
I

A Bio-Inspired Objects Evolution Methodology

By

Enas Tawfiq Sa’ad Al-Naffar

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

May 2012

II

 خبيعت فُلادنفُب

 حفىَط ًَىرج

 أوانهُئبث أو انًؤصضبث نهًكخببث سصبنخٍ يٍ َضخ بخزوَذ فُلادنفُب خبيعت أفىض ،إَُبس حىفُق انُفبس أَب

 .طهبهب عُذ أوالأشخبص

 :انخىقُع

 :انخبسَخ

Philadelphia University

Authorization Form

I am, Enas Tawfiq Sa’ad Al-Naffar, authorize Philadelphia University to supply copies of my

thesis to libraries or establishments or individuals upon request.

Signature:

Date:

III

A Bio-Inspired Objects Evolution Methodology

By

Enas Tawfiq Sa’ad Al-Naffar

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

May 2012

IV

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

()

V

Dedication

I dedicate this Thesis to my wonderful family; my loving and giving parents

in particular; for their endless love and unconditional support each step of the

way. Thank you Mum and Dad, without you, I would never have been able to

accomplish any achievement. To my sisters and my brothers; for their patience,

help and support throughout the years. I am grateful for all the things you have

done for me.

Also, I dedicate it to my amazing friends, who were always there for me,

who encouraged me and did their best to support me in every way they could.

To my Supervisor Prof. Said Ghoul, who motivated me to join the Master’s

program and helped me in every possible way.

Last but not least, I would like to dedicate my Thesis to those of my

homeland who are struggling to have a normal life, and might not have had the

same opportunities that I had.

Enas Al- Naffar

VI

Acknowledgment

I would sincerely like to thank my Supervisor Prof. Said Ghoul, for his help,

patience and unlimited support during the years.

He has always been ready to help; his constant encouragement and his valuable

advice have lit my way in the darkness and helped me find the right path. He

has not only been a supervisor to me, but more like a father, a friend and an

inspiring teacher.

My sincere gratitude for my devoted Doctors and Teachers at Philadelphia

University; who gave us the best they had. I really appreciate their effort and

time trying to put me and my colleagues on the right track.

Above all, I thank God for his blessings; for giving me strength, patience and

desire.

To everyone helped me during my entire study and throughout this

thesis...Thank you.

Enas Al-Naffar

VII

Table of Contents

Subject Page

Authorization Form ii

Title iii

Examination Committee iv

Dedication v

Acknowledgement vi

Table of Contents vii

List of Figures and Tables viii

List of Abbreviations ix

Abstract x

Chapter One: Introduction 1

1.1 Problem statement 2

1.2 State of the art 2

1.3 Motivation 3

1.4 Contribution 4

1.5 Thesis layout 6

Chapter Two: A Case Study 7

Chapter Three: Literature Review 12

3.1 Object Evolution Approaches 13

3.2 Fault Tolerance Approaches 20

3.3 Literature Review Conclusion 21

Chapter Four: A Genetics-Based Methodology to Object Evolution 22

4.1 Genetics-Based Evolution Methodology 23

4.2 Genetics-Based Evolution Concepts 24

4.3 Genetics-Based Evolution Scope 26

4.4 Tolerating Evolution Accidents 34

Chapter Five: Evaluation: Implementation Issues, Application Area and Comparison 37

5.1 Implementation Issues 38

5.2 Application Area 39

5.3 Comparison 40

Chapter Six: Conclusion and Future Works 43

6.1 Conclusion 44

6.2 Future Works 44

References 45

VIII

List of Figures and Tables

Figure Number Figure Title Page

Figure (1-1) Object (Phenotype) evolution example. 5

Figure (2-1) Hierarchy of List example, in a traditional approach - using UML

notations.

8

Figure (3-1) Classes and objects hierarchy following class evolution and

schema evolution approaches.

16

Figure (3-2) Our case study using dynamic roles. 18

Figure (3-3) Our case study using ORM. 18

Figure (3-4) The POE model. Partitioning the space of bio-inspired systems

along three axes: Phylogeny, Ontogeny, and Epigenesis concepts.

19

Figure (4-1) Genetics-based evolution methodology. 23

Figure (4-2) Genetic evolution process. 25

Figure (4-3) GEC algorithm, in pseudo code. 27

Figure (4-4) A genetic lifecycle (GEProc) of an object of Static_List

genotype.

28

Figure (4-5) Behavior Q-Beh0 of an object in StQueue state. 29

Figure (4-6) A genetic lifecycle of an object evolving between Static_List and

Dynamic_List genotypes by Metamorphosis programs.

31

Figure (4-7) Accidents tolerance algorithm, in pseudo code.

36

Figure (5-1) An extension to an OOPL.

39

Figure (5-2) A life cycle of a microscopic entity.

40

Table (5-1) A Comparison between object evolution approaches. 41

IX

List of Abbreviations

GEC Genetics-based Evolution Control

GEProc Genetic Evolution Process

GEProg Genetic Evolution Program

GER Genetic Evolution Relations

GUI Graphical User Interface

OOM Object-Oriented Model

OOP Object-Oriented Paradigm

OOPL Object-Oriented Programming Language

ORM Object Role Modeling

X

Abstract

One of the major issues of object-oriented programming languages is the lack of

reclassification mechanisms. Reclassification allows an object to change its class at

runtime. Object reclassification is desired in applications whose entities need to change

dynamically at runtime.

The previous approaches dealt with object reclassification in different ways. But none

had approached the notion of real entities evolution, where objects can evolve while

belonging to the same class. This had led to a large number of classes most of the times;

making the design and the implementation of the intended system more complex.

The desired evolution of objects should allow objects to evolve automatically at

runtime, without changing their classes membership. In this work, we present a new

approach for objects evolution; inspired by some genetics concepts. Objects that belong to

the same class can change their structure, functions and behaviors at run time

automatically, while keeping their membership to the same class. A slight environmental

influence on the proposed evolution process is introduced.

Keywords - Bio-inspired model, evolution, genome, genotype, phenotype.

1

CHAPTER ONE

INTRODUCTION

2

 Object evolution is one of the issues that has been addressed recently in the area of

object-oriented programming. There have been some works conducted in this filed. In this

work, we present a new approach to be followed in the area of object evolution.

1.1 Problem Statement

 Object-oriented paradigm (OOP) was invented for the purpose of physical modeling.

However, not everyone agrees that there is a direct mapping between real world concepts and

OOP, since an object-oriented program is considered in many cases as a model of only some

parts of the world. Bertrand Meyer argues in Object-Oriented Software Construction

(B.Meyer, 2000) that a program is not a model of the world but a model of some parts of the

world. Class-typed programming languages do not usually provide reclassification

mechanisms that allow objects to change their classes membership. Lack of reclassification

primitives has long been recognized as a practical limitation of object-oriented programming

(D.Ancona et al, 2007).

Many applications, such as graphical user interface (GUI) applications, games, social

databases, etc., require dynamic changes of objects. It is very common to change the value of

their attributes; this is done by Setter functions (mutators). But what we really need is beyond

changing the values of the attributes; we need to be able to change the attributes themselves;

to add and/or remove some attributes. We also need to be able to change the operations and

the behavior of the objects over their running time. In other words, what we really need is an

object that evolves automatically at runtime.

The previous approaches dealt with objects evolution in different ways. But none had

approached the notion of real entities evolution (phenotype evolution). This had led to a large

number of classes most of the times; making the design and the implementation of the

intended system more complex.

1.2 State Of the Art

 There have been some attempts to find a solution for the issue of objects evolution which

refers to changes in objects at runtime. Some previous research works focused on the area of

re-classification, where an object may change its class at runtime. This has been undertaken

through languages like Fickle (D.Ancona et al, 2007). There have been some works that dealt

with object evolution as a restriction of dynamic object reclassification (T.Cohen and J.Gily,

2009), where evolution here, allows an object to gain, but never lose capabilities.

3

 Other works dealt with Class evolution (E.Johnsen et al, 2009) which is supporting an

arbitrary set of changes to classes, which may have large number of persistent objects. In

object-oriented persistent platforms, the changes conducted on classes require modifying

existing objects; their contents and behaviors. Some works have been conducted in this area,

in order to change the classes’ instances to conform to the new descriptions. The work

conducted in (E.Johnsen et al, 2009), presents a language that can introduce new functionality

and interfaces for classes. In (M.Piccioni et al, 2011), refactoring units and object

transformers are used to create an instance of the new class from a serialized instance of the

old class

 There have been different approaches for extending traditional object model with role

mechanisms. Roles define extra properties which are added to objects. During its lifetime, an

object may adopt and abandon roles. The approach in (A.Jodloowski et al, 2004) and (D.Stein

et al, 2005) assumes that role arranges a hierarchy similar to classes. An object can have

many roles which can be added/removed at run time. A role has its own attributes and

behavior. It dynamically “imports” attributes (values) and behavior from its super-roles, in

particular, from its parent object. In (A.Caetano et al, 2005) and (T.Halpin, 2010), the role

has been presented as a static entity (structure without operations).

 In (S.Ghoul, 2010), a bio-inspired objects evolution principle is presented based on the

experimentation of (D.Meslati and S.Ghoul, 2005) that dealt with software evolution using

biological concepts. In (D.Meslati and S.Ghoul, 2005) a software system includes a

structural, behavioral and an ontogenetic dimension. All changes undergone by a software

system are considered as its ontogenetic dimension. The model of a software system consists

of a phenotype and a genome. The phenotype (object) captures its structural and behavioral

dimensions from the genome; while the genome (class hierarchy) captures all changes that

shape the system to keep it conform to the changing environment and requirements.

1.3 Motivation

Several needs, concerning object evolution, come out from studying previous works:

- We need objects that can change their structures, operations and behavior at run time

dynamically, without having to change their class membership.

- We need a well-defined model for this kind of evolution.

- We need an object-oriented programming language extension to support this model.

4

- We need to be able to handle some kinds of accidents that may occur in the environment

during objects evolution.

1.4 Contribution

 This work aims to solve the problem of object evolution, inspired by real entities

(phenotype) evolution; reducing the gap between real world concepts and computing

concepts. So, an object may evolve automatically at runtime while keeping its membership to

the same class. Our work is built on previous works conducted in (D.Meslati and S.Ghoul,

2005) and (S.Ghoul, 2010). These two precedent works present only a general evolution

philosophy. In this work, we complete them by modeling the process of object (phenotype)

evolution. We are concerned with ontogenesis aspect. The phenotype is considered as an

instance of a specific class, genotype (D.Hammodeh, 2012). A phenotype can change its

structure, operations and behavior without affecting its genotype (the genotype remains the

same as long as no mutation process takes place). Just like a phenotype, once an object is

created from a specific class; it can evolve automatically during its lifetime, with the ability

to handle some kinds of environmental accidents.

 Our study is limited, in this work, to a static (predefined) genetic evolution plan, with a

slight environmental influence, that includes some common kinds of accidents. During

objects lifetime, various types of accidents may occur in the environment and affect the

evolution process and objects, as well. Accidents should be detected first, and then the

damage should be assessed, to determine what parts of the object are affected by the accident

(i.e. an accident may occur and could cause a damage in object’s structures). Different

mechanisms can be used to remove the damage and restore the object to a safe state

(I.Sommerville, 2011).

 To illustrate the need for a new approach to be followed in the area of objects evolution,

consider a domain that represents a group of humans and their interactions. A class Human

may have attributes like name, age, gender, etc. The values of these attributes could simply

be changed at runtime. We should take into consideration that in real world, Human is not a

static entity, as illustrated in Figure (1-1). Human starts as a Child with specific attributes

such as name, height, weight, birth date. This Child grows up to become a School_student.

This student will have extra attributes like school_name, hobby…etc. The student grows up

into an Undergraduate_student, which will have extra attributes and so on. Note that during

the growth process, not only the attributes are changed, but also the operations and the

5

behaviors are changed; operations may be either gained or lost. For example the operation

get_HighSchoolAvg will be gained when the Child grows up (evolves) into a Student. Also

note, that some attributes may be lost as the object evolves.

Figure (1-1): Object (Phenotype) evolution example

This kind of domains is traditionally modeled using many classes, i.e. Human, Child,

Student, Undergraduate_student, Employee...etc., with an inheritance relationship among

some classes, i.e., Human is a super-class while the rest of classes are sub-classes. To capture

the process of human evolution, an object has to change its membership between two classes.

For example an object of type Child may change its membership to belong to Student class.

This is not practical; since in real world, the growth (evolution) of an object (phenotype) does

not actually change its class.

 Our approach solves this problem differently; by only having one composed class.

Instances of this class can evolve automatically at run time, while remaining in the same

class. Instances can change (gain/lose) their attributes, functions and behaviors. With this

approach, we aim to enhance the area of objects evolution, by applying some genetics

concepts that are related to phenotype growth. This enhancement will result in a well-defined

model for objects evolution.

In this work, we introduce the following concepts:

- A genetic evolution process that determines a predefined lifecycle of an object (our

work is limited to predefined evolution).

- A genetic evolution program that determines the acquired structures and functions, as

well as the lost ones, for each evolution.

- Control rules that interpret the genetic evolution program, according to pre-defined

genetic relations, into an object.

- Accidents tolerance to handle some accidents that occur during objects evolution.

- An object-oriented programming language extension to support our model.

… …

6

1.5 Thesis Layout

In the following, we present in Chapter Two a case study that will be used along this

thesis. Chapter Three is devoted to some significant approaches that are followed in the area

of object evolution. In Chapter Four, we will present our contribution, a Genetics-Based

Methodology for Object Evolution. An evaluation of our work is presented in Chapter Five.

In Chapter Six, we finalize with future works and a conclusion of our work.

7

CHAPTER TWO

A CASE STUDY

8

In this chapter, we introduce a simple and a common case study that will be used

throughout this thesis. Mainly, there are two types of lists: static and dynamic lists. Stack,

queue and Random array, are all different forms of lists. According to its needs, an

application may need to use a static queue or a dynamic queue, a static stack or a dynamic

stack and so on. Figure (2-1) and Example 1 below illustrate the traditional way which is

followed in such cases.

Figure (2-1): Hierarchy of List example, in a traditional approach -using UML notations.

Example 1: Java code of Static lists, using a traditional approach

abstract class List

{

 protected num_Of_Items;

abstract void Put(int v);

abstract int Get();

abstract bool Full ();

public bool Empty ()

 {...}

...

}
abstract class Static extends

List

{

 protected int[size] A;

 protected int capacity;

public bool Full()

{...}

...

}
Public class Stack extends

Static

{

private int top;

public Stack() {...}

public void Put(int v) {...}

public int Get() {...}

 ...

}

public class Queue extends

Static

{

private int front;

private int rear;

public Queue() {...}

public void Put(int v) {...}

public int Get() {...}

 ...

}

public class Random extends

Static

{

public Random(){ ...}

public void Put(int v) {...}

public int Get() {...}

public void Sort () {...}

public bool Search (int v) {...}

...

}

9

Some applications may use an object of type static stack; afterwards it would possibly

want to change the type of the object into a dynamic queue. To capture this need we use a

genome class (Example 2), which includes the definition of all potential characteristics

(structures, operations and behaviors). To capture the differences between dynamic and static

lists, two different variants (genotypes) are used, which are Static_List (Example 3) and

Dynamic_List. Objects of previous variations are called phenotypes (Example 4). Phenotypes

are similar to real entities.

In addition to structures, operations and behaviors, the genome definition contains

additional information called genetic evolution relations (GER). Some of them are found in

Example 2 (AreDominant, AreImplied, AreExclusive, etc.).

11

Class List (Type T, int Size)

 // Potential characteristics

Instance Data

int age;

Struct Node { T value; Node *next;}

ListStr=Alt{int Front;T A[Size];int Last;}

//Static

 {Node *Front; Node *Last ;}

//Dynamic

 EndAlt

 Instance Methods

 PutRandom-A(T val):Alt {//in static list};

 {//in dynamic list};

 EndAlt

 PutAtEnd-L(T val):Alt {//of static list};

 {//of dynamic list};

 EndAlt

 T GetRandom-A(): Alt {//of static list};

 {//of dynamic list};

 EndAlt

T GetFromBeg-L(): Alt{//of static list};

 {//of dynamic list};

 EndAlt

T GetFromEnd-L(T val:Alt{//of static list};

 {//of dynamic list};

 EndAlt

bool Search(T val):Alt{//in static list};

 {//in dynamic list};

 EndAlt

void Sort():Alt{//of dynamic list};

 {//of Static list};

 EndAlt

bool Empty (): Alt{//of dynamic list};

 {//of static list};

EndAlt

bool Full():Alt {//of dynamic list};

 {//of static list};

 EndAlt

// Control process

Behaviors

 Alt

 { //Static

Q-Beh0 {…}

Q-Beh1 {…}

Q-Beh2 {…}

S-Beh0 {…}

R-Beh0 {…}

}

{ //Dynamic

Dy-Q-Beh1 {…}

Dy-B-Beh0 {…}

Dy- R-Beh0 {…}

}

EndAlt

Genetic Evolution Relations

Dominant

Front, Last, A /*Default priority. In case

of conflicts the priority is given,

respectively, to Front, last, and A.*/

Enable A; // A must be always enabled

Imply

Enable Front Enable (GetFromBeg-L and

Empty and Full); // Queue

Disable Front Disable GetFromBeg-L;

// Rules of elements coherence

Enable Last Enable (PutAtEnd-L and Empty

and Full); // Stack

Disable Last Disable PutAtEnd-L;

// Rules of elements coherence

Disable (PutAtEnd-L and GetFromBeg-L and

GetFromEnd-L)Disable (Front and Last);

// Rules of elements coherence

Disable Last Disable (Front and

GetFromEnd-L);

// Rules of elements coherence

Enable GetFromBeg-LEnable (PutAtEnd-L and

Empty and Full); // queue

Enable GetFromEnd-LEnable (PutAtEnd-L and

Empty and Full); // stack

Exclude

Disable (Front and Last)Enable (PutRandom-

A and GetRandom-A and Search and Sort);

// simple array

Enable GetFromBeg-L Disable GetFromEnd-L;

// Rules of elements coherence

Enable GetFromEnd-L Disable GetFromBeg-L;

// Rules of elements coherence

Enable (Front and Last) Disable

(PutRandom-A and GetRandom-A and Search and

Sort); // Rules of elements coherence

…

End List

Example 2: A Genome for List objects modelled by an extended class concept. Static and Dynamic lists are

genotypes (variants) of this genome. Real objects (instances) of Random array, Queue, and Stack will be phenotype

of corresponding genotypes.

11

Genotype Static_List

 // Potential characteristics

Instance Data //Static

int age;

int Front; int Last; T A[Size];

Instance Methods

PutRandom-A(T val)//in static list

PutAtEnd-L(T val)//of static list

T GetRandom()// of static list

T GetFromBeg-L()//of static list

T GetFromEnd-L() //of static list

bool Search(T val)//in static list

void Sort()//of static list

bool Empty () //of static list

bool Full () //of static list

//Control process

Behaviors

Q-Beh0 {...}

Q-Beh1 {...}

Q-Beh2 {...}

S-Beh0 {...}

R-Beh0 {...}

Genetic Evolution Relations

{...}

End Static-List

Example 3: A genotype (variant) Static_List

of the genome class List (Example 2).

// Static Queue State

Instance Data //Static

 int age;

 int Front;

 T A[Size];

 int Last;

Instance Methods //Static

 PutAtEnd-L (T val)

 T GetFromBeg-L ()

 bool Empty ()

 bool Full()

Behaviors

 Q-Beh0{...}

 Q-Beh1{...}

 Q-Beh2{...}

Genetic Evolution Relations

 {...}

Example 4: An object (phenotype) Queue of

variation Static_List (Example 3)

12

CHAPTER THREE

LITERATURE REVIEW

13

In this chapter, we present some current approaches in object evolution, followed by

some fault tolerance approaches. We finalize this chapter with a conclusion about common

weaknesses which justify our presented work.

3.1 Object Evolution Approaches

There have been different approaches to deal with object evolution. In this section we

consider some approaches that are most related to our approach.

Object re-classification (D.Ancona et al, 2007). Object re-classification can be defined as

changing the class membership of an object while retaining its identity, at run time. This

work tried to come up with new language features; this was achieved through a language

called Fickle and its extensions FickleII and FickleIII. The suggested language features allow

objects to change class membership dynamically.

State classes are possible targets of re-classifications; they represent object’s possible

states. Root classes are the super-classes of such state classes and declare all the members

common to them. Fickle provides some annotations before methods bodies, called effects.

Effects list the root classes of all objects that may be reclassified by invocation of this method.

Methods with empty effects may not cause any reclassification.

 Our case study could be

represented using this approach as illustrated in Figure (2-1). Example 5 illustrates how our

case study can be applied using Fickle language. Evolution between dynamic list sub-classes

could be done in a similar way.

Object evolution (T.Cohen and J.Gily, 2009). Object evolution allows objects to change

their classes at runtime. It has been considered as a restriction of dynamic object re-

classification. Object evolution, allows an object to gain, but never lose capabilities.

A new function was introduced in this work, which is called Evolver function. It is used

as a complementary mechanism to constructors. It contains the additional initialization code

that separates an object of one class from an object of another. Like constructors; evolvers

can accept parameters, indicating that an object cannot be evolved into a new class without

some additional required information.

14

An object evolution operation replaces, at runtime, the type of an object with the type of

a selected subclass. Our case study could be represented using this approach as explained in

Figure (2-1). Example 6 illustrates how our case study is applied using this approach.

Evolution between dynamic list sub-classes could be done in a similar way.

State class Stack extends Static

{

int top;

Stack(int c)

{

 top = -1;

num_Of_Item=0;

 capacity=c;

}

void put(int v)

{

top++;

A[top] = v;

num_Of_Item++;

}

int get () {Static}

{

 int val = A[top];

 top--;

this!!Queue ; this.front= 0;

this.rear = top ;

 // Stack will turn into Queue [1]

 num_Of_Items--;

return val;

}

…. // the rest of the class

}

State class Queue extends Static

{

int front;

int rear;

Queue(int c)

{

 front = 0; rear = -1;

 num_Of_Item=0;

 capacity= c;

 }

 void put(int v)

 {

rear++;

A[rear] = v;

 num_Of_Item++;

 }

 int get () {Static}

 {

 int val = A[front];

 front++;

 this!!Stack ; this.top= front;

 // Queue will turn into Stack [2]

 num_Of_Item--;

 return val;

 }

… // the rest of the class

}

Example 5: Our case study using Fickle language. In [1], an object of type Stack will

evolve into a Queue. In [2], an object of type Queue will evolve into a Stack.

abstract class List

{

protected int num_Of_Items;

abstract void put (int v) { };

abstract int get () { Static};

abstract bool Full () { } ;

bool Empty ()

{ retrun (num_Of_Items==0);}

…. // the rest of the class

}

abstract root class Static extends

List

{

protected int[] A;

protected in capacity;

public bool Full()

{ retrun (num_Of_Items==capacity);}

… // the rest of the class

}

15

Class evolution (E.Johnsen et al, 2009). Supporting an arbitrary set of changes to classes

which may have large number of persistent objects. At runtime, class redefinitions gradually

upgrade existing instances of a class and of its subclasses. An upgrade may depend on

previous upgrades of other classes. This work came up with a modeling language which

supports the runtime evolution of distributed object-oriented systems. This language has

dynamic class operations, which can introduce new functionality and interfaces for classes,

change data structures and implementations for existing functionality, and remove legacy

code. Our case study could be represented using this approach as explained in Figure (3-1)

and Example 7.

class Stack extends Static

{

int top;

Stack(int c)

{

 top = -1;

 num_Of_Item=0;

 capacity= c;

}

void put(int v)

{

top++;

A[top] = v;

 }

int get ()

{

 int val = A[top];

 top--;

 this  Queue(0) ;

 // Stack will turn into Queue [2]

return val;

}

… // the rest of the class

}

class Queue extends Static

{

 int front;

 int rear;

 Queue(int c)

 {

 front = 0; rear = -1;

 num_Of_Items=0;

 capacity = c;

 }

 Queue(int front)// Evolver [1]

{

this.front=front;

}

 void put(int v)

 {

rear++;

A[rear] = v;

 }

 int get ()

 {

 int val = A[front];

 front++;

 return val;

 }

… // the rest of the class

}

Example 6: Our case study using Object Evolution approach. In [1], an Evolver function is defined,

with additional information (front). In [2], an object in Stack state will evolve into a Queue using the

Evolver function.

abstract class List

{

 protected int num_Of_Items;

abstract void put (int v) ;

abstract int get () ;

abstract bool Full () ;

public bool Empty ()

{return(num_Of_Items==0);}

… // the rest of the class

}

abstract class Static extends List

{

protected int[] A;

protected int capacity;

public bool full ()

{return num_Of_items==capacity;)}

 …// the rest of the class

}

16

Schema evolution (M.Piccioni et al, 2011). Schema evolution allows old objects to fit into

new classes. In this work, refactoring units are used to modify the attributes. Refactoring is a

function modifying at most one attribute; it allows an easy representation of the static

transformations of a class. In addition to refactoring units, object transformers are used to

create an instance of the new class from a serialized instance of the old class. The generation

of object transformers from a class transformation can be expressed as transformation

functions. The representation of our case study using this approach is illustrated in Figure

(3-1) and Example 7.

Roles. There have been different proposals for extending traditional object model with Role

mechanisms. Roles define extra properties which are added to objects. During its lifetime, an

object may adopt and abandon roles (D.Stein et al, 2005).

Usually, the same object may be perceived differently depending on other objects it is

collaborating with. Role models identify roles as types and describe the network of roles

required for a specific collaboration to happen. As a player of collaboration, a role defines

the set of extrinsic properties and behavior necessary to realize its participating

collaborations. Roles are modeled as classes and represented in class diagrams. Methods and

Figure (3-1): Classes and objects hierarchy following class evolution and schema evolution approaches.

Change classes

Change sub-

classes

 Change

 instances

 : Instance of

 : Inheritance

 : Object

 : Change in classes/objects

: Class

17

attributes concerning the specific collaboration context can be included in this class diagram

(A. Caetano et al, 2005).

Dynamic role concept as mentioned in (A.Jodloowski et al, 2004) assumes that every

real or abstract entity during its life can acquire and lose many roles without changing its

identity. Roles appear during the life of a given object, they can exist simultaneously, and

they can disappear at any moment. Roles are treated as a special kind of objects. Also, as in

the case of regular objects, classes describing roles can be specialized. The approach

followed in (A.Jodloowski et al, 2004) assumes that an object can contain many sub-objects

called roles which can be added/removed at run time. A role has its own attributes and

behavior. It dynamically “imports” attributes (values) and behavior from its super-roles, in

particular, from its parent object. Our case study could be represented using this approach as

illustrated in Figure (3-2).

Some works have been conducted in the area of Object Role Modeling (ORM). ORM

includes graphical and textual language for modeling and querying information at the

class Queue extends Static

{

int rear; // top is renamed into rear

int front; //New attribute is added

Queue(int c)//Updating the constructor

{ front=0; rear= -1

 num_Of_Items=0;

 capacity= c;

}

void put(int v)//change implementation

 {

rear++;

A[rear] = v;

 num_Of_Item++;

}

int get ()// change implementation

{

 int val = A[front];

 front++;

 num_Of_Item--;

 return val;

 }

 … // the rest of the class

}

class Stack extends Static

{

int top;

Stack(int c)

{ top = -1;

 num_Of_Items = 0;

 Capacity=c;

}

void put(int v)

{

top++;

A[top] = v;

num_Of_Items++;

}

int get ()

{

 int val = A[top];

 num_Of_Items--;

 top--;

 return val;

}

… // the rest of the class

}

Example 7: Updating Stack class: Adding a new attribute front, renaming top into rear, changing the

implementation of put and get; resulting in class Queue. Object S1 of type Stack is modified to fit with the

new class Queue.

// S1 Instance of Stack

class

 : Stack

 top= 3;

 num_Of_Items= 10;

 capacity = 20;

// S1 will be modified to

fit with Queue class

 : Queue

 rear= 3;

 front= 0;

 num_Of_Items = 10;

 capacity=20;

18

conceptual level as well as procedures for designing conceptual models, transforming

between different conceptual representations (T.Halpin, 2010). However, the term object is

used in ORM, in a way that is different from the way it is used in an object-oriented model

(OOM). In OOM objects are dynamic entities, not static ones, i.e. objects have operations in

addition to structures.

01

Our case study could be represented using this approach as it follows in Figure (3-3):

Figure (3-2): Our case study using dynamic roles

A []
capacity

Front
Rear

Random

: Class

 Object

Connection between
object/role with its class

Connection between
roles

Stack

Queue

Random
: Random

: Queue
1
2

: Stack
2

Stack

Queue

List

Static Dynamic

Front
Rear

 Entity

Subtyping

Unary predicate

Top

Figure (3-3): our case study using ORM

Top Num_Of_items
 …

…

…

…

…

…

…

…

…

19

Figure (3-4): The POE model. Partitioning the space of bio-inspired

systems along three axes: Phylogeny, Ontogeny, and Epigenesis concepts

Bio-inspired approach. The work of (D.Meslati and S.Ghoul, 2005) presents a model for

the change process of software systems based on biological concepts. Their approach

proposes a model where anticipated and unanticipated changes are modeled by a collection

of fine grained instructions called genes.

The software system consists of structural, behavioral and a third dimension

called ontogenesis. All changes undergone by a software system are considered as

its ontogenetic dimension. In (S.Ghoul, 2010), a bio-inspired integrated model is presented,

and the space of bio-inspired systems is partitioned into three axes: phylogeny, ontogeny,

and epigenesis (Figure 3-4). The ontogenetic dimension involves the growth or construction

of a phenotype (single individual) from its own genotype (its genetic material), essentially

without environmental (peristase) interactions.

The genome (D.Hammodeh, 2012), (S.Ghoul, 2010) of a species includes the definition

of all its possible characteristics (organic, functional, and behavioral) along with the

information controlling their coherence. A genotype (D.Hammodeh, 2012), (S.Ghoul, 2010)

is a coherent partition of genome characteristics, obtained by selective inheritance

(D.Hammodeh, 2012). This coherence deals with selecting no contradictory characteristics

describing exactly a partition of objects (phenotypes) of the associated species. A phenotype

(S.Ghoul, 2010) is an instance of a given genotype. In the artificial world, several phenotypes

may be instances of the same genotype. In real world, from each genotype only one instance

might be developed. The physical development and phenotype of organisms can be thought

of as a product of genes interacting with each other and with the environment.

The genome contains additional information called genetic evolution relations. These

relations are composed of control genes which enforce and control the coherence of genome

functions by establishing and managing dependencies relations between its elements

(S.Ghoul, 2010). The following are some common identified control genes:

Phylogeny (P)

Ontogeny (O)

Epigenesis (E)

21

AreExclusive genes: These genes identify the characteristics that are exclusive. A

characteristic excludes another if they are alternatives (versions) or they are incompatible.

AreExclusive gene: If Enable organ definition/function gene Then

 Disable organ definition/function gene

AreImplied genes: A characteristic implies another if its presence in a phenotype implies the

presence of the other. AreImplied genes ensure the implication between enabled and disabled

genes.

AreImplied gene: If Enable/Disable organ definition /function gene1 Then

 Enable/Disable organ definition/function gene2

3.2 Fault Tolerance Approaches

In this section we consider some fault tolerance approaches, on which our fault tolerance

technique is based.

In software engineering, critical software systems must be fault tolerant. This is required

when there are high availability requirements or when system failure costs are very high.

Fault tolerance means that the system can continue in operation in spite of software failure.

Even if the system has been proved to conform to its specification, it must also be fault

tolerant as there may be specification errors or the validation may be incorrect

(I.Sommerville, 2011). Sommerville defines a fault tolerance process as it follows:

Fault detection: The system must detect that a fault (an incorrect system state) has occurred.

Damage assessment: The parts of the system state affected by the fault must be

detected.

Fault recovery: The system must restore its state to a known safe state.

Fault repair: The system may be modified to prevent recurrence of the

fault. As many software faults are transitory, this is often unnecessary.

In biology (B.Alberts et al, 2007), although the DNA is a highly stable material, as

required for the storage of genetic information, it is a complex organic molecule that is

susceptible to accidents, even under normal cell conditions. Spontaneous changes may lead

to mutations if left unrepaired. The double-helical structure of DNA is ideally suited for

repair because it carries two separate copies of all the genetic information-one in each of its

two strands. Thus, when one strand is damaged, the complementary strand retains an intact

21

copy of the same information, and this copy is generally used to restore the correct

nucleotide sequences to the damaged strand.

3.3 Literature Review Conclusion

There have been different approaches to handle objects evolution. The followed

approaches did not conform to real entities evolution; the gap between their concepts and

real world concepts was large. This has led to some insufficiencies; we had to deal with

large number of classes, unnecessary hierarchies; causing the design and the implementation

to become more complex. An object of real world may evolve during its lifetime without

changing its membership, and without the need to update its original class. It has become

clear that we need to apply biological concepts on objects evolution to come up with good

and acceptable results. The two works (D.Meslati and S.Ghoul, 2005) and (S.Ghoul, 2010),

provided a general background in both, bio-inspired modeling and development. Our work

builds on these two works.

22

CHAPTER FOUR

A GENETICS-BASED METHODOLOGY

TO OBJECT EVOLUTION

23

Artificial objects, just like biological entities, evolve organically and behaviorally. The

organic evolution deals with the structures and functions of objects, while the behavioral

evolution deals with the behavior of objects. Genetics-based evolution is predefined and pre-

planned in a genetic evolution process that defines the object lifecycle. This evolution may

deal with objects or with the evolution process itself (this kind of evolution is out of scope of

this work).

In the following, we introduce some genetics-based evolution concepts based on the

needs stated in (D.Meslati and S.Ghoul, 2005) and (S.Ghoul, 2010). An object may evolve

inside one genotype, and/or between different genotypes. This evolution can be organically

(structures and functions) and behaviorally.

4.1 Genetics-Based Evolution Methodology

The proposed genetics-based evolution methodology is illustrated in Figure (4-1). It is

based on genetic evolution programs specification, genetic evolution processes specification,

genetic evolution relations specification and genetic evolution control. Firstly, the genetic

evolution information that exists within the selected genotype is used as an input to the

genetic evolution control, in order to create a phenotype (instance of a genotype). This

process is only executed once; at the creation of phenotypes (age=0). The genetic evolution

information within the created phenotype is used as an input to the genetic evolution control,

resulting in an evolved phenotype (age > 0). This process is executed each time a phenotype

evolves, till it reaches the termination age x, where 0 < age <x.

Figure (4-1): Genetics-based evolution methodology

24

If the genetic evolution control is executed without failures, then the resulted evolution is

guaranteed to be complete and accurate.

4.2 Genetics-Based Evolution Concepts

In this section, we will introduce some key concepts of genetics-based methodology to object

evolution, which will be used throughout this study.

- Genetic Evolution Program (GEProg)

A genetic evolution program is a program that specifies what structures and operations are

needed for a certain evolution (Example 8). This program is specified as it follows:

GEProg <Id>

{

 Enable (<Structure>,)* | (<Function>,)*;

 Disable (<Structure>,)*| (<Function>,)*;

}

Where:

“|” means OR, and “*” means repeated once or more.

Enable is a predefined operation that allows an object of a genotype to hold enumerated

structures or functions.

Disable is a predefined operation that allows an object to lose enumerated structures or

functions. At the initial state, all the structures/functions of the genotype are disabled. The

disabled structures/functions are inactive. Inactive elements cannot be used until they are

enabled.

- Genetic Evolution Relations (GER)

In addition to the genetic relations that are mentioned in Chapter One (AreImplied,

AreExculsive, etc.), we present a new genetic relation to insure the coherency of objects.

For some objects, the existence/non-existence of an element X depends on the existence

of element Y and non-existence of element Z. The new defined rule will be helpful in

similar cases.

Compound genes: These genes are considered as a combination of AreImplied genes and

AreExclusive genes:

If Enable (organ definition/function gene) and Disable (organ definition/function gene)

Then Enable/Disable (organ definition/function gene).

Example: Enable Last and Disable Front  Enable GetFromEnd-L; //stack

25

- Genetic Evolution Process (GEProc)

A genetic evolution process is a process that defines the lifecycle of an object, by

determining what evolution is needed at what time (Figure 4-4). This process is specified

as it follows:

GEProc <id>

{

((age = Ai): GEProgi , Behaviori)*;

 }

Where Ai is an age milestone, GEProgi is the corresponding genetic evolution program to

achieve, Behaviori is the evolved-to behavior (Figure 4-2). And “*” means repeated once or

more.

The age is a hidden attribute of an object inherited automatically from its genotype. It is

initialized to zero at its creation. Each time an object is used this attribute is updated by

computing the difference between the actual date and the date of its generation. The unit of

age can be measured by year, month, day, minute, second, etc.

- Genetics-Based Evolution Control (GEC)

The interpretation of an evolution program is mainly supported by the genetic evolution

relations which ensure the coherence of the evolution process. The inter/intra relation

coherence is ensured at its definition or update.

The genetics-based evolution control enforces the following rules on its associated

genotype (Example 3) and phenotype (Example 4).

 Initial state: Elements and coherence

R1. Each object holds, from its genotype, an initial set of structures and functions

defined by its evolution program at its creation. All these structures/functions are

disabled.

R2. Let Enabled_List be the list of the structures and functions to be enabled.

age = 0 age = A1 age = An

GEProg0 GEProg1 GEProg n

Beh0 Beh1 Beh n

 Object

Genotype

Figure (4-2): Genetic evolution process

26

Enabled_List  structures and functions to be enabled (imposed by an Enable clause in

the GEProg);

R3. Let Disabled_List be the list of the structures and functions to be disabled.

Disabled_List  structures and functions to be disabled (imposed by a Disable clause

in the GEProg);

R4. The coherence of Enabled_List and Disabled_List is checked: Enabled_List 

Disabled_List = Ø. Each element of Enabled_List does not imply directly or indirectly

an element of Disabled_List.

 Enable/Disable List processing by scanning genetic evolution relations

R5. The processing of enable/ disable list is obtained, by scanning the genetic

evolution relations as it follows:

- For each element in the Disabled_ List, not processed yet: (1) Disable the

element. (2) Find disabled structures and disabled functions associated with it.

Add them to Disabled_List. (3) Find enabled structures and functions associated

with the element. Add them to Enabled_List.

- For each element in the Enabled_List, not processed yet: (1) Enable the element.

(2) Find enabled structures and enabled functions associated with it. Add them

to Enabled_List. (3) Find disabled structures and functions associated with the

element. Add them to Disabled_List.

- Check for coherence when adding new elements to the lists.

 Loop on Enable list and Disable list processing

R6. Repeat R4 and R5 until all their elements are processed.

 Final state

R7. Coherence errors cause failure of the GEC. If this process succeeds, Enabled_List

will contain the structures and functions which are enabled, Disabled_List will contain

the structures and functions which are disabled.

Figure (4-3) shows the GEC algorithm, written in pseudo code.

4.3 Genetics-Based Evolution Scope

In the genetics-based methodology to object evolution, an object can evolve inside its

genotype, or between different genotypes (from one genotype to another).

27

- Evolution Inside a Genotype

Inside a genotype, an object may evolve organically by holding/losing structures and

functions of its actual genotype and behaviorally by holding/losing behaviors. Just like

natural evolution, this evolution is pre-planned in a genetic evolution process, inherent to a

genotype, defining the genotype objects lifecycle.

At its creation, each object holds its own lifecycle that determines the needed evolution

to be achieved genetically and automatically. Once an object is created, it holds an initial

genetic information subset of its genotype; defined explicitly and implicitly by its initial

genetic evolution program (structures, and functions). Example 8 shows two evolution

programs; StQueue and StStack.

Figure (4-3): GEC algorithm, in pseudo code.

FUNCTION GEC()

BEGIN

Read GEProg();

Add to_enable structures,functions to Enabled_List;

//to_enable: elements preceded by Enable clause

Add to_disable structures,functions to Disabled_List;

//to_disable: elements preceded by Disable clause

coh_status = Check_coherence();

//call Check_coherence function

IF Coh_status= success THEN Process_elements();

END FUNCTION

FUNCTION Scan_GER(string element)

BEGIN

//imply

IF element ∈ imply_List THEN
value = evaluate Left hand side Expression;

//True or False

IF value = True And element ∈ Enabled_List THEN
Add associated elements to Enabled_List;

IF value = True And element ∈ Disabled_List THEN
Add associated elements to Disabled_List;

//exclude

IF element ∈ exclude_List THEN
value = evaluate Left hand side Expression;

//True or False

IF value=True and element ∈ Enabled_List THEN
Add associated elements to Disabled_List;

IF value= True and element ∈ Disabled_List THEN
Add associated elements to Enabled_List;

//compound

IF element ∈ compound_List THEN
 value = evaluate Left hand side Expression;

 //True or False

 IF value = true THEN

enable/disable associated element

//according to the defined relation

END FUNCTION

FUNCTION Check_coherence()

BEGIN

IF element E ∈ (Enabled_List ∩ Disabled_List)
THEN

 return fail;

ELSE

 return success;

END IF

END FUNCTION

FUNCTION Process_elements()

BEGIN

 FOR each element E ∈ Enabled_List And E not
processed

BEGIN

Enable E;

Scan_GER(E);

coh_status= Check_coherence();

IF coh_status = success Then

Mark E as processed;

 ELSE

 Return fail;

END IF

END FOR

 FOR each element E ∈ Disabled_List And E not
processed

BEGIN

Disable E;

Scan_GER(E);

coh_status= Check_coherence();

IF coh_status = success THEN

Mark E as processed;

 ELSE

 Return fail;

END IF

END FOR

END FUNCTION

28

Each object has an age defining milestones through its lifecycle. At each milestone, the

object evolves automatically from one state to another. Naturally, the environment may

influence this evolution at any time during the object lifecycle. This influence, carried out

genetically, is out of scope of this work. While the evolution by environment influence

affects specific objects, the genetic evolution relates to all objects of the associated

genotype. Figure (4-4) shows a genetic evolution process Static, associated to the genotype

Static_List (Example 3); defined textually and graphically.

The behavior of an object is associated to functions, so the behavioral evolution is a

consequence of structural and functional evolution. A behavior of an object is an

organization, in the time, of its state enabled functions. So, to each state is associated a

behavior, and thus to the organic evolution is associated a behavior evolution (Figure 4-4).

However, even at the same state, the object behavior may evolve in the time, separating it

from next state. We define a phenotype behavior as it follows:

Behavior <id>

{

<function>  ((<condition>)* <function>,)*;

}

Where:

  : The right side functions will be executed after the left side functions.

GEProc Static

{ (age = 00): StQueue; Q-Beh0;

 (age = 05): Q-Beh1;

 (age = 10): StStack; S-Beh0;

 (age = 20): StRandom; R-beh0;

 (age = 30): StQueue; Q-Beh2;

}

Figure (4-4): A genetic lifecycle (GEProc) of an object of Static_List genotype.

 Q-Beh0 Q-Beh1 S-Beh0 R-Beh0 Q-Beh2

StQueue StQueueStRandomStStack

age00 10 20 30

GEProg StQueue

{

Enable front;

Enable Last;

}

GEProg StStack

{

Enable Last;

Disable Front;

}

Example 8: Static Queue and Static Stack genetic evolution programs

 : Represents the behavior at a given point of time.

 : Represents a state.

 : Represents the evolution between two states.

29

() *: Repeated once or more.

The behavior Q-Beh0 associated to a List in a StQueue state may be defined graphically and

textually as it follows in Figure (4-5):

The behavioral evolution process is enforced by the following rules:

R1. All the involved functions must be enabled, at the associated evolution state, else the

process stops.

R2. Labeled arrows are conditions on function outputs. Unless these conditions are met, the

target functions will not be executed.

The following application program creates an object List1 from the genome (class) List

(Example 2), holding the features specified by the genotype Static_List (Example 3) and

having the lifecycle defined by the GEProc Static (Figure 4-4)

{ …

 List Static_List List1= New (GEProc Static);

/* List is the genome class.

Static_List is a genotype of List, defining potential characteristics to be held by objects of

this genotype.

List1 is an instance (phenotype), inheriting its characteristics from List according to

Static_List requirements.

GEProc Static is the GEProc defining the lifecycle of List1(Figure 4-4).

List1 will have an initial state StQueue, defined by the GEProg StQueue (Example 8) and

will behave according to the behavior Q-Beh0 (Figure 4-5)

*/

. . . // List1 is used as a static Queue

}

True & age >0

True &

age>0

Behavior Q-Beh0

{

Evolve (age=x) PutAtEnd-L;

PutAtEnd-L (age>0) Full, (age>0)

GetFromBeg-L;

Full (False)&(age>0) PutAtEnd-L, (True)&

(age>0) GetFromBeg-L;

GetFromBeg-L (age >0) PutAtEnd-L, (age >0)

Empty;

Empty (False)& (age >0) GetFromBeg-L,

(True) &(age>0) PutAtEnd-L, (age=y)

Terminate;

}

False &

age >0

Empty

Full

PutAtEnd-L GetFromBeg-L

Figure (4-5): Behavior Q-Beh0 of an object in StQueue state. x is the age when an object evolves into

Q-beh0 state , y is the age when an object evolves into another state according to its GEProc.

False &

age>0

>0

Evolve

age=y Terminate

age>0
age>0

age>0
age>0

age = x

31

At age = 10, StStack GEProg will be activated (as illustrated in Figure 4-4). It was designed

for changing StQueue state to StStack state (Example 9).

- Evolution Between Genotypes (Metamorphosis)

Between genotypes an object may evolve by losing structures, functions, and behaviors

of its actual genotype and holding structures, functions, and behaviors of another genotype.

The evolution inside a genotype was studied previously, so this part deals with the

evolution from one genotype to another, which we term by the metamorphosis, i.e. From

static Queue list to dynamic Queue list, from dynamic Random list to static Random list,

etc.

A metamorphosis is an evolution with change (increase, destruction) in structures,

functions and behaviors, whereas the evolution is only in enabling or disabling already held

(from the corresponding genotype) structures, functions and behaviors. Figure (4-6) shows

a genetic evolution process of an object that evolves between two genotypes, Static_List

and Dynamic_List, defined textually and graphically. The Dynamic_List genotype of class

List (Example 2) is defined in Example 10.

// StQueue State

Instance Data

int age;

 [Enabled] int Front;

 [Enabled] T A[Size];

 [Enabled] int Last;

Instance Methods //Static

 [Disabled] PutRandom-A(T val)

 [Enabled] PutAtEnd-L(T val)

 [Disabled] T GetRandom()

 [Enabled] T GetFromBeg-L()

 [Disabled] T GetFromEnd-L ()

 [Disabled] bool Search(T val)

 [Disabled] void Sort()

 [Enabled] bool Empty()

 [Enabled] bool Full()

Behaviors

 [Disabled] Q-Beh0

 [Enabled] Q-Beh1

 [Disabled] Q-Beh2

 [Disabled] S-Beh0

 [Disabled] R-Beh0

Genetic Evolution Relations {…}

Genetic Evolution Programs {…}

Genetic Evolution Processes{…}

Genetic Evolution Control {...}

Metamorphosis Programs {…}

// StStack State

Instance Data

int age;

 [Disabled] int Front;

 [Enabled] T A[Size];

 [Enabled] int Last;

Instance Methods //Static

 [Disabled] PutRandom-A(T val)

 [Enabled] PutAtEnd-L(T val)

 [Disabled] T GetRandom()

 [Disabled] T GetFromBeg-L()

 [Enabled] T GetFromEnd-L()

 [Disabled] bool Search(T val)

 [Disabled] void Sort()

 [Enabled] bool Empty()

 [Enabled] bool Full()

Behaviors

 [Disabled] Q-Beh0

 [Disabled] Q-Beh1

 [Disabled] Q-Beh2

 [Enabled] S-Beh0

 [Disabled] R-Beh0

Genetic Evolution Relations {…}

Genetic Evolution Programs {…}

Genetic Evolution Processes{…}

Genetic Evolution Control {...}

Metamorphosis Programs {…}

Example 9: Phenotype evolution from StQueue to StStack (at age10).

31

Genotype Dynamic_List

// potential characteristics

Instance Data

int age;

Struct Node { T value; Node *next;}

Node *Front; Node *Last;

Instance Methods

PutRandom-A(T val) //in dynamic list

PutAtEnd-L(T val) //of dynamic list

T GetRandom() //of dynamic list

T GetFromBeg-L() //of dynamic list

T GetFromEnd-L() //of dynamic list

bool Search(T val) //in dynamic list

void Sort() //of dynamic list

bool Empty() //of dynamic list

bool Full() //of dynamic list

//control process

Behaviors

 Dy-Q-Beh0 {…}

Dy-S-Beh0 {…}

 Dy-R-Beh0 {…}

Genetic Evolution Relations
{…}

Genetic Evolution Programs

{…}

Genetic Evolution Processes
{…}

Genetic Evolution Control

{…}

Metamorphosis Programs
{…}

End Dynamic_List

Example 10: A Dynamic list genotype

 : Represents the behavior at a

given point of time.

 : Represents a state.

 : Represents a transition between

different genotypes.

GEProc Static_Dynamic

{ (age= 00): StQueue, Q-Beh0;

 (age=10): StQueueToDyQueue, Dy-Q-Beh0;

/*StQueueToDyQueue is a Metamorphosis program from

StQueue to DyQueue*/

 (age=20): DyStack, Dy-S-Beh0;

 (age=30): DyStackToStRandom, R-Beh0;

/* DyStackToStRandom is a Metamorphosis program from

DyStack to StRandom */

 (age=40): StStack, S-Beh0;

}

Figure (4-6): A genetic lifecycle of an object evolving between Static_List and Dynamic_List genotypes, by

metamorphosis programs.

StStack

 DyRandom DyRandomDyStackDyQueu

e

age

 Q-Beh0 R-Beh0 S-Beh0

StQueue StRandom

 Dy-R-Beh0 Dy- Q-Beh0 Dy-S-Beh0 Dy- R-Beh1

00 10 20 30 40

Evolution inside the

genotype Static_List

Evolution inside the

genotype Dynamic_List

00 10 30 40

age

32

The metamorphosis of an object O1, of a genotype G1 to a genotype G2, is a process

which may change O1 completely (i.e. destruction of old structures and holding new ones).

It operates like a conversion of O1 to a new object O2 of the genotype G2, with a maximum

of information transition, such as identity, age, lifecycle, persistent state information, etc. A

metamorphosis program is defined as it follows:

Metamorphosis_Program<Id>

{

 Metamorphose to genotype <genotype_Id>;

 At the Evolution State <GEProg_1> to the Evolution State <GEProg_2>;

 Information transition ensured by the function <Funct_Id>;

}

Where:

genotype_Id: Target genotype

GEProg_1: Current GEProg.

GEProg_2: Target GEProg.

Funct_Id: The identifier of a user defined function ensuring the transition of specific

persistent information from O1 to O2.

The metamorphose StQueueToDyQueue may be defined as it follows:

Example 12 shows the translation of StQueue into a DyQueue done by the metamorphosis

program StQueueToDyQueue.

Metamorphosis_Program StQueueToDyQueue

{

Metamorphose to genotype Dynamic_List;

At the Evolution State StQueue to the Evolution State

DyQueue;

Information transition ensured by the procedure

StQueueToDyQueueTrans;

procedure StQueueToDyQueueTrans

{

 while (not StQueue.Empty())

 {DyQueue.PutAtEnd (StQueue.GetFromBeg() ;}

}

}

Example 11: Metamorphosis program StQueueToDyQueue

33

The following application program creates an object Q1 from the genome (class) List

(Example 2), holding the features specified by the genotype Static_List (Example 3) and

having the lifecycle defined by the GEProc Static_Dynamic (Figure 4-6)

 { …

 List Static_List Q1= New (GEProc Static_Dynamic);

 /* List is the genome class

Static_List is a genotype of List, defining potential characteristics to be held by objects of

this genotype.

Q1 is an instance (phenotype), inheriting its characteristics from List according to

Static_List requirements.

GEProc Static_Dynamic is the GEProc defining the lifecycle of Q1(Figure 4-6).

Q1 will have an initial state StQueue, defined by the GEProg StQueue (Example 8) and

will behave according to the behavior Q-Beh0 (Figure 4-5) */

 . . . // Use of Q1 as static Queue

}

Suppose an application program that uses the already created object Q1, at age = 10. The

metamorphosis StQueueToDyQueue will be interpreted to metamorphose the Static_List Q1

to Dynamic_List Q1.

// genotype Static_List

// StQueue State

Instance Data

 int age;

[Enabled] T A[Size];

 [Enabled] int Front;

 [Enabled] int Last;

Instance Methods //Static

 [Disabled] PutRandom-A(T val)

 [Enabled] PutAtEnd-L(T val)

 [Disabled] T GetRandom()

 [Enabled] T GetFromBeg-L()

 [Disabled] T GetFromEnd-L()

 [Disabled] bool Search(T val)

 [Disabled] void Sort()

 [Enabled] bool Empty()

 [Enabled] bool Full()

Behaviors

[Enabled] Q-Beh0 {...}
 [Disabled] Q-Beh1 {...}

 [Disabled] Q-Beh2 {...}

 [Disabled] S-Beh0 {...}

 [Disabled] R-Beh0 {...}

Genetic Evolution Relation {...}

Genetic Evolution Programs {...}

Genetic Evolution Processes{...}

Genetic Evolution Control {...}

Metamorphosis Programs {...}

// genotype Dynamic_List

// DyQueue State

 Instance Data

int age;

Struct Node

{ T value; Node *next}

 [Enabled] Node *Front;

 [Enabled] Node *Last;

Instance Methods // Dynamic

 [Disabled] PutRandom-A(T val)

 [Enabled] PutAtEnd-L(T val)

 [Disabled] T GetRandom()

 [Enabled] T GetFromBeg-L()

 [Disabled] T GetFromEnd-L()

 [Disabled] bool Search(T val)

 [Disabled] void Sort()

 [Enabled] bool Empty()

 [Enabled] bool Full()

Behaviors

 [Enabled] Dy-Q-Beh0 {...}

[Disabled] Dy-S-Beh0 {...}

 [Disabled] Dy-R-Beh0 {...}

Genetic Evolution Relation {...}

Genetic Evolution Programs {...}

Genetic Evolution Processes{...}

Genetic Evolution Control {...}

Metamorphosis Programs {...}

Example 12: Translation of Queue from Static List into Dynamic List

StQueueToDyQueue

34

The interpretation of the genetic metamorphosis program StQueueToDyQueue will translate

the precedent application program to an internal form as it follows:

{ …

 Static_List Q1; // Q1.age = 0

 Q1= New StQueue (); // Current GEProg is StQueue

 …. // Use of Q1

 // At age= 10, Q1 should evolve into DyQueue

// Generation of a new object Q1_New, of the Dynamic_List variation

Dynamic_List Q1_New;

Q1_New = New DyQueue();. // DyQueue is the target GEProg

Q1_New.GEProc= Q1.GEProc; // Genetic information transfer

// Specific information transfer

Q1_New.age= Q1.age;

While (not Q1.Empty()) do //

{ Q1_New.PutAtEnd-L (Q1.GetFromBeg-L());}

 . . . [1] // Substitution of Q1 by Q1_New in [1].

}

Note that applications must always use objects according to the state of their actual Age.

4.4 Tolerating Evolution Accidents

Some environmental and internal factors cause different kind of accidents. A key element,

in handling accidents, is detecting them at early stages. In order to achieve that, we are

creating a checkpoint each time an object evolves. After detecting accidents, we should

assess the damage caused by them, so that we can find a proper mechanism to repair it (if

possible).

Accidents affecting the genetic evolution program

Some accidents may affect the genetic evolution program, causing some changes in it; i.e. an

enabled element may become disabled and a disabled element may become enabled.

Example: Consider the following factor that affects StQueue genetic evolution program:

{Disable front;}

Disabling front disables GetFromBeg-L. This means that queue structure and operations are

completely changed.

Accidents affecting the genetic evolution process

Some external factors could cause a failure in calling the GEProg at a certain point of time;

this will cause the evolving object to remain at the same state without evolving to the next

35

state. Sometimes though the GEProg is successfully called, while being executed, some

errors may occur and stop its execution.

Example: Consider the genetic evolution process in Figure (4-4).

Assume that at age 10, the GEProg StStack is damaged and could not be called. An object of

this process will remain in StQueue state without evolving to StStack state.

Accidents affecting the Genetic evolution relations

Some accidents cause changes (update, deletion) in existing genetic relations. This kind of

changes usually leads to an incoherency within predefined states or to new undefined states.

Example: Consider an environmental factor having the following effect on genetic evolution

relations:

{Disable Front  Enable GetFromBeg-L;}

Disabling Front should disable GetFromBeg-L, but when this effect takes place, disabling

Front will enable GetFromBeg- L.

Accidents affecting objects

This kind of accidents usually happens when the object is exposed to certain factors that

cause the enabled structures/operations/behaviors to become disabled, or cause the disabled

structures/functions/behaviors to become enabled. This leads to an incoherent state. Objects

within this state cannot be used, until they are repaired.

In some cases, accidents do not only affect enabled/disabled elements within the object, but

they affect the structures, operations and behaviors themselves; causing an error when these

structures, operations and behaviors are being used without a proper repair.

Example: Consider an environmental factor having the following effect on an object in

StStack state:

{Enable front;}

Enabling front enables GetFromBeg-L, Empty and Full. This is incoherency, since objects in

a StStack state should not have front enabled as an attribute and GetFromBeg-L enabled as an

operation.

How to detect an accident, assess the damage and repair it?

Each object evolution age represents a checkpoint for that object. At each checkpoint, a

checking program will be running, whose task is detecting all kind of accidents that have

been previously defined. If an accident is detected, a function will be running to determine

36

what parts of the object are damaged. At the end, another function will be running to repair

the damage and eliminate the factors that caused the accident (not always applicable, since

we cannot control and eliminate environmental factors).

In Figure (4-7), we take accidents that affect GEProg as an example, to show how accidents

might be detected, then how the damage might be assessed and finally how the GEProg might

be repaired.

PROGRAM Tolerate_Accidents

BEGIN

Struct Result {Bool exist; String name ;}

Declare Result A[];

 // Declare an Array of type Result

...

Call Detect () // call Detect function

FOR i= 0 TO Length of A

IF A[i].exist = False THEN

//If an accident is detected

 Damage=call Assess(A[i]);

 //Call the function Assess

 Call Fix(Damage)//Fix the damage

END_IF

END_FOR

...// the rest of the program

END_PROGRAM

FUNCTION Assess(A[])

//This function locates the damage

BEGIN

Read (A[i]);

Return A[i].name //The name of the Damaged Part;

END_FUNCTION

FUNCTION Fix()

//This function fixes the damage

BEGIN

IF Damage = GEProg THEN

 Get the Genome’s copy of this GEProg;

 Replace Current GEProg with Genome’s copy;

END_IF

... // the rest of the Algorithm

END_FUNCTION

FUNCTION Detect()

//This function detects accidents

BEGIN

X = Get current GEProg;

N = Get the name of current GEProg;

Y = Get the GEProg called N from the Genome;

...

FOR i = 0 TO Length of Y

IF X’s element equals its corresponding

element in Y

/* If the current GEProg matches its

corresponding GEProg in the Genome */

THEN

 A[i].exist = True;

// No accident is detected

 A[i].name= “GEProg”;

ELSE

 A[i].exist =False;

// An accident is detected

 A[i].name= “GEProg”;

 END_IF

END_FOR

...// the rest of the Algorithm

END_FUNCTION

Figure (4-7): Accidents tolerance algorithm, in pseudo code.

37

CHAPTER FIVE

EVALUATION: IMPLEMENTATION ISSUES,

APPLICATION AREA

 AND COMPARISON

38

In this chapter, we evaluate the genetics-based methodology to object evolution, by

introducing some issues related to implementation aspects, application area and a

comparison.

5.1 Implementation Issues

The implementation environment of this methodology requires a strongly typed and an

object-oriented programming language.

Strongly typed language. The programming language should ensure type-checking of objects

each time an object is declared or created. The checking process should guarantee the correct

association between the genome class and its genotypes, and between the genotypes and its

objects (phenotypes), by keeping a record of the genome and its subclasses, and using it to

check the genotype and the genome associated to a specific object.

Object-oriented programming language. We need to add an extension to any existing object-

oriented programing language (OOPL), to adopt the notion of genome class, genotype,

phenotype, GER, GEProc, GEProg and GEC.

We are building on an extension that was presented earlier in (S.Ghoul, 2011). These

extensions might be processed by any OOPL preprocessor. Figure (5-1) illustrates our

extension to an OOPL to implement the genome class, genotype, phenotype, GER, GEProc,

GEProg and GEC. Objects can be created from a specific genotype as it follows:

Class<Id> genotype<Id> Object_name = New (GEPRoc GEProc<Id>);

When objects are created, they hold the same structure of their genotype. The

interpretation process takes place at the creation of objects and each time objects evolve. This

process fills Enable set and Disable set with structures and functions to be enabled/disabled.

Once an element is added to Enable set, its access modifier, is set to one of the following:

{public, protected, private}. We suggest a new access modifier, called inactive. Elements

that are added to Disable set will have their access modifiers changed into inactive. Elements

having this access modifier cannot be used until they are enabled.

39

5.2 Application Area

Genetics-based evolution of objects can be used in many applications, where there is a

real need for dynamic changes in objects at run time. Banking, GUI development, scientific

and simulation programs are all examples of applications that usually require dynamic and

continuous changes in their objects at runtime.

Class Genome-Name {

Config: (Name= Genotype_name)

{

Require

{

Structure(…);

Function (…);

Behavior (…);

} //End Require

}

 Control: (Name = GER)

 {

Imply

{

Enable{Structures(…);Functions(…);}Enable{Structures(…);Functions(…);}

Disable{Structures(…);Functions(…);}Disable{Structures(…);Functions(…);}

}//End imply

Exclude

{

Enable{Structures(…);Functions(…);}Disable{Structures(…);Functions (…);}

Disable{Structures(…);Functions(…);}Enable{Structures(…);Functions(…);}

} //End exclude

Compound

{

Enable {Structures (…); Functions (…);} AND Disable {Structures (…);

Functions (…);} Disable {Structures (…); Functions (…);} OR Enable

{Structures (…); Functions (…);}

}//End Compound

} // End GER

 Control: (Name = GEProg)

{

Enable {

Structures(…);

Functions(…);

}

Disable {

Structures(…);

Functions(…);

}

 }// End GEProg

 Control: (Name = GEProc)

{

 Age = value : GEProgi, Behaviori;

} //End GEProc

Control: (Name = GEC)

{

 … // GEC program

} //End GEC

 } // End Genome Configuration

Figure (5-1): An extension to an OOPL.

41

As an example, consider medical and scientific applications. In such applications, there is

a need to simulate the lifecycle of some microscopic entities. These entities’ lifecycle include

many phases. At each phase, these entities change their structure and behavior completely.

Figure (5-2) illustrates a lifecycle of a microscopic entity. It starts as an egg and evolves till it

reaches an adult phase. When using our genetics-based approach, we will be able to simulate

the growth process of these entities, using one object that represents the entity throughout its

lifetime at different phases.

Another example is GUI applications, which make use of different kind of shapes to

create an animation. An object should evolve between different shapes (circle, rectangle,

triangle, etc.). When following our genetics-based approach, there is no need to use multiple

objects (one for each shape); since one object can evolve between different shapes.

5.3 Comparison

Since each object evolution approach has its own characteristics, in order to make a better

comparison among them, we will define a set of evaluation criteria, based on our study to

objects evolution:

 Evolution inside a class: The ability of objects to evolve between different states,

within the same class. The evolution between two classes is supported by all the

approaches mentioned earlier.

 Evolution coherence control: The availability of control over the evolution process.

This control insures the coherence between object’s structures and operations.

 Gaining/losing structures: the ability of objects to gain and lose structures.

 Gaining/losing operations: the ability of objects to gain and lose operations.

 Behavioral evolution: the ability of objects to change their behavior at runtime. i.e.

change the sequence of functions execution.

Figure (5-2): A life cycle of a microscopic entity.

41

 Automatic evolution: The ability of objects to evolve automatically at runtime, i.e.

without the need to call a specific function or a procedure that is written within the

application.

 Accidents handling: The ability to handle different kind of evolution accidents.

 Close to real world concepts: Distance between proposed concepts and real world

concepts. i.e. how the evolution is done, do objects evolve the same way real entities

do, etc. The closer to real world concepts, the better.

 Classes and objects hierarchy: Large or small hierarchies of classes and objects. The

smaller the hierarchy, the better.

Table (5-1) shows a comparison (based on the above criteria) between our proposed approach

and the previously studied ones. This comparison states clearly the value of our contribution.

Criteria

Approach

Evolution

inside a

class

Evolution

coherence

control

Gaining/

losing

structures

Gaining/

losing

operations

Behavioral

evolution

Automatic

evolution

Accidents

handling

Close to

world

concepts

Classes and

objects

hierarchy

Object Re-

classification

No No Gaining

and losing

Gaining

and losing

No No No Far Large

Object

evolution

No No Only

gaining

Only

gaining

No No No Far Large

Class

evolution

Yes No Gaining

and losing

Gaining

and losing

No No No Far Large

Schema

evolution

Yes No Gaining

and losing

Gaining

and losing

No No No Far Large

Dynamic

roles

Yes No Gaining

and losing

Gaining

and losing

No No No Close Large

ORM No No Gaining

and losing

No

operations

No No No Far Large

Bio-inspired

objects

evolution

methodology

Yes Yes Gaining

and losing

Gaining

and losing

Yes Yes Yes Close Small

Table (5-1): A comparison between object evolution approaches.

42

After comparing our approach with the existing approaches that are used in object evolution,

we find that our approach introduces the following concepts:

- Evolution inside class (without modifying the class).

- Evolution coherence control.

- Behavioral evolution.

- Automatic evolution.

- Accidents handling.

- Small classes hierarchy.

43

CHAPTER SIX

CONCLUSION AND FUTURE WORKS

44

6.1 Conclusion

In this study, we have proposed a genetics-based approach to objects evolution, where

objects can evolve at runtime automatically without changing their identity. Our proposed

evolution approach is based on the concept of phenotype evolution. Phenotypes, which are

similar to objects, are instances of genotypes, which hold the set of potential characteristics.

Objects can lose/gain structures, operation and behaviors at runtime. To achieve this, we have

added some genetics information to the genome class: GEProg, GEPrc and GEC.

Environment affects the evolution process and objects in different ways. In this work, we

are presenting a mechanism to handle some kind of accidents caused by environmental

factors. In order to implement our approach, we have presented a programming language

extension to be added on any OOPL.

6.2 Future Works

- We have studied genetic-based objects evolution. This evolution is planned and pre-

determined. A future work is to study evolution caused by environment, which includes

learning (Epigenesis). Environmental factors may have huge influence on evolving

objects, and they could cause huge differences between objects that belong to the same

genotype.

- Reducing the time needed to create instances from genotypes, and the time needed for

objects to evolve, using learning techniques.

- Studying the evolution of Genome, Genotype, GEProg, GER, GEProc and GEC.

- Formalizing our methodology using a formal specification language.

45

REFERENCES

46

Andrzej Jodloowski, Piotr Habela, Jacek Ploodzien. Dynamic Object Roles – Adjusting

the Notion for Flexible Modeling, IDEAS '04 Proceedings of the International

Database Engineering and Applications Symposium, IEEE, 2004, pp.449-456.

Artur Caetano, Marielba Zacarias, António Rito Silva, José Tribolet, (2005). A Role-

Based Framework for Business Process Modeling, 38th Hawaii International

Conference on System Sciences (HICSS-38), IEEE, 2005, Track 1 - Volume 01, Page

13.3.

Bertrand Meyer. Object-Oriented Software Construction, Second Edition, Prentice Hall,

2000.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter

Walter. Molecular Biology of the Cell , Fifth Edition , Garland Science, Taylor &

Francis Group, 2008.

D.Ancona, C.Anderson, F.Damiani, S.Drossopoulou, P.Giannini, E.Zucca. A Provenly

Correct Translation of Fickle into Java NEW Fickle, ACM Transactions on

Programming Languages and Systems, April 2007, Volume 29 Issue 2.

Dareen Hammodeh. Aِ Genetics-Based Approach to Inheritance Modeling. Master

Thesis, Philadelphia University, 2012.

Djamel Meslati, Saïd Ghoul. Towards Autonomously Developed Software: A genetic

Approach in Critical and Embedded Systems, Journal of Computer Sciences, 2005

Science Publications, volume 1, Issue 4 , pp. 530-537.

Dominik Stein, Stefan Hanenberg, Rainer Unland. Roles from an Aspect-Oriented

Perspective, Roles, VAR’05 in conjunction with ECOOP, Glasgow, UK, 24 July,

2005.

Einar Broch Johnsen, Marcel Kyas, Ingrid Chieh Yu. Dynamic Classes: Modular

Asynchronous Evolution of Distributed Concurrent Objects, FM '09 Proceedings of

the 2nd World Congress on Formal Methods Springer-Verlag Berlin, Heidelberg,

2009, pp.596 – 611.

Ian Sommerville. Software Engineering, ninth edition, Addison Wesley, 2011.

47

Marco Piccioni, Manuel Oriol, and Bertrand Meyer. Class Schema Evolution for

Persistent Object-Oriented Software: Model, Empirical Study, and Automated

Support, IEEE Transactions on software engineering, Mar, 2011, volume: PP , Issue:

99. Page(s): 1.

Said Ghoul. Bio-inspired Systems – An Integrated Model. MISC2010, International

Symposium on Modeling and Implementation of Complex systems, Constantine,

Algeria,, 2010.

Said Ghoul. Supporting Aspect-Oriented Paradigm By Bio-inspired Concepts, ISIICT,

2011, IEEE, pp. 63 – 73, 2011

Tal Cohen, Joseph (Yossi) Gily. Three Approaches to Object Evolution, PPPJ '09

Proceedings of the 7th International Conference on Principles and Practice of

Programming in Java, ACM, pp. 57-66, 2009.

Terry Halpin. Object-Role Modeling -Principles and Benefits. International Journal of

Information System Modeling and Design, 1(1), 2010, pp. 33-55.

1

 مسخىحاة من البيىلىجيامنهجيت

 لخطىر الكائناث

 بىاســطت

 سعذ النفارإيناس حىفيق

 بإشــزاف

 أ.د. سـعـيذ الغىل

 قذمج هذه الزسالت اسخكمالًا لـمـخطلباث الحصىل على درجت

 لـم الـحـاسـىبالــمـاجـسـخيز في عـ

 عـمـادة البحث العلمي والذراساث العليا

 جامعت فيلادلفيا

 2102 أيار

2

 صــخـلــم

 بئُبث ، يضأنت عذو وخىد آنُبث لإعبدة حصُُف انك (OOP)ئُتشُيٍ إحذي انقضبَب انًطشوحت فٍ انبشيدت ان

(object reclassification) .بئٍعبدة حصُُف انكإ (object) يٍ حغُُش فئخه هًكُح (class) عبدة .أثُبء حُفُز انبشَبيح

 .بشكم دَُبيكٍ وقج حُفُز انبشَبيح كبئُبحهبفٍ انخطبُقبث انخٍ حخغُش بئُبثعبدة حصُُف انكإَحخبج انً يب

يُهب يٍ طشقب يخخهفت. نكٍ نى َقخشة اٌ بئُبثة حصُُف انكانخعبيم يع إعبد انًُبهح انضببقت انخٍ احبعج فٍ اعخًذث

، وقذ أدي رنك إنً اصخخذاو عذد كبُش يٍ انفئبث ، الايش انزٌ خعم يٍ حصًُى وحُفُز بئُبث انبُىنىخُتيفهىو حطىس انك

 .أكثش حعقُذا انُظبو

. فٍ حغُُش عهً فئخهخطىس حهقبئُب أثُبء وقج حُفُز انبشَبيح، يٍ دوٌ أٌ َاٌ َضًح نه بأٌ بئٍَُبغٍ نهخطىس انًُشىد نهك

ُخًٍ إنً َ زًٌَكٍ نهكبئٍ ان، يضخىحبة يٍ بعط يفبهُى عهى انىساثت. حُث بئُبثعًم، َقذو يُهدُت خذَذة نخطىس انكهزا ان

إنً َفش انفئت. حى إدخبل حأثُش هفٍ وقج انخشغُم حهقبئُب، يع انحفبظ عهً اَخًبئ هوصهىك غُُش هُكهه ووظبئفهَأٌ يحذدة فئت

 خشحت.طفُف نهبُئُت عهً عًهُت انخطىس انًق

