class 

} 

 

 

Example 7: Updating Stack class: Adding a new attribute front, renaming top into rear, changing the 

implementation of put and get; resulting in class Queue. Object S1 of type Stack is modified to fit with the 

new class Queue. 

// S1 Instance of Stack 

class 

  : Stack 

 top= 3;  

 num_Of_Items= 10; 

 capacity = 20; 

 

// S1 will be modified to 

fit with Queue class 

  : Queue 

 rear= 3;  

 front=  0; 

 num_Of_Items = 10; 

 capacity=20; 
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conceptual level as well as procedures for designing conceptual models, transforming 

between different conceptual representations (T.Halpin, 2010). However, the term object is 

used in ORM, in a way that is different from the way it is used in an object-oriented model 

(OOM). In OOM objects are dynamic entities, not static ones, i.e. objects have operations in 

addition to structures. 
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Our case study could be represented using this approach as it follows in Figure (3-3): 

 

 

Figure (3-2): Our case study using dynamic roles 
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Figure (3-3):  our case study using ORM 
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Figure (3-4):  The POE model. Partitioning the space of bio-inspired 

systems along three axes: Phylogeny, Ontogeny, and Epigenesis concepts  

Bio-inspired approach. The work of (D.Meslati and S.Ghoul, 2005) presents a model for 

the change process of software systems based on biological concepts. Their approach 

proposes a model where anticipated and unanticipated changes are modeled by a collection 

of fine grained instructions called genes. 

The software system consists of structural, behavioral and a third dimension 

called ontogenesis. All changes undergone by a software system are considered as 

its ontogenetic dimension.  In (S.Ghoul, 2010), a bio-inspired integrated model is presented, 

and the space of bio-inspired systems is partitioned into three axes: phylogeny, ontogeny, 

and epigenesis (Figure 3-4). The ontogenetic dimension involves the growth or construction 

of a phenotype (single individual) from its own genotype (its genetic material), essentially 

without environmental (peristase) interactions.  

 

 

 

 

 

  

The genome (D.Hammodeh, 2012), (S.Ghoul, 2010) of a species includes the definition 

of all its possible characteristics (organic, functional, and behavioral) along with the 

information controlling their coherence. A genotype (D.Hammodeh, 2012), (S.Ghoul, 2010) 

is a coherent partition of genome characteristics, obtained by selective inheritance 

(D.Hammodeh, 2012). This coherence deals with selecting no contradictory characteristics 

describing exactly a partition of objects (phenotypes) of the associated species. A phenotype 

(S.Ghoul, 2010) is an instance of a given genotype. In the artificial world, several phenotypes 

may be instances of the same genotype. In real world, from each genotype only one instance 

might be developed. The physical development and phenotype of organisms can be thought 

of as a product of genes interacting with each other and with the environment. 

The genome contains additional information called genetic evolution relations. These 

relations are composed of control genes which enforce and control the coherence of genome 

functions by establishing and managing dependencies relations between its elements 

(S.Ghoul, 2010). The following are some common identified control genes: 

Phylogeny (P) 

Ontogeny (O) 

Epigenesis (E) 



21 

 

 

 

AreExclusive genes: These genes identify the characteristics that are exclusive. A 

characteristic excludes another if they are alternatives (versions) or they are incompatible.  

AreExclusive gene: If Enable organ definition/function gene Then 

      Disable organ definition/function gene 

AreImplied genes: A characteristic implies another if its presence in a phenotype implies the 

presence of the other. AreImplied genes ensure the implication between enabled and disabled 

genes.  

AreImplied gene: If Enable/Disable organ definition /function gene1 Then  

   Enable/Disable organ definition/function gene2 

 

3.2 Fault Tolerance Approaches 

In this section we consider some fault tolerance approaches, on which our fault tolerance 

technique is based.   

In software engineering, critical software systems must be fault tolerant. This is required 

when there are high availability requirements or when system failure costs are very high. 

Fault tolerance means that the system can continue in operation in spite of software failure. 

Even if the system has been proved to conform to its specification, it must also be fault 

tolerant as there may be specification errors or the validation may be incorrect 

(I.Sommerville, 2011). Sommerville defines a fault tolerance process as it follows:  

Fault detection: The system must detect that a fault (an incorrect system state) has occurred. 

Damage assessment: The parts of the system state affected by the fault must be  

detected. 

Fault recovery: The system must restore its state to a known safe state. 

Fault repair: The system may be modified to prevent recurrence of the  

fault. As many software faults are transitory, this is often unnecessary. 

In biology (B.Alberts et al, 2007), although the DNA is a highly stable material, as 

required for the storage of genetic information, it is a complex organic molecule that is 

susceptible to accidents, even under normal cell conditions. Spontaneous changes may lead 

to mutations if left unrepaired. The double-helical structure of DNA is ideally suited for 

repair because it carries two separate copies of all the genetic information-one in each of its 

two strands. Thus, when one strand is damaged, the complementary strand retains an intact 
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copy of the same information, and this copy is generally used to restore the correct 

nucleotide sequences to the damaged strand. 

3.3 Literature Review Conclusion 

There have been different approaches to handle objects evolution. The followed 

approaches did not conform to real entities evolution; the gap between their concepts and 

real world concepts was large. This has led to some insufficiencies; we had to deal with 

large number of classes, unnecessary hierarchies; causing the design and the implementation 

to become more complex. An object of real world may evolve during its lifetime without 

changing its membership, and without the need to update its original class. It has become 

clear that we need to apply biological concepts on objects evolution to come up with good 

and acceptable results. The two works (D.Meslati and S.Ghoul, 2005) and (S.Ghoul, 2010), 

provided a general background in both, bio-inspired modeling and development. Our work 

builds on these two works.  
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CHAPTER FOUR 

A GENETICS-BASED METHODOLOGY  

TO OBJECT EVOLUTION 
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Artificial objects, just like biological entities, evolve organically and behaviorally. The 

organic evolution deals with the structures and functions of objects, while the behavioral 

evolution deals with the behavior of objects. Genetics-based evolution is predefined and pre-

planned in a genetic evolution process that defines the object lifecycle. This evolution may 

deal with objects or with the evolution process itself (this kind of evolution is out of scope of 

this work).  

In the following, we introduce some genetics-based evolution concepts based on the 

needs stated in (D.Meslati and S.Ghoul, 2005) and (S.Ghoul, 2010). An object may evolve 

inside one genotype, and/or between different genotypes. This evolution can be organically 

(structures and functions) and behaviorally.  

4.1 Genetics-Based Evolution Methodology 

The proposed genetics-based evolution methodology is illustrated in Figure (4-1). It is 

based on genetic evolution programs specification, genetic evolution processes specification, 

genetic evolution relations specification and genetic evolution control. Firstly, the genetic 

evolution information that exists within the selected genotype is used as an input to the 

genetic evolution control, in order to create a phenotype (instance of a genotype). This 

process is only executed once; at the creation of phenotypes (age=0). The genetic evolution 

information within the created phenotype is used as an input to the genetic evolution control, 

resulting in an evolved phenotype (age > 0). This process is executed each time a phenotype 

evolves, till it reaches the termination age x, where 0 < age <x.  

 
Figure (4-1): Genetics-based evolution methodology  
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If the genetic evolution control is executed without failures, then the resulted evolution is 

guaranteed to be complete and accurate.  

 

4.2 Genetics-Based Evolution Concepts  

In this section, we will introduce some key concepts of genetics-based methodology to object 

evolution, which will be used throughout this study. 

- Genetic Evolution Program (GEProg) 

A genetic evolution program is a program that specifies what structures and operations are 

needed for a certain evolution (Example 8). This program is specified as it follows: 

 

GEProg <Id> 

{ 

 Enable (<Structure>,)* | (<Function>,)*; 

 Disable (<Structure>,)*| (<Function>,)*; 

} 

 

Where: 

“|” means OR, and “*” means repeated once or more. 

Enable is a predefined operation that allows an object of a genotype to hold enumerated 

structures or functions.  

Disable is a predefined operation that allows an object to lose enumerated structures or 

functions. At the initial state, all the structures/functions of the genotype are disabled. The 

disabled structures/functions are inactive. Inactive elements cannot be used until they are 

enabled. 

 

- Genetic Evolution Relations (GER) 

In addition to the genetic relations that are mentioned in Chapter One (AreImplied, 

AreExculsive, etc.), we present a new genetic relation to insure the coherency of objects. 

For some objects, the existence/non-existence of an element X depends on the existence 

of element Y and non-existence of element Z. The new defined rule will be helpful in 

similar cases. 

Compound genes: These genes are considered as a combination of AreImplied genes and 

AreExclusive genes:  

If Enable (organ definition/function gene) and Disable (organ definition/function gene) 

Then Enable/Disable (organ definition/function gene). 

Example: Enable Last and Disable Front  Enable GetFromEnd-L; //stack 
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- Genetic Evolution Process (GEProc) 

A genetic evolution process is a process that defines the lifecycle of an object, by 

determining what evolution is needed at what time (Figure 4-4).  This process is specified 

as it follows: 

GEProc <id> 

{ 

((age = Ai): GEProgi , Behaviori )*;  

   } 

 

Where Ai is an age milestone, GEProgi is the corresponding genetic evolution program to 

achieve, Behaviori is the evolved-to behavior (Figure 4-2). And “*” means repeated once or 

more. 

 

 

 

 

 

The age is a hidden attribute of an object inherited automatically from its genotype. It is 

initialized to zero at its creation. Each time an object is used this attribute is updated by 

computing the difference between the actual date and the date of its generation. The unit of 

age can be measured by year, month, day, minute, second, etc.    

- Genetics-Based Evolution Control (GEC) 

The interpretation of an evolution program is mainly supported by the genetic evolution 

relations which ensure the coherence of the evolution process. The inter/intra relation 

coherence is ensured at its definition or update. 

The genetics-based evolution control enforces the following rules on its associated 

genotype (Example 3) and phenotype (Example 4). 

 Initial state: Elements and coherence  

R1. Each object holds, from its genotype, an initial set of structures and functions 

defined by its evolution program at its creation. All these structures/functions are 

disabled. 

R2. Let Enabled_List be the list of the structures and functions to be enabled.  

age = 0        age = A1                  age = An 

GEProg0      GEProg1                      GEProg n      

Beh0             Beh1                              Beh n 

             Object

Genotype

Figure (4-2): Genetic evolution process   
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Enabled_List  structures and functions to be enabled (imposed by an Enable clause in 

the GEProg); 

R3. Let Disabled_List be the list of the structures and functions to be disabled. 

Disabled_List  structures and functions to be disabled (imposed by a Disable clause 

in the GEProg); 

R4. The coherence of Enabled_List and Disabled_List is checked: Enabled_List  

Disabled_List = Ø. Each element of Enabled_List does not imply directly or indirectly 

an element of Disabled_List. 

 Enable/Disable List processing by scanning genetic evolution relations 

R5. The processing of enable/ disable list is obtained, by scanning the genetic 

evolution relations as it follows: 

- For each element in the Disabled_ List, not processed yet: (1) Disable the 

element.  (2) Find disabled structures and disabled functions associated with it. 

Add them to Disabled_List. (3) Find enabled structures and functions associated 

with the element. Add them to Enabled_List. 

- For each element in the Enabled_List, not processed yet: (1) Enable the element.  

(2) Find enabled structures and enabled functions associated with it. Add them 

to Enabled_List. (3) Find disabled structures and functions associated with the 

element. Add them to Disabled_List. 

- Check for coherence when adding new elements to the lists. 

  Loop on Enable list and Disable list processing 

R6. Repeat R4 and R5 until all their elements are processed. 

 Final state 

R7. Coherence errors cause failure of the GEC. If this process succeeds, Enabled_List 

will contain the structures and functions which are enabled, Disabled_List will contain 

the structures and functions which are disabled. 

Figure (4-3) shows the GEC algorithm, written in pseudo code. 

 

4.3 Genetics-Based Evolution Scope  

In the genetics-based methodology to object evolution, an object can evolve inside its 

genotype, or between different genotypes (from one genotype to another). 
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-  Evolution Inside a Genotype 

Inside a genotype, an object may evolve organically by holding/losing structures and 

functions of its actual genotype and behaviorally by holding/losing behaviors. Just like 

natural evolution, this evolution is pre-planned in a genetic evolution process, inherent to a 

genotype, defining the genotype objects lifecycle.   

 

 

 

 

 

 

       

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

At its creation, each object holds its own lifecycle that determines the needed evolution 

to be achieved genetically and automatically. Once an object is created, it holds an initial 

genetic information subset of its genotype; defined explicitly and implicitly by its initial 

genetic evolution program (structures, and functions). Example 8 shows two evolution 

programs; StQueue and StStack. 

Figure (4-3): GEC algorithm, in pseudo code. 

FUNCTION GEC( ) 

BEGIN 

Read GEProg( ); 

Add to_enable structures,functions to Enabled_List;  

//to_enable:  elements preceded by Enable clause  

 

Add to_disable structures,functions to Disabled_List; 

//to_disable: elements preceded by Disable clause  

 

coh_status = Check_coherence( );  

//call Check_coherence function  

 

IF Coh_status= success THEN Process_elements( );  

END  FUNCTION 

FUNCTION Scan_GER(string element ) 

BEGIN 

 

//imply   

IF element ∈ imply_List THEN 
value = evaluate Left hand side Expression;  

//True or False  

IF value = True And element ∈ Enabled_List THEN 
Add associated elements to Enabled_List; 

IF value = True And element ∈ Disabled_List THEN 
Add associated elements to Disabled_List; 

//exclude 

IF element ∈ exclude_List THEN 
value = evaluate Left hand side Expression; 

//True or False 

IF value=True and element ∈ Enabled_List  THEN  
Add associated elements to Disabled_List; 

IF value= True and element ∈ Disabled_List  THEN 
Add associated elements to Enabled_List; 

 

//compound 

IF element ∈  compound_List THEN 
    value = evaluate Left hand side Expression; 

    //True or False 

    IF value = true THEN  

enable/disable associated element  

//according to the defined relation   

 

END FUNCTION 

 

 

 

FUNCTION Check_coherence( )  

BEGIN 

IF element E ∈ (Enabled_List ∩ Disabled_List) 
THEN 

 return fail; 

ELSE  

   return success; 

END IF  

END FUNCTION 

 

 

FUNCTION Process_elements( )  

BEGIN   

  FOR each element E ∈ Enabled_List  And E not 
processed 

BEGIN 

Enable E; 

Scan_GER( E ); 

coh_status= Check_coherence( ); 

 

IF coh_status = success Then 

Mark E as processed; 

    ELSE 

 Return fail; 

END IF 

END FOR    

       

  FOR each element E ∈ Disabled_List And E not 
processed 

BEGIN 

Disable E; 

Scan_GER( E ); 

coh_status= Check_coherence( ); 

 

IF coh_status =  success THEN 

Mark E as processed; 

    ELSE 

 Return fail; 

END IF 

END FOR   

END FUNCTION 
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Each object has an age defining milestones through its lifecycle. At each milestone, the 

object evolves automatically from one state to another. Naturally, the environment may 

influence this evolution at any time during the object lifecycle. This influence, carried out 

genetically, is out of scope of this work. While the evolution by environment influence 

affects specific objects, the genetic evolution relates to all objects of the associated 

genotype. Figure (4-4) shows a genetic evolution process Static, associated to the genotype 

Static_List (Example 3); defined textually and graphically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The behavior of an object is associated to functions, so the behavioral evolution is a 

consequence of structural and functional evolution. A behavior of an object is an 

organization, in the time, of its state enabled functions. So, to each state is associated a 

behavior, and thus to the organic evolution is associated a behavior evolution (Figure 4-4). 

However, even at the same state, the object behavior may evolve in the time, separating it 

from next state. We define a phenotype behavior as it follows: 

Behavior <id> 

{ 

<function>  ((<condition>)* <function>,)*; 

} 

Where: 

  : The right side functions will be executed after the left side functions.  

GEProc Static 

{  (age = 00): StQueue; Q-Beh0; 

   (age = 05): Q-Beh1; 

   (age = 10): StStack; S-Beh0; 

   (age = 20): StRandom; R-beh0; 

   (age = 30): StQueue; Q-Beh2; 

} 

Figure (4-4):   A genetic lifecycle (GEProc) of an object of Static_List genotype. 

 

    Q-Beh0   Q-Beh1   S-Beh0                  R-Beh0               Q-Beh2

StQueue StQueueStRandomStStack

age00  10       20  30

 

GEProg StQueue 

{  

Enable front;  

Enable Last; 

} 
 

 

GEProg StStack 

{  

Enable Last;  

Disable Front; 

} 

Example 8: Static Queue and Static Stack genetic evolution programs    

       : Represents the behavior at a given point of time. 

         : Represents a state. 

         : Represents the evolution between two states. 
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(     ) *: Repeated once or more.  

The behavior Q-Beh0 associated to a List in a StQueue state may be defined graphically and 

textually as it follows in Figure (4-5):  

 

 

 

 

 

 

 

 

 

 

 

 

The behavioral evolution process is enforced by the following rules: 

R1. All the involved functions must be enabled, at the associated evolution state, else the 

process stops. 

R2. Labeled arrows are conditions on function outputs. Unless these conditions are met, the 

target functions will not be executed. 

The following application program creates an object List1 from the genome (class) List 

(Example 2), holding the features specified by the genotype Static_List (Example 3) and 

having the lifecycle defined by the GEProc Static (Figure 4-4) 

{ … 

   List Static_List List1= New (GEProc Static);  

/* List is the genome class. 

Static_List is a genotype of List, defining potential characteristics to be held by objects of 

this genotype.  

List1 is an instance (phenotype), inheriting its characteristics from List according to 

Static_List requirements. 

GEProc Static is the GEProc defining the lifecycle of List1(Figure 4-4). 

List1 will have an initial state StQueue, defined by the GEProg StQueue (Example 8) and 

will behave according to the behavior Q-Beh0 (Figure 4-5)  

*/ 

. . .  // List1 is used as a static Queue 

} 

True & age >0 

True & 

age>0

Behavior Q-Beh0 

{ 

Evolve (age=x) PutAtEnd-L; 

PutAtEnd-L (age>0) Full, (age>0) 

GetFromBeg-L; 

Full (False)&(age>0) PutAtEnd-L, (True)& 

(age>0) GetFromBeg-L; 

GetFromBeg-L (age >0) PutAtEnd-L, (age >0)  

Empty; 

Empty (False)& (age >0)  GetFromBeg-L, 

(True) &(age>0) PutAtEnd-L, (age=y) 

Terminate; 

} 

False & 

age >0

Empty

Full

PutAtEnd-L GetFromBeg-L

Figure (4-5):  Behavior Q-Beh0 of an object in StQueue state. x is the age when an object evolves into 

Q-beh0 state , y is the age when an object evolves into another state according to its GEProc. 

False & 

age>0 

>0

Evolve

age=y Terminate

age>0
age>0

age>0
age>0

age = x
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At age = 10, StStack GEProg will be activated (as illustrated in Figure 4-4). It was designed 

for changing StQueue state to StStack state (Example 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Evolution Between Genotypes (Metamorphosis) 

Between genotypes an object may evolve by losing structures, functions, and behaviors 

of its actual genotype and holding structures, functions, and behaviors of another genotype.  

The evolution inside a genotype was studied previously, so this part deals with the 

evolution from one genotype to another, which we term by the metamorphosis, i.e.  From 

static Queue list to dynamic Queue list, from dynamic Random list to static Random list, 

etc. 

A metamorphosis is an evolution with change (increase, destruction) in structures, 

functions and behaviors, whereas the evolution is only in enabling or disabling already held 

(from the corresponding genotype) structures, functions and behaviors. Figure (4-6) shows 

a genetic evolution process of an object that evolves between two genotypes, Static_List 

and Dynamic_List, defined textually and graphically. The Dynamic_List genotype of class 

List (Example 2) is defined in Example 10. 

 

// StQueue State 

Instance Data 

int age; 

  [Enabled] int Front;  

  [Enabled]  T A[Size]; 

  [Enabled] int Last; 

 

Instance Methods //Static 

  [Disabled] PutRandom-A(T val)  

  [Enabled]  PutAtEnd-L(T val) 

  [Disabled] T GetRandom() 

  [Enabled]  T GetFromBeg-L() 

  [Disabled] T GetFromEnd-L ()   

  [Disabled] bool Search(T val) 

  [Disabled] void Sort()  

  [Enabled] bool Empty()  

  [Enabled] bool Full() 

  

Behaviors 

  [Disabled] Q-Beh0 

  [Enabled]  Q-Beh1 

  [Disabled] Q-Beh2 

  [Disabled] S-Beh0 

  [Disabled]  R-Beh0 

   

Genetic Evolution Relations {…} 

Genetic Evolution Programs {…} 

Genetic Evolution Processes{…} 

Genetic Evolution Control {...} 

Metamorphosis Programs {…} 

 

// StStack State 

Instance Data 

int age; 

  [Disabled] int Front;  

  [Enabled]  T A[Size]; 

  [Enabled] int Last; 

 

Instance Methods //Static 

  [Disabled] PutRandom-A(T val)  

  [Enabled]  PutAtEnd-L(T val)  

  [Disabled] T GetRandom()  

  [Disabled] T GetFromBeg-L()  

  [Enabled]  T GetFromEnd-L()   

  [Disabled]  bool Search(T val) 

  [Disabled]  void Sort() 

  [Enabled] bool Empty()  

  [Enabled] bool Full() 

  

Behaviors  

  [Disabled] Q-Beh0 

  [Disabled] Q-Beh1 

  [Disabled] Q-Beh2 

  [Enabled] S-Beh0 

  [Disabled] R-Beh0 

   

Genetic Evolution Relations {…} 

Genetic Evolution Programs {…} 

Genetic Evolution Processes{…} 

Genetic Evolution Control {...} 

Metamorphosis Programs {…} 
 

 

Example 9: Phenotype evolution from StQueue to StStack (at age10). 
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Genotype Dynamic_List 

// potential characteristics   

Instance Data 

int age; 

Struct Node { T value; Node *next;} 

Node *Front; Node *Last; 

Instance Methods 

PutRandom-A(T val)  //in dynamic list 

PutAtEnd-L(T val) //of dynamic list 

T GetRandom( ) //of dynamic list 

T GetFromBeg-L( ) //of dynamic list 

T GetFromEnd-L( )   //of dynamic list 

bool Search(T val) //in dynamic list 

void Sort( )  //of dynamic list 

bool Empty( )  //of dynamic list 

bool Full( )  //of dynamic list 

 

//control process 

Behaviors 

  Dy-Q-Beh0 {…} 

Dy-S-Beh0  {…} 

  Dy-R-Beh0 {…}  

 

Genetic Evolution Relations 
{…} 

Genetic Evolution Programs 

{…} 

Genetic Evolution Processes 
{…}  

Genetic Evolution Control 

{…} 

Metamorphosis Programs 
{…} 

End Dynamic_List 

Example 10:  A Dynamic list genotype  

  : Represents the behavior at a       

given point of time. 

 

      : Represents a state. 

     : Represents a transition between 

different genotypes. 
 

 

GEProc Static_Dynamic 

{  (age= 00): StQueue, Q-Beh0;    

   (age=10): StQueueToDyQueue, Dy-Q-Beh0; 

/*StQueueToDyQueue is a Metamorphosis program from 

StQueue to DyQueue*/ 

   (age=20): DyStack, Dy-S-Beh0; 

   (age=30): DyStackToStRandom, R-Beh0; 

/* DyStackToStRandom is a Metamorphosis program from 

DyStack to StRandom */ 

   (age=40): StStack, S-Beh0;      

} 

Figure (4-6):  A genetic lifecycle of an object evolving between Static_List and Dynamic_List genotypes, by 

metamorphosis programs. 

 

StStack

 DyRandom DyRandomDyStackDyQueu

e

age

      Q-Beh0                                                  R-Beh0                S-Beh0

StQueue StRandom

      Dy-R-Beh0        Dy- Q-Beh0     Dy-S-Beh0                 Dy- R-Beh1

00              10                20           30                     40

Evolution inside the 

genotype Static_List 

Evolution inside the 

genotype Dynamic_List 

00            10          30           40

age
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The metamorphosis of an object O1, of a genotype G1 to a genotype G2, is a process 

which may change O1 completely (i.e. destruction of old structures and holding new ones). 

It operates like a conversion of O1 to a new object O2 of the genotype G2, with a maximum 

of information transition, such as identity, age, lifecycle, persistent state information, etc. A 

metamorphosis program is defined as it follows: 

Metamorphosis_Program<Id> 

{ 

 Metamorphose to genotype <genotype_Id>; 

 At the Evolution State <GEProg_1> to the Evolution State <GEProg_2>; 

 Information transition ensured by the function <Funct_Id>; 

} 

Where: 

genotype_Id: Target genotype 

GEProg_1: Current GEProg. 

GEProg_2: Target GEProg. 

Funct_Id: The identifier of a user defined function ensuring the transition of specific 

persistent information from O1 to O2. 

The metamorphose StQueueToDyQueue may be defined as it follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 12 shows the translation of StQueue into a DyQueue done by the metamorphosis 

program StQueueToDyQueue. 

 

 

 

 

 

 

Metamorphosis_Program  StQueueToDyQueue 

{ 

Metamorphose to genotype Dynamic_List; 

At the Evolution State StQueue to the Evolution State 

DyQueue;  

Information transition ensured by the procedure 

StQueueToDyQueueTrans; 

procedure StQueueToDyQueueTrans 

{ 

   while (not StQueue.Empty( ))  

   {DyQueue.PutAtEnd (StQueue.GetFromBeg( ) ;} 

} 

} 

Example 11:  Metamorphosis program StQueueToDyQueue 
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The following application program creates an object Q1 from the genome (class) List 

(Example 2), holding the features specified by the genotype Static_List (Example 3) and 

having the lifecycle defined by the GEProc Static_Dynamic (Figure 4-6) 

 { … 

  List Static_List Q1= New (GEProc  Static_Dynamic); 

  /* List is the genome class 

Static_List is a genotype of List, defining potential characteristics to be held by objects of 

this genotype.  

Q1 is an instance (phenotype), inheriting its characteristics from List according to 

Static_List requirements. 

GEProc Static_Dynamic is the GEProc defining the lifecycle of Q1(Figure 4-6). 

Q1 will have an initial state StQueue, defined by the GEProg StQueue (Example 8) and 

will behave according to the behavior Q-Beh0 (Figure 4-5) */ 

 

 . . .  // Use of Q1 as static Queue 

} 

Suppose an application program that uses the already created object Q1, at age = 10.  The 

metamorphosis StQueueToDyQueue will be interpreted to metamorphose the Static_List Q1 

to Dynamic_List Q1. 

// genotype Static_List  

// StQueue State 

Instance Data 

  int age;  

[Enabled] T A[Size]; 

  [Enabled] int Front;  

  [Enabled] int Last; 

 

Instance Methods //Static 

  [Disabled] PutRandom-A(T val)  

  [Enabled]  PutAtEnd-L(T val)   

  [Disabled] T GetRandom() 

  [Enabled]  T GetFromBeg-L() 

  [Disabled] T GetFromEnd-L()   

  [Disabled] bool Search(T val)  

  [Disabled] void Sort()   

  [Enabled] bool Empty()   

  [Enabled] bool Full()   

  

Behaviors 

[Enabled]  Q-Beh0 {...} 
  [Disabled] Q-Beh1 {...} 

  [Disabled] Q-Beh2 {...} 

  [Disabled] S-Beh0 {...} 

  [Disabled] R-Beh0 {...} 

 

Genetic Evolution Relation {...} 

Genetic Evolution Programs {...} 

Genetic Evolution Processes{...} 

Genetic Evolution Control {...} 

Metamorphosis Programs {...} 

// genotype Dynamic_List  

// DyQueue State 

 Instance Data 

int age; 

Struct Node  

{ T value; Node *next} 

 [Enabled] Node *Front; 

 [Enabled] Node *Last; 

 

Instance Methods // Dynamic 

  [Disabled] PutRandom-A(T val)   

  [Enabled]  PutAtEnd-L(T val)  

  [Disabled] T GetRandom() 

  [Enabled]  T GetFromBeg-L() 

  [Disabled] T GetFromEnd-L()   

  [Disabled] bool Search(T val)  

  [Disabled] void Sort()   

  [Enabled]  bool Empty() 

  [Enabled]  bool Full()  

  

Behaviors 

  [Enabled]  Dy-Q-Beh0 {...} 

[Disabled] Dy-S-Beh0 {...} 

  [Disabled] Dy-R-Beh0 {...}  

 

Genetic Evolution Relation {...} 

Genetic Evolution Programs {...} 

Genetic Evolution Processes{...} 

Genetic Evolution Control {...} 

Metamorphosis Programs {...} 

 

Example 12:  Translation of Queue from Static List into Dynamic List 

 

StQueueToDyQueue
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The interpretation of the genetic metamorphosis program StQueueToDyQueue will translate 

the precedent application program to an internal form as it follows: 

{ … 

 Static_List Q1; // Q1.age = 0 

 Q1= New StQueue ( ); // Current GEProg is StQueue 

  ….   // Use of Q1  

  // At age= 10, Q1 should evolve into DyQueue 

// Generation of a new object Q1_New, of the Dynamic_List variation  

Dynamic_List Q1_New;  

Q1_New = New DyQueue( );.  // DyQueue is the target GEProg 

 

Q1_New.GEProc= Q1.GEProc; // Genetic information transfer 

// Specific information transfer     

Q1_New.age= Q1.age;  

While (not Q1.Empty( )) do  //  

{ Q1_New.PutAtEnd-L  (Q1.GetFromBeg-L( ));} 

    . . .  [1] // Substitution of Q1 by Q1_New in [1]. 

} 

 

Note that applications must always use objects according to the state of their actual Age.  

 

4.4 Tolerating Evolution Accidents 

Some environmental and internal factors cause different kind of accidents. A key element, 

in handling accidents, is detecting them at early stages.  In order to achieve that, we are 

creating a checkpoint each time an object evolves. After detecting accidents, we should 

assess the damage caused by them, so that we can find a proper mechanism to repair it (if 

possible).  

 

Accidents affecting the genetic evolution program  

Some accidents may affect the genetic evolution program, causing some changes in it; i.e. an 

enabled element may become disabled and a disabled element may become enabled. 

Example: Consider the following factor that affects StQueue genetic evolution program: 

{Disable front;} 

Disabling front disables GetFromBeg-L. This means that queue structure and operations are 

completely changed. 

 

Accidents affecting the genetic evolution process 

Some external factors could cause a failure in calling the GEProg at a certain point of time; 

this will cause the evolving object to remain at the same state without evolving to the next 
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state. Sometimes though the GEProg is successfully called, while being executed, some 

errors may occur and stop its execution. 

Example: Consider the genetic evolution process in Figure (4-4). 

Assume that at age 10, the GEProg StStack is damaged and could not be called. An object of 

this process will remain in StQueue state without evolving to StStack state.

Accidents affecting the Genetic evolution relations 

Some accidents cause changes (update, deletion) in existing genetic relations. This kind of 

changes usually leads to an incoherency within predefined states or to new undefined states. 

Example: Consider an environmental factor having the following effect on genetic evolution 

relations: 

{Disable Front   Enable GetFromBeg-L;} 

Disabling Front should disable GetFromBeg-L, but when this effect takes place, disabling 

Front will enable GetFromBeg- L. 

Accidents affecting objects 

This kind of accidents usually happens when the object is exposed to certain factors that 

cause the enabled structures/operations/behaviors to become disabled, or cause the disabled 

structures/functions/behaviors to become enabled. This leads to an incoherent state. Objects 

within this state cannot be used, until they are repaired.   

In some cases, accidents do not only affect enabled/disabled elements within the object, but 

they affect the structures, operations and behaviors themselves; causing an error when these 

structures, operations and behaviors are being used without a proper repair.

Example: Consider an environmental factor having the following effect on an object in 

StStack state: 

{Enable front;} 

Enabling front enables GetFromBeg-L, Empty and Full. This is incoherency, since objects in 

a StStack state should not have front enabled as an attribute and GetFromBeg-L enabled as an 

operation. 

How to detect an accident, assess the damage and repair it? 

Each object evolution age represents a checkpoint for that object. At each checkpoint, a 

checking program will be running, whose task is detecting all kind of accidents that have 

been previously defined. If an accident is detected, a function will be running to determine 
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what parts of the object are damaged. At the end, another function will be running to repair 

the damage and eliminate the factors that caused the accident (not always applicable, since 

we cannot control and eliminate environmental factors). 

In Figure (4-7), we take accidents that affect GEProg as an example, to show how accidents 

might be detected, then how the damage might be assessed and finally how the GEProg might 

be repaired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PROGRAM Tolerate_Accidents 

BEGIN 

 

Struct Result {Bool exist; String name ;} 

Declare Result A[ ];  

 // Declare an Array of type Result    

... 

Call Detect ( ) // call Detect function  

FOR i= 0 TO Length of A  

IF  A[i].exist = False THEN 

//If an accident is detected  

     Damage=call Assess(A[i]); 

       //Call the function Assess  

     Call Fix(Damage)//Fix the damage 

END_IF 

END_FOR 

...// the rest of the program 

END_PROGRAM 

 

 

FUNCTION Assess(A[ ])  

//This function locates the damage 

 

BEGIN 

Read (A[i]); 

Return A[i].name //The name of the Damaged Part; 

END_FUNCTION 

 

FUNCTION Fix( )  

//This function fixes the damage 

BEGIN 

IF Damage = GEProg THEN 

 Get the Genome’s copy of this GEProg; 

 Replace Current GEProg with Genome’s copy; 

END_IF 

... // the rest of the Algorithm  

END_FUNCTION 

 

 

FUNCTION Detect( )   

//This function detects accidents  

BEGIN 

 

X = Get current GEProg; 

N = Get the name of current GEProg; 

Y = Get the GEProg called N from the Genome; 

... 

FOR i = 0 TO Length of Y 

 

IF X’s element equals its corresponding 

element in Y 

/* If the current GEProg matches its 

corresponding GEProg in the Genome */ 

THEN 

 A[i].exist = True;  

// No accident is detected 

 A[i].name= “GEProg”; 

ELSE 

 A[i].exist =False;  

// An accident is detected 

 A[i].name= “GEProg”; 

  END_IF 

END_FOR 

...// the rest of the Algorithm 

END_FUNCTION 

 

Figure (4-7):  Accidents tolerance algorithm, in pseudo code. 
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CHAPTER FIVE

EVALUATION: IMPLEMENTATION ISSUES,  

APPLICATION AREA 

 AND COMPARISON  
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In this chapter, we evaluate the genetics-based methodology to object evolution, by 

introducing some issues related to implementation aspects, application area and a 

comparison. 

5.1 Implementation Issues 

The implementation environment of this methodology requires a strongly typed and an 

object-oriented programming language. 

Strongly typed language. The programming language should ensure type-checking of objects 

each time an object is declared or created. The checking process should guarantee the correct 

association between the genome class and its genotypes, and between the genotypes and its 

objects (phenotypes), by keeping a record of the genome and its subclasses, and using it to 

check the genotype and the genome associated to a specific object. 

Object-oriented programming language. We need to add an extension to any existing object-

oriented programing language (OOPL), to adopt the notion of genome class, genotype, 

phenotype, GER, GEProc, GEProg and GEC.   

We are building on an extension that was presented earlier in (S.Ghoul, 2011). These 

extensions might be processed by any OOPL preprocessor. Figure (5-1) illustrates our 

extension to an OOPL to implement the genome class, genotype, phenotype, GER, GEProc, 

GEProg and GEC. Objects can be created from a specific genotype as it follows: 

Class<Id> genotype<Id> Object_name = New (GEPRoc GEProc<Id>); 

When objects are created, they hold the same structure of their genotype. The 

interpretation process takes place at the creation of objects and each time objects evolve. This 

process fills Enable set and Disable set with structures and functions to be enabled/disabled. 

Once an element is added to Enable set, its access modifier, is set to one of the following: 

{public, protected, private}.  We suggest a new access modifier, called inactive. Elements 

that are added to Disable set will have their access modifiers changed into inactive. Elements 

having this access modifier cannot be used until they are enabled. 
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5.2 Application Area 

Genetics-based evolution of objects can be used in many applications, where there is a 

real need for dynamic changes in objects at run time.  Banking, GUI development, scientific 

and simulation programs are all examples of applications that usually require dynamic and 

continuous changes in their objects at runtime. 

Class Genome-Name { 

Config: (Name= Genotype_name) 

{ 

Require 

{ 

Structure(…); 

Function (…); 

Behavior (…); 

} //End Require 

} 

   Control: (Name = GER)  

   {     

Imply 

{ 

Enable{Structures(…);Functions(…);}Enable{Structures(…);Functions(…);} 

Disable{Structures(…);Functions(…);}Disable{Structures(…);Functions(…);} 

}//End imply 

 

Exclude 

{ 

Enable{Structures(…);Functions(…);}Disable{Structures(…);Functions (…);} 

Disable{Structures(…);Functions(…);}Enable{Structures(…);Functions(…);} 

} //End exclude 

 

Compound 

{ 

Enable {Structures (…); Functions (…);} AND Disable {Structures (…); 

Functions (…);} Disable {Structures (…); Functions (…);} OR Enable 

{Structures (…); Functions (…);} 

}//End Compound 

} // End GER 

 

   Control: (Name = GEProg) 

{ 

Enable { 

Structures(…); 

Functions(…); 

} 

Disable { 

Structures(…); 

Functions(…);  

} 

 }// End GEProg 

 

    Control: (Name = GEProc) 

{ 

 Age = value : GEProgi, Behaviori; 

} //End GEProc 

 

Control: (Name = GEC) 

{ 

 … // GEC program 

} //End GEC 

 

 } // End Genome Configuration 

 

Figure (5-1):  An extension to an OOPL. 
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As an example, consider medical and scientific applications. In such applications, there is 

a need to simulate the lifecycle of some microscopic entities. These entities’ lifecycle include 

many phases. At each phase, these entities change their structure and behavior completely. 

Figure (5-2) illustrates a lifecycle of a microscopic entity. It starts as an egg and evolves till it 

reaches an adult phase. When using our genetics-based approach, we will be able to simulate 

the growth process of these entities, using one object that represents the entity throughout its 

lifetime at different phases. 

 
 

 

Another example is GUI applications, which make use of different kind of shapes to 

create an animation. An object should evolve between different shapes (circle, rectangle, 

triangle, etc.). When following our genetics-based approach, there is no need to use multiple 

objects (one for each shape); since one object can evolve between different shapes.  

5.3 Comparison 

Since each object evolution approach has its own characteristics, in order to make a better 

comparison among them, we will define a set of evaluation criteria, based on our study to 

objects evolution: 

 Evolution inside a class: The ability of objects to evolve between different states, 

within the same class. The evolution between two classes is supported by all the 

approaches mentioned earlier. 

 Evolution coherence control: The availability of control over the evolution process. 

This control insures the coherence between object’s structures and operations. 

 Gaining/losing structures: the ability of objects to gain and lose structures. 

 Gaining/losing operations: the ability of objects to gain and lose operations. 

 Behavioral evolution: the ability of objects to change their behavior at runtime. i.e. 

change the sequence of functions execution. 

Figure (5-2):  A life cycle of a microscopic entity. 
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 Automatic evolution: The ability of objects to evolve automatically at runtime, i.e. 

without the need to call a specific function or a procedure that is written within the 

application. 

 Accidents handling: The ability to handle different kind of evolution accidents. 

 Close to real world concepts: Distance between proposed concepts and real world 

concepts. i.e. how the evolution is done, do objects evolve the same way real entities 

do, etc.  The closer to real world concepts, the better. 

 Classes and objects hierarchy: Large or small hierarchies of classes and objects. The 

smaller the hierarchy, the better.  

Table (5-1) shows a comparison (based on the above criteria) between our proposed approach 

and the previously studied ones. This comparison states clearly the value of our contribution.  

 

 

 

Criteria                          

  

 

Approach                

Evolution 

inside a 

class 

Evolution 

coherence 

control 

Gaining/ 

losing 

structures 

Gaining/ 

losing 

operations 

Behavioral 

evolution 

Automatic 

evolution 

Accidents 

handling 

Close to 

world 

concepts 

Classes and 

objects 

hierarchy 

Object Re-

classification 

No No Gaining 

and losing 

Gaining 

and losing 

No No No Far Large 

Object 

evolution 

No No Only 

gaining 

Only 

gaining 

No No No Far Large 

Class 

evolution 

Yes No Gaining 

and losing 

Gaining 

and losing 

No No No Far Large 

Schema 

evolution 

Yes No Gaining 

and losing 

Gaining 

and losing 

No No No Far Large 

Dynamic 

roles 

Yes No Gaining 

and losing 

Gaining 

and losing 

No No No Close Large 

ORM No No Gaining 

and losing 

No 

operations 

No No No Far Large 

Bio-inspired 

objects 

evolution 

methodology 

Yes Yes Gaining 

and losing 

Gaining 

and losing 

Yes Yes Yes Close Small 

Table (5-1): A comparison between object evolution approaches. 
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After comparing our approach with the existing approaches that are used in object evolution, 

we find that our approach introduces the following concepts: 

-  Evolution inside class (without modifying the class). 

-  Evolution coherence control. 

-  Behavioral evolution. 

-  Automatic evolution. 

-  Accidents handling. 

-  Small classes hierarchy. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 
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6.1 Conclusion 

In this study, we have proposed a genetics-based approach to objects evolution, where 

objects can evolve at runtime automatically without changing their identity. Our proposed 

evolution approach is based on the concept of phenotype evolution. Phenotypes, which are 

similar to objects, are instances of genotypes, which hold the set of potential characteristics.  

Objects can lose/gain structures, operation and behaviors at runtime. To achieve this, we have 

added some genetics information to the genome class: GEProg, GEPrc and GEC. 

Environment affects the evolution process and objects in different ways. In this work, we 

are presenting a mechanism to handle some kind of accidents caused by environmental 

factors. In order to implement our approach, we have presented a programming language 

extension to be added on any OOPL. 

6.2 Future Works 

- We have studied genetic-based objects evolution. This evolution is planned and pre-

determined. A future work is to study evolution caused by environment, which includes 

learning (Epigenesis). Environmental factors may have huge influence on evolving 

objects, and they could cause huge differences between objects that belong to the same 

genotype. 

- Reducing the time needed to create instances from genotypes, and the time needed for 

objects to evolve, using learning techniques. 

- Studying the evolution of Genome, Genotype, GEProg, GER, GEProc and GEC. 

- Formalizing our methodology using a formal specification language. 
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 صــخـلــم

  

 بئُبث  ، يضأنت عذو وخىد آنُبث لإعبدة حصُُف انك  (OOP)ئُتشُيٍ إحذي انقضبَب انًطشوحت فٍ انبشيدت ان

(object reclassification) .بئٍعبدة حصُُف انكإ (object) يٍ حغُُش فئخه هًكُح  (class)  عبدة  .أثُبء حُفُز انبشَبيح

 .بشكم دَُبيكٍ وقج حُفُز انبشَبيح كبئُبحهبفٍ انخطبُقبث انخٍ حخغُش  بئُبثعبدة حصُُف انكإَحخبج انً  يب

يُهب يٍ طشقب يخخهفت. نكٍ نى َقخشة اٌ  بئُبثة حصُُف انكانخعبيم يع إعبد  انًُبهح انضببقت  انخٍ احبعج فٍ اعخًذث

، وقذ أدي رنك إنً اصخخذاو عذد كبُش يٍ انفئبث ، الايش انزٌ خعم يٍ حصًُى وحُفُز  بئُبث انبُىنىخُتيفهىو حطىس انك

 .أكثش حعقُذا  انُظبو

. فٍ حغُُش عهً فئخهخطىس حهقبئُب أثُبء وقج حُفُز انبشَبيح، يٍ دوٌ أٌ َاٌ َضًح نه بأٌ  بئٍَُبغٍ نهخطىس انًُشىد نهك

ُخًٍ إنً َ زًٌَكٍ نهكبئٍ ان، يضخىحبة يٍ بعط يفبهُى عهى انىساثت. حُث  بئُبثعًم، َقذو يُهدُت خذَذة نخطىس انكهزا ان

إنً َفش انفئت. حى إدخبل حأثُش  هفٍ وقج انخشغُم حهقبئُب، يع انحفبظ عهً اَخًبئ هوصهىك غُُش هُكهه ووظبئفهَأٌ  يحذدة فئت

 خشحت.طفُف نهبُئُت عهً عًهُت انخطىس انًق

 

 

 

 

 

 


