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ABSTRACT 

 

 

The core step of KDD is Data Mining. Data Mining applies efficient algorithms to 

extract interesting patterns and regularities from the data. As volume of information in 

digital form increases, the use of Text Categorization techniques, which aim at finding 

relevant information, becomes more necessary. To improve the quality of the 

classification process form textual data sets, Associative Classification, which utilizes the 

association rule discovery techniques to construct classification systems, is evaluated in 

this thesis. Particularly, we developed an associative classification vertical mining 

algorithm representation in order to improve the accuracy of the classification phase, and 

to reduce the size of the memory required to store intermediate TIDS in the mining 

process. Considering the fact that vertical data structure supports fast frequency counting 

via intersection operations on transaction identifiers (TIDS), this should improve 

accuracy and decrease memory usage. This thesis demonstrates the problem of using 

Associative Classification to solve Text Categorization problem, and utilize Diffset 

structure as a mining approach. 
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CHAPTER 1 

INTRODUCTION 

1 



1.1 Motivation 
 

Nowadays, data grow at an alarming speed in various storage devices, and so does valuable 

information. However, it is difficult to understand hidden information in data without the use of 

data analysis techniques, which has motivated extensive interest in developing a new field from 

machine learning. This new field is data mining (DM). Data mining has successfully provided 

solutions for finding information from text data in bioinformatics, pharmaceuticals, banking, 

retail, sports and entertainment, etc (Wang et al., 2005) . Many important problems in science and 

commerce have been addressed by data mining methods, in order to find solutions for the above 

problems, such methods as Neural Networks (Wiener et al., 1995), Support Vector Machine 

(SVM) (Joachims, 1998), and Decision Trees (Quinlan, 1993). 

In addition to the increasing use of computers, tremendous volumes of data have filled hard 

disks as digitized information. In the presence of the huge amount of data, the challenge is how to 

truly understand, integrate, and apply various methods to discover and utilize knowledge from 

data. To predict future trends and to make better decisions in science, industry, and markets, 

people are starved for discovery of knowledge from this morass of data. Though ‘data mining’ is 

a new term proposed in recent decades, the tasks of data mining, such as classification and 

clustering, have existed for a much longer time. With the objective to discover unknown patterns 

from data, methodologies of data mining are derived from machine learning, artificial 

intelligence, and statistics, etc. The capability of data mining has been proven in improving 

marketing campaigns, detecting fraud, predicting diseases based on medical records, etc (Wang et 

al., 2005). 

Sales transactions in a retail store are often known as basket data, which can be defined as 

customer purchases that do not necessarily occur at the same cash point or time (Agrawal, 1993). 

Consider a retail store with a large collection of sales transactions and customer information. The 

marketing division at the store is promoting a new credit card in a new geographical area. Typical 

business decisions have to be made such as how credit card limits are decided for each customer 

and how each customer’s total purchases contribute to the decision process. Classification is a 

major branch of Data Mining, which used in such cases, finding associations between customer’s 

different features can help the management people in making business decisions. These 

associations are known as association rules, an example of an association rule is: “55% of 

customers who buy crisps are likely to buy a soft drink as well; 4% of all database transactions 

contain crisps and a soft drink”. “Customers who buy crisps” is known as rule antecedent, and 
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“buy a soft drink as well” is known as rule consequent. The antecedent and consequent of an 

association rule contain at least one item. The 55% of the association rule mentioned above 

represents the strength of the rule and is known as rule’s confidence, whereas the 4% is a 

statistical significance measure, known as the rule’s support.  

One subset of the generated Classification Association Rules is chosen to build an automatic 

model (classifier) that could be used to predict the classes of previously unseen data. This 

approach, which uses association rule mining to build classifiers, is called associative 

classification (AC) (Liu, et al., 1998, Li, et al., 2001). Unlike the classic classification approaches 

such as rule induction and decision trees which usually construct small sized classifiers, AC 

explores all associations between attribute values and their classes in the training data set, aiming 

to construct larger sized classifiers, therefore should improve the predictive accuracy within 

applications (Antonie, et al. 2003; Li, et al., 2001; Yin and Han, 2003). Since (AC), proved to be 

one of the most efficient techniques in classification; we choose to use it within this work. 

As we previously mentioned that the amount of data collected by advanced information 

systems has increased tremendously. To analyze these huge amounts of data, the interdisciplinary 

field of Knowledge Discovery in Databases (KDD) has emerged. Thus, new data mining methods 

are necessary to draw maximum benefit from this additional information. In this chapter, the 

KDD (Fayyad U., 1996) process is introduced and described. Then data mining and its key tasks 

are surveyed. A review about Associative Classification (AC) is given. Afterwards the idea of 

using vertical mining for solving text categorization task is introduced. Finally, the chapter 

concludes with an outline of the thesis, offering a brief overview of the introduced solutions. 

Classification Based on Association (CBA V1.0) is a classification system presented 

algorithm CBA in the KDD 98, or what is also called AC to deal with text data recently. Text 

data is converted to database of transactions, and then training and prediction is actually 

conducted on the derived dataset. In this thesis, the proposed strategy adapts AC to text 

categorization.  

As an example, lets consider the SPAM DETECTION, Spasm or, more formally, unsolicited 

commercial electronic messages, can undermine the usability of electronic messages. Technical 

counter-measures include the development of spam filters, which can automatically detect a spam 

message. Classification algorithms are usually the core of spam filters. The problem is to classify 

if a given electronic message is spam or legitimate (a message is a data instance). Spasm 

corresponds to 25% of the total number of messages.  
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In this thesis, we propose an efficient method for discovering rules based on fast intersection 

that requires only one database pass and we show by experiments that using Diffset structure 

(Zaki, M., et al, 2001 ) reduces physical memory used within transaction storage.  Also, using AC 

with vertical data representation, has showed to be positively effectives on the accuracy of the 

derived classifiers.  

 

1.2 Knowledge Discovery in Databases 
The amount of data collected and stored by electronic devices has risen tremendously during 

last decades. For example, earth observation satellites retrieving images, bar code scanners 

collecting costumer data, and companies mapping costumer preferences in data warehouses are 

generating gigabytes of data every day. Another rapidly growing information collection is the 

World Wide Web (WWW). Currently the web provides more than 4 billions (Google Press 

Center) WebPages containing information about almost any imaginable topic.  

All of these data collections are far to large to be examined manually and even methods for 

automatic data analysis based on classical statistics and machine learning often face problems 

when processing large, dynamic data collections consisting of complex objects. To analyze these 

large amounts of collected information, the area of Knowledge Discovery in Databases (KDD) 

provides techniques which extract interesting patterns in a reasonable amount of time. Therefore, 

KDD employs methods at the cross point of machine learning, statistics and database systems. In 

(Fayyad U., 1996) KDD is defined as follows: 

Knowledge Discovery in Databases is the non-trivial process of identifying valid, potentially 

useful, and ultimately understandable patterns in data. 

According to this definition, data is a set of facts that is somehow accessible in electronic form. 

The term” patterns” indicates models and regularities which can be observed within the data. 

Patterns have to be valid, i.e. they should be true on new data with some degree of certainty. The 

potentially usefulness of patterns refers to the possibility that they lead to an action providing a 

benefit. A pattern is understandable if it is interpretable by a human user. At last KDD is a 

process indicating that there are several steps that are repeated in several iterations. Figure 

1.1(Schubert M., 2004) comprises the following steps: 

• Focussing: The first step is to define the goal of the particular KDD task.  

• Preprocessing: In this step the specified data has to be integrated, because it is not necessarily 

accessible on the same system.  
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• Transformation: The transformation step has to assure that each data object is represented in a 

common form which is suitable as input in the next step. 

• Data Mining: Data mining is the application of efficient algorithms to detect the desired patterns 

contained within the given data.  

• Evaluation: At last, the user evaluates the extracted patterns with respect to the task defined in 

the focussing step. An important aspect of this evaluation is the representation of the found 

patterns.  

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
1.3 Data Mining Overview 
 

1.3.1 Data Mining 

Data mining is the most important step within the KDD process, in (Fayyad, U., 1996) Data 

Mining, and shown in Figure 1.1comes after several steps in KDD, and defined as follows: 
 

Data mining is a step in the KDD process consisting of applying data analysis and discovery 

algorithms that, under acceptable computational efficiency limitations, produce a particular 

enumeration of patterns over the data. 
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According to this definition data mining is the step that is responsible for the actual 

knowledge discovery. To emphasize the necessity that data mining algorithms need to process 

large amounts of data, the desired patterns have to be found under acceptable computational 

efficiency limitations. Note that the term data mining and KDD are often used in a synonymous 

way. In the following, the most important data mining methods are described with respect to the 

kind of knowledge they mine: 

• Classification (also called supervised learning) 

Classification is the task of learning a function that maps data objects to one or several classes in 

a predefined class set (Schubert, M., 2004). To learn this function, classification methods need a 

training set, containing data objects that are already mapped to the class they belong to. After 

analyzing the training set, classification methods can map new unknown objects to the classes.  

• Clustering (also called unsupervised learning) 

Clustering is the task of identifying a finite set of categories (or clusters) to describe the data. 

Thus, similar objects are assigned to the same category and dissimilar ones to different 

categories. Clustering is also called unsupervised learning because the data objects are mapped to 

a set of clusters which can be interpreted as classes as well.  

• Association Rules 

Finding Association rules is the task of identifying rules that express co-occurrences which 

means the above-chance frequent occurrence of two terms from a text corpus alongside each 

other in a certain order, within transaction databases (Schubert, M., 2004). A transaction is a set 

of items where each item has a different type. Association rules express that in the given database 

a specified set of items appears together in the same transaction with a certain 

support/probability. The most important example of transaction data is market basket data. 

• Regression 

The task of regression is to learn a function which maps data objects to a real value. To find a 

regression function, a training set of data objects that are already mapped to a real value is 

necessary (Schubert M., 2004). An additional goal of regression is to discover functional 

relationships between the feature values of the underlying training objects. Regression is related 

to classification and Clustering, since these tasks learn functions from a training set. 

• Outlier Analysis 

 Outliers are records in the database that are considerably different from the majority of existing 

records. Outliers generally have an impact on the calculation of statistics and are discarded in 
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most cases by the majority of data mining techniques. However, in applications such as fraud 

detection, the discovery of outliers is important. 

KDD comprises more than one phase where data mining is one of its primary phases. Other 

phases in KDD are data selection, data cleansing, data reduction, pattern evaluation and 

visualization of the discovered information (Fayyad, et al., 1998; Elmasri and Navathe, 1999). 

Consider for instance a retail store database where information about customers, including their 

names, address, postal codes, date of purchase, total paid, etc are stored. During data selection, 

facts about a group of customers or about customers from specific geographical areas can be 

selected. Incorrect or incomplete records like invalid postal codes or addresses can be fixed by 

end users during the data cleansing step. Data reduction decreases the amount of data needed 

before mining starts, for example, customers may be grouped by income. Once data are 

processed, then data mining can be applied to derive useful different patterns.  

Learning in data mining involves finding and describing patterns from data for different 

purposes.  

The results of the mining phase may be of the following:  

•  Classification Rules- Customers may be categorized based on payment type; an example of 

a classification rule is: If income >= 30k and age <= 55 then accept credit card 

application.  

• Association Rules- What items customers are likely to buy together; an example of an 

association rule is: If a customer buys a pair of jeans and a hat, then he is likely to buy a pair 

of tennis shoes as well. 

• Sequential Pattern- A customer buys a tennis racket, and after one month he buys a digital 

camera and within four months a tennis shirt. An example of a sequential rule is, “a customer 

who buys three times in January is likely to buy chocolates on Valentine’s Day”. There is no 

single data mining technique applicable to all tasks and when it comes to choosing a 

technique for a particular problem, the choice is very critical as one technique could work 

well for one problem and poor with others. There are many factors that can be considered 

before taking such a decision like the size and nature of the data, attribute types (text, real, 

etc), number of columns, output format and more importantly the goal of application.  
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1.4   Text Data Mining (TDM) 
The appearance and growth of the World Wide Web facilitated the process of spreading and 

exchanging the information, but apart from that it also gave birth to the completely new ways of 

communication. These include electronic mail, newsgroups and on-line news, all of which can be 

stored in text form. The accelerating growth in the amount of text data makes it necessary to 

automate, at least partially, the process of its search and browsing. 

Text expresses a vast, rich range of information, but in its original raw form is difficult to 

analyze or mine automatically. Most standard DM applications tend to be automated discovery of 

trends and patterns across large DBs and data sets In the case of text mining, the goal is to look 

for pattern and trends in large amounts of text (Hearst, 1999) (Wang, J., 2003). 

1.4.1 Benefits of TDM 
Text mining focuses on how to use a body of textual information as a large knowledge base 

from which one can extract new, never-before encountered information (Craven, D., et al, 1998). 

However, the results of certain types of text processing can acquire tools that indirectly aid in the 

information-access process. As automatically generating term associations to aid in query 

expansion, and using co-citation analysis to find general topics within a collection or identify 

central Web pages (Hearst, 1999; Kleinberg, 1998; Larson, 1996). 

1.4.2 Methods of TDM 

Some of the major methods of TDM include Feature Extraction, Clustering, and 

Categorization. Feature extraction, which is the mining of text within a document, attempts to 

find significant and important vocabulary from within a natural language text document (Wang, 

J., 2003). From the document-level analysis, it is possible to examine collections of documents. 

The methods used to do this include clustering and classification. In text categorization, the 

process is a bit more involved. Here, samples of documents fitting into pre-determined "themes" 

or "categories" are fed into a "trainer," which in turn generates a categorization schema.  

 
1.5 Text Classification 

Data mining techniques are used to extract knowledge from relational, otherwise called 

structured, data where each tuple contains a set of attribute-value pairs. Consider as an example a 

database with attributes (Sender, Recipient, Date, and Size). The first tuple can be represented as 

the following set of attribute-value pairs: Sender = “Bob Smith”, Recipient = “Ann Smith”, Date 
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= “July 12, 2001”, Size = “10”. State of the art decision tree classification algorithm C4.5 

(Quinlan, 1993) needs to know attribute of every data element to decide which attribute has the 

greatest discriminating power. However, different or modified techniques must be applied to text, 

which is generally not structured according to attribute-value pairs nor has only some structured 

elements. Examples of unstructured text are an article body, an e-mail message body, and subject 

fields. Examples of structured elements are an article title, publication date and conference as 

well as e-mail message sender, recipient and size. Depending on the availability or non-

availability of such structured elements, text is also called unstructured or semi-structured data.  

Text Mining is concerned with extracting of useful knowledge from structured or semi 

structured data. TC (Text Classification) is one of the functionalities of Text Mining that can be 

defined as the supervised learning task of assigning natural language text documents to one or 

more predefined classes (also called categories or topics) according to their content. The word 

supervised means that all the data in a training set is preassigned a category before the training 

process starts (Lewis, D., 1998).  

 

1.6 Associative Classification Mining 
 

The AC approach was introduced to produce rules for describing relationships between attribute 

values and the class attributes and not for prediction, which is the ultimate goal for classification. 

In 1998, AC has been successfully employed to build classifiers by (Liu, et al., 1998) and later 

attracted many researchers, e.g. (Li, et al., 2000; Dong, et al., 1999; Yin and Han, 2003), from 

data mining and machine learning communities. In this section, we briefly give a formal 

definition of the AC problem. 

 
1.6.1 Associative Classification Problem 
 

AC is a special case of association rule mining in which only the class attribute is considered in 

the rule’s consequent (Liu et al., 1998), for example in a rule such as X → Y , Y must be a class 

attribute. Let us define the AC problem, where training data set T has m distinct attributes A1, A2, 

Am and C is a list of class labels. The number of rows in T is denoted |T|. Attributes could be 

categorical (meaning they take a value from a finite set of possible values), such as customer age 

which could be from (20-50), or continuous (where they are real or integer). In the case of 

categorical attributes, all possible values are mapped to a set of positive integers. For continuous 

attributes, a discretisation method is first used to transform these attributes into categorical ones. 

Definition 1.1: A row or a training object in T can be described as a combination of 
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attribute names Ai and values aij, plus a class denoted by cj. 

Definition 1.2: An item can be described as an attribute name Ai and a value ai, denoted 

< (Ai, ai)>. 

Definition 1.3: An ITEMSET can be described as a set of disjoint attribute values 

contained in a training object, denoted < (Ai1, ai1), …, (Aik, aik)>. 

Definition 1.4: A ruleitem r is of the form <ITEMSET, c>, where cεC is the class. 

Definition 1.5: The support count (suppcount) of ruleitem r is the number of rows in T 

that matches r’s ITEMSETs, and belong to the class c of r. 

Definition 1.6: The occurrence of an ITEMSET i (occitm) in T is the number of rows in T 

that matches i. 

Definition 1.7: An ITEMSET i passes the minsupp threshold if (occitm(i)/|T|) ≥ minsupp. 

Definition 1.8: Any ITEMSET i that passes the minsupp threshold is said to be a frequent 

ITEMSET. 

Definition 1.9: Any ruleitem r that passes the minsupp threshold is said to be a frequent ruleitem. 

Definition 1.10: A class association rule is represented in the form: (A i1, a i1) ∧,..., ∧ (A ik, ,a ik   ) 

→c, where the antecedent of the rule is an ITEMSET and the consequent is a class. 

Definition 1.11: A training data in classification is considered binary if it contains only 

two classes (+, -) and each of its training objects is associated with a single class.  

Definition 1.12: A training data in classification is considered multi-class if it contains 

more than two classes and each of its training objects are associated with just one class. 

Definition 1.13: Classification accuracy on a test data Ts, is the number of cases where 

the predicted class p of each test data ts matches ts actual class c for all cases in the test 

data. 
     A classifier is a mapping form H: A → Y, where A is the set of ITEMSETs and Y is the set of 

class labels. The main task of AC is to construct a set of rules (model) that is able to predict the 

classes of previously unseen data, known as the test data set, as accurately as possible. 
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1.7 Thesis Contributions 

There are different issues that arise in AC, including the features of the output, which usually 

contains only a single class per rule, the efficiency of the algorithms used for this task, the 

overlapping between rules training objects and the inductive bias of favoring some rules over 

others in the classifier. These issues are introduced below and are addressed in this thesis. 

 Classification data is usually highly correlated, and therefore the expected number of 

potential frequent ruleitems, known as candidate ruleitems, is relatively large. As a result, it is 

essential to have a fast algorithm for the discovery of frequent ruleitems step in AC. Most of the 

currently used AC techniques adopt the Apriori (Agrawal and Srikant, 1994) candidate 

generation step from association rule mining in order to find frequent ruleitems. In this thesis we 

use the terms “frequent ITEMSET” and “candidate ITEMSET” when talking about association 

rule algorithms, whereas, we use the terms “frequent ruleitems” and “candidate ruleitems” when 

we talk about AC algorithms. In Apriori, the discovery of frequent ITEMSETs from transactional 

databases is accomplished; the aim is to discover associations between items in a transactional 

database, and to construct a classifier that can forecast the classes of test data objects. 

Similarly to association rule mining algorithms, most AC techniques use the Apriori 

candidate generation step to discover frequent ruleitems and due to the repetitive training data 

search, they suffer from high I/O costs. As a result, some AC techniques employ a more efficient 

method than Apriori candidate generation step, called FPgrowth (Han, et al., 2000) in order to cut 

down the number of passes over the training data. In this thesis, we focus on developing an 

efficient frequent ruleitems discovery method, which decreases the number of database scans to 

one and minimizes the use of complex data structure objects during the learning step, the thesis 

contributions are summarized below: 

• Unlike existing AC techniques that use a horizontal (Agrawal, et al., 1993) format to 

represent the training data, we use the vertical format representation presented in 

(Holsheimer, et al., 1995) where each ITEMSET has a TIDS-LIST transactions that 

contains that ITEMSET in the training data. Empirical studies (Savasere, et al., 1995; 

Zaki, et al., 1997; Zaki and Gouda, 2003) showed that algorithms that utilize vertical 

format have shown to be more effective and often better than horizontal techniques, for 

our thesis we used the vertical format in TC, where it was never used before. 
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•  We propose an efficient fast intersection technique that requires going through the 

training data only once. Our method stores frequent ITEMSETs of size 1 along with their 

locations (TIDS-LIST) and classes inside arrays during the scan. Then, by intersecting the 

TIDS-LIST of the frequent ITEMSETs of size 1 and using the class labels array, we can 

easily obtain candidate ruleitems of size 2, and so on. A detailed description of the 

intersection method is given in Chapter 4. 
 

1.8 Document layout 
Chapter 2 reviews some existing work related to the thesis. It surveys the fields of 

Associative Rule Mining and Classification, and major approaches used.   

Chapter 3 surveyed Associative Classification approach; this chapter also defines all necessary 

terminology that is used to describe a classification problem. 

Chapter 4 describes the process of VTC classifier construction. First, it describes Data format, 

Diffset technique, and then using vertical mining in text categorization. After that, the chapter 

introduces the proposed algorithm for classification, which is the core part of VTC classifier. In 

addition to the last step of the classifier construction, it includes accuracy measurement 

estimation and the experimental results. 

Finally, Chapter 5 concludes with the main observed results and ends with some suggestions for 

the future research. 
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LITERATURE REVIEW: ASSOCIATION RULE, AND 
CLASSIFICATION 
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2.1 Introduction 
Since it has been introduced, Association Rule Mining (ARM) (Agrawal, et al., 1996) has 

received a great deal of attention by researchers and practitioners among data mining. ARM is an 

undirected or unsupervised data mining technique, which works on variable length data, and it 

produces clear and understandable results. It has a simple problem statement, that is, to discover 

relationships or correlations in a set of items and consequently find the set of all subsets of items 

or attributes that frequently occur in many database records or examples, and additionally, to 

extract the rules telling us how a subset of items influences the presence of another subset. 

 

2.2 Association Rule Mining  

The association mining task simply can be stated as follows (Agrawal, et al., 1996): Let I be a 

set of items, and D a database of examples, where each example has a unique identifier (tid) and 

contains a set of items. A set of items is also called an ITEMSET. An ITEMSET with k items is 

called a k-ITEMSET. The support of an ITEMSET X, denoted σ(X), is the number of examples in 

D where it occurs as a subset. An ITEMSET is frequent or large if its support is more than a user-

specified minimum support (min sup) value. 

An association rule is an expression A ⇒ B, where A and B are ITEMSETs. The support of 

the rule is the joint probability of an example containing both A and B, and is given as σ (A ∪ B). 

The confidence of the rule is the conditional probability that an example contains B, given that it 

contains A, and is given as σ (A ∪ B) ⁄ σ (A). A rule is frequent if its support is greater than min 

sup, and it is strong if its confidence is more than a user-specified minimum confidence (min 

conf).  

 
2.2.1 Problem Definition 

The main objective of data mining is to find interesting/useful knowledge for the user, as 

Rules are an important form of knowledge; some existing research has produced many algorithms 

for rule mining. These techniques, use the whole dataset to mine rules and then filter and/or rank 

the discovered rules in various ways to help the user identify useful ones.  

There are many potential application areas for association rule technology which include catalog 

design, store layout, customer segmentation, telecommunication alarm diagnosis, and so on. 

The data mining task is to generate all association rules in the database, which have a support 

greater than min sup, i.e., the rules are frequent, and which also have confidence greater than min 
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conf, i.e., the rules are strong. Here we are interested in rules with a specific item, called the 

class, as a consequent, i.e., we mine rules of the form A ⇒  ci where ci is a class attribute (1 ≤ i≤ 

k). 

This task can be broken into two steps: 

1.  Find all frequent ITEMSETs having minimum support for at least one class ci. The search 

space for enumeration of all frequent ITEMSETs is 2m, which is exponential in m, the number of 

items.  

2. Generate strong rules having minimum confidence, from the frequent ITEMSETs. We 

generate and test the confidence of all rules of the form X ⇒ci, where X is frequent. For example, 

consider the sales database of a bookstore (Zaki M., 2000) shown in    Figure 2.1, where the 

objects represent customers and the attributes represent books. The discovered patterns are the set 

of books most frequently bought together by the customers. An example could be that, "40 

percent of the people who buy Jane Austen's Pride and Prejudice also buy Sense and Sensibility". 

The store can use this knowledge for promotions, shelf placement, etc.  

There are five different items (names of authors the bookstore carries), i.e., I = {A, C, D, T, 

W}, and the database consists of six customers who bought books by these authors. Figure 2.1 

shows all the frequent ITEMSETs that are contained in at least three customer transactions, i.e., 

min sup =50 percent. 
 

 

Figure 2.1: Mining Frequent ITEMSET
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Figure 2.2 shows the set of all association rules with min conf =100 percent. The ITEMSETs 

ACTW and CDW are the maximal frequent ITEMSETs. Since all other frequent ITEMSETs are 

subsets of one of these two maximal ITEMSETs, we can reduce the frequent ITEMSET search 

problem to the task of enumerating only the maximal frequent ITEMSETs. 

On the other hand, for generating all the confident rules, we need the support of all frequent 

ITEMSETs.  This can be easily accomplished once the maximal elements have been identified by 

making an additional database pass and gathering the support of all uncounted subsets.  

Several algorithms for mining associations have been proposed in the literature. The Apriori 

algorithm (Agrawal, et al., 1996) is the best known previous algorithm and it uses an efficient 

candidate generation procedure, such that only the frequent ITEMSETs at a level are used to 

construct candidates at the next level. However, it requires multiple database scans, as many as 

the longest frequent ITEMSET. Some algorithms generate all possible frequent ITEMSETs, and 

for finding the maximal elements use a randomized algorithm to discover maximal frequent 

ITEMSETs.  

A number of vertical mining algorithms have been proposed recently for association mining 

(as well as other mining tasks like classification (Shafer J., et al, 1996). In a vertical database 

each item is associated with its corresponding TIDS-LIST, the set of all transactions (or TIDS-

LIST) where it appears. Using the vertical format in mining algorithms has shown to be very 

effective and usually outperform horizontal approaches. 
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This advantage shows from the fact that frequent patterns can be counted via TIDS-LIST 

intersections, instead of using complex internal data structures (candidate generation and 

counting happens in a single step). On the other hand, the horizontal approach requires complex 

search trees. TIDS-LIST offer natural pruning of irrelevant transactions as a result of an 

intersection (TIDS-LIST not relevant drop out). Moreover, for databases with long transactions it 

has been shown using a simple cost model, that the vertical approach reduces the number of I/O 

operations (Dunkel B., et al, 1999). 

Many algorithms use vertical bit-vectors for fast ITEMSET and sequence mining respectively. 

Despite the many advantages of the vertical format, when the TIDS-LIST cardinality gets very 

large (e.g., for very frequent items) the methods start to suffer, since the intersection time starts to 

become inordinately large. Furthermore, the size of intermediate TIDS-LIST generated for 

frequent patterns can also become very large, requiring data compression and writing of 

temporary results to disk. Thus (especially) in dense datasets which are characterized by high 

item frequency and many patterns, the vertical approaches, may quickly lose their advantages. 

 
2.3 Common Association Rule Data Formats  

Figure 2.3 illustrates some of the common data formats used in association mining. In the 

traditional horizontal approach, each transaction has a tid along with the ITEMSET comprising 

the transaction. In contrast, the vertical format maintains for each item its TIDS-LIST, a set of all 

TIDS-LIST where it occurs. Most of the past research has utilized the traditional horizontal 

database format for mining; some of these methods include Apriori (Agrawal, et al., 1996) that 

mines frequent ITEMSETs. A notable exception to this trend is the approaches that use a vertical 

database format, which include Eclat (Zaki M., et al, 2000), Charm, and Partition (Park J., et al, 

1995). Our main focus is to improve upon methods that utilize the vertical format for mining 

frequent patterns. 
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.4 Existing Algorithms  

 (Liu, B., et al, 2001) is an iterative algorithm that counts ITEMSETs of a 

ITEMSETs, by a self join 

 F2= D, BE}. 

ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE}. 
2. Prune any candidate with at least one inf ple, ACD will be pruned 

supports. The candidates are stored for support 

counting. 

 
2
 

2.4.1 Apriori 
Apriori Algorithm

specific length in a given database pass. The process starts by scanning all transactions in the 

database and computing the frequent items. Next, a set of potentially frequent candidate 2-

ITEMSETs is formed from the frequent items. Another database scan is made to obtain their 

supports. The frequent 2-ITEMSETs are retained for the next pass and the process is repeated 

until all frequent ITEMSETs have been enumerated.  

There are three main steps in the algorithm:  
1. Generate candidates of length k from the frequent (k-1) length 

on Fk-1. For example, If 
 

 {AB, AC, AD, AE, BC, B
 

 Then 
 

 C3 = {
requent subset. As an exam

since CD is not frequent. After pruning, we get a new set 

C3 = {ABC, ABD, ABE}. 

3. Scan all transactions to obtain candidate 
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Example Let L3 be {{1 2 3}, {1 2 4}, {1 3 4}, {13 5}, {2 3 4}}. After the join step, C4 will be 

{1 2 3 4}, {1 3 4 5}}. The prune step will delete the ITEMSET {1 3 4 5} because the ITEMSET 

One of the currently fastest and most popular algorithms for frequent ITEMSET mining is the 

000) FP-growth algorithm mines frequent patterns without 

can

lete all items from the transactions that are not frequent 
ind

{

{1 4 5} is not in L3. We will then be left with only {1 2 3 4} in C4. Figure 2.4 illustrates this 

example. 

 

 

 

 

 

 

 

 

 

 
 
 Figure 2.4 Apriori 

 
2.4.2 Frequent Pattern Growth 

FP-growth algorithm (Han J., 2

didate generation and without the high time cost in the generation of candidate ITEMSETs, the 

structure FP-tree, which can facilitate to both the generation of association rules and the update of 

the mining result by fewer scans of the new data. It is based on a prefix tree representation of the 

given database of transactions (called an FP-tree), which can save considerable amounts of 

memory for storing the transactions.  

The basic idea of the FP-growth algorithm can be described as a recursive elimination 
scheme. In a preprocessing step, de

ividually, i.e., do not appear in a user-specified minimum number of transactions. This 
preprocessing is demonstrated in Table 2.1 and Figure 2.5, which shows an example transaction 
database. Next step is to select all transactions that contain the least frequent item (least frequent 
among those that are frequent) and delete this item from them.  Recur to process the obtained 
reduced (also known as projected) database, remembering that the ITEMSETs found in the 
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recursion share the deleted item as a prefix. On return, remove the processed item also from the 
database of all transactions and start over, i.e., process the second frequent item and so on. In 
these processing steps the prefix tree, which is enhanced by links between the branches, is 
exploited to quickly find the transactions containing a given item and also to remove this item 
from the transactions after it has been processed. 

Comparing performance between FP-growth and Apriori on two 10000 record data sets (Han, 

et al., 2000) indicates that FP-growth is at least an order of magnitude faster than Apriori since 

the 

ecially when the support 

ber of transactions grows, the processing time 

es still larger. 

Partition algorithm (Park J., et al, 1995) is an Apriori-like algorithm that uses TIDS-LIST 

i, M., et al, 2001). As described previously, Apriori determines the support 

valu

candidate sets that Apriori must maintain become extremely large.  

 Also the searching process through the database transactions to update candidate ITEMSETs 

support counts at any level becomes very expensive for Apriori, esp

threshold is set to a small value. As the num

difference between the two techniques becom

 
2.4.3 Partition  

intersection (Zak

es of all candidates of cardinality k-1 before counting the candidates of cardinality k. Instead 

of counting, Partition uses the TIDS-LIST of the frequent (k-1)-ITEMSETs to generate the TIDS-

LISTs of the k-candidates by appending single additional item to the frequent (k-1)-ITEMSETs. 

One of the problems with Partition is that when generating TIDS-LISTs of k-candidates, the size 

of intermediate results easily grows beyond the physical memory limitations of common 
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machines. Partition overcomes this by splitting the database into several chunks that are treated 

independently. In the end, an extra scan is required to ensure that locally frequent ITEMSETs are 

also globally frequent. 
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2.5 Summary 
This chapter has presented association rule discovery task in data mining. First part of the 

chapter has given a general overview on association rule mining and viewed common data 

representation in transactional data. The second part has surveyed common association rule 

mining algorithms that employ such approaches in constructing a classifier. Next chapter, will 

survey different classification approaches that utilize association rule mining to discover the 

rules. Specifically, we will discuss rule discovery methods, pruning, rule ranking and prediction 

for numerous AC approaches. 
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CHAPTER 3 
 

INTEGRATING CLASSIFICATION AND ASSOCIATION 
RULE MINING 
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3.1 Introduction 
 

Classification is one of the important tasks of data mining, which has been used for class 

labels prediction. Classification assigns a new data object to the appropriate class from a dataset 

which includes labeled data. Whilst in recent years a new classification approach that integrates 

classification with association rule mining called AC arises, which is considered a promising 

technique that produces highly accurate classifiers (Baralis, E., et al, 2002).  

The rest of the chapter is organized as follows: Classification data mining is surveyed in 

Section 3.2, main classification techniques is given in Section 3.3, an example to demonstrate the 

main steps used in AC is illustrated in Section 3.4. Section 3.5 discusses the main challenges and 

interesting directions in AC, and finally, a chapter summary is given in Section 3.6. 

 

3.2 Classification in Data Mining 

Building effective classification systems is one of the main tasks of data mining and machine 

learning. Past researches have produced many techniques (e.g. Decision Tree (Quinlan. J., 1993), 

(Yiming, M., 2000), Naive-Bayes (Duda, R., et al, 1973) Support Vector Machines (Cristianini, 

N., et al, 2000), Neural Networks (Rumelhart, D., et al, 1986) (Lippmann, R., 1987), and 

Statistical approaches (Quinlan J., 1987),. Classification is one of the analysis methods which use 

a set of training data and construct a model for each class based on the features in the training 

data, or it is the process that maps a data item into one of several predetermined classes (Ian H., 

et al, 2005). 

 
3.2.1 Traditional Problem Decomposition 

The classification problem is defined as follows: An input data set called the training data 

consists of a set of multi-attribute records along with a special attribute called the class exists. 

This class attribute draws its value from a discrete set of classes. The training data is used to 

construct a model (set of rules), which relates the feature variables (or attribute values) in the 

training data to the class variable. The test instances for the classification problem consist of a set 

of records for which only the feature variables are known while the class value is unknown. The 

training model is used to predict the class variable for such test instances.  

Classification is a well-studied problem see (Ian H., et al, 2005), (Tan P., et al, 2005) for 

comprehensive overviews and several models have been proposed over the years as stated earlier. 

Classification task is normally called supervised (Ian H., et al, 2005) because, in a sense, the 
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method operates under supervision by being provided with the actual outcome for each of the 

training examples—the play or don’t play judgment, the lens recommendation, the type of iris, 

the acceptability of the labor contract. This outcome is called the class of the example. The 

success of classification learning can be judged by trying out the concept description that is 

learned on an independent set of test data for which the true classifications are known but not 

made available to the machine. The success rate on test data gives an objective measure of how 

well the concept has been learned. In many practical data mining applications, success is 

measured more subjectively in terms of how acceptable the learned description—such as the rules 

or the decision tree—are to a human user.  

Simple Example: The contact lens data shown in Table 3.1 (Ian H., et al, 2005) below tells 

the kind of contact lens to prescribe, given certain information about a patient. The first column 

of Table 3.1 gives the age of the patient. In case you’re wondering, presbyopia is a form of 

longsightedness that accompanies the onset of middle age. The second column gives the 

spectacle prescription, myope means shortsighted and hypermetrope means longsighted. The third 

column shows whether the patient is astigmatic, and the fourth column relates to the rate of tear 

production, which is important in this context because tears lubricate contact lenses. The final 

column (the class attributes) shows which kind of lenses to prescribe: hard, soft, or none. All 
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possible combinations of the attribute values are represented in the table. 

 

A sample set of rules learned from this information is shown in Figure 3.1. This is a rather 

large set of rules, but they do correctly classify all the examples. These rules are complete and 

deterministic: they give a unique prescription for every conceivable example.  

 

 
 
3.3 Classification techniques 
 

3.3.1 Decision trees 
A “divide-and-conquer” approach (Quinlan J., 1987) to the problem of learning from a set of 

independent instances leads naturally to a style of representation called a decision tree (Quinlan, 

J., 1987). As an example, the decision tree shown in Figure 3.2 has been constructed from the 

contact lens datasets shown in Table 3.1. Nodes in a decision tree involve testing a particular 

attribute. Usually, the test at a node compares an attribute value with a constant. However, some 

trees compare two attributes with each other, or use some function of one or more attributes 

(Quinlan, J., 1987). Leaf nodes give a classification that applies to all instances that reach the leaf 

or a set of classifications, or a probability distribution over all possible classifications. To classify 

an unknown instance, it is routed down the tree according to the values of the attributes tested in 
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successive nodes, and when a leaf is reached the instance is classified according to the class 

assigned to the leaf. 

Decision trees are particularly suited for data mining. Decision trees can be constructed 

relatively fast. Another advantage of decision tree models is that they are simple and easy to 

understand (Quinlan, J., 1993). Decision trees perform a greedy search for rules by heuristically 

selecting the most promising features. They start with an empty concept description, and 

gradually add restrictions to it until there is not enough evidence to continue, or perfect 

discrimination is achieved. Such greedy (local) search may prune important rules.  

This direction of classification tries to find a set of rules distinguishing the classes. A decision 

tree is a tree with the following characteristics: 

• Each inner node corresponds to one attribute. 

• Each leaf is associated with one of the classes. 

• An edge represents a test on the attribute of its father node. 

For classification, the attribute values of a new object are tested beginning with the root. At 

each node the data object can pass only one of the tests that are associated to the departing edges. 

The tree is traversed along the path of successful tests until a leaf is reached. To construct a 

decision tree there are multiple approaches like (Gehrke, J., et al, 1998), (Breiman, L., et al, 

1984). Most of these approaches split the training set recursively by selecting an attribute. The 

training set is now split by the values of the selected attribute. To determine the attribute the most 

promising candidate with respect to a given quality criteria is determined. An example quality 

criterion is the information gain, which is introduced in section 2.1.2. This split step is done 
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recursively for all subsets until a breaking criteria is reached or the members of a subset strictly 

belong to a class. Finally, more sophisticated approaches prune the decision tree to avoid 

overfitting and find a smaller model. Note that this approach to decision tree construction does 

not necessarily create the smallest decision tree possible. However, the problem of finding a 

minimal decision has an exponential time complexity and the introduced heuristic solutions yield 

good classification accuracy in many cases. 

For decision tree technique, it is easy to read a set of rules directly off a decision tree. One 

rule is generated for each leaf. The antecedent of the rule includes a condition for every node on 

the path from the root to that leaf, and the consequent of the rule is the class assigned by the leaf. 

This procedure produces rules that are unambiguous in that the order in which they are executed 

is irrelevant. However, in general, rules that are read directly off a decision tree are far more 

complex than necessary, and rules derived from trees are usually pruned to remove redundant 

tests. Because decision trees cannot easily express the disjunction implied among the different 

rules in a set, transforming a general set of rules into a tree is not quite so straightforward. A good 

illustration of this occurs when the rules have the same structure but different attributes, like: 

If a and b then x0 
If c and d then x 
 
Information Gain 
 

The information gain is measure for the degree a given term is capable to distinguish the classes. 

It is based on the entropy as a measure of pureness with respect to set of classes C. 

Definition 3.1 (entropy) 
 

Let DB be a set of documents and let C = {C1, ..Cm} with DB = ∪1≤i≤m Ci be a disjunctive 

partitioning of DB, Pr is the probability of occurrence of C. Then the entropy of DB with respect 

to the partitioning C is defined as follows: 

entropy(C)    3.1 ∑
=

⋅−=
m

i

CiPRCi
1

][log]Pr[
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Definition 3.2 (Information Gain) 
 

Let t be a term and let cont(t, S) = {d ∈ S|t ∈ d} denote the subset of set S that contains a term t 

and let cont(t, S) denote S \ cont(t, S). The information gain of t with respect to the disjunctive 

partitioning C is: 

      
GC(t) = entropy(C) –  
 

  3.2 

 
The idea of information gain is to split a given set according to the occurrence of a given term 

and afterwards compare the weighted average of the resulting subsets to the entropy of the 

unsplitted set. If the entropy in the subsets decreases significantly, the term provides a higher 

information gain and is better suited as a feature.  

Figure 3.3 (Ian, H., et al, 2005) shows individual rules as being effectively logically ORed 

together: if any one applies the condition, the class (or probability distribution) given in its 

conclusion is applied to the instance. However, conflicts arise when several rules with different 

conclusions are applicable to a test case. 

The advantages of decision trees are that they are very robust against attributes that are not 

correlated to the classes because those attributes will not be selected for a split. Another more 

important feature is the induction of rules. Each path from the root to a leaf provides a rule that 

can be easily interpreted by a human user. Thus, decision trees are often used to explain the 

characteristics of classes. 
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The drawback of decision trees is that they are usually not capable to consider complex 

correlations between attributes because they only consider one attribute at a time. Thus, decision 

trees often model correlated data by complex rules which tend to overfitting. An more detailed 

discussion of decision trees is found in (Han, J., et al, 2001).  

 
3.3.1.1 C4.5 Algorithm 
 

C4.5 is an algorithm used to generate a decision tree developed by (Quinlan. J., 1993). C4.5 is 

an extension of Quinlan's earlier ID3 algorithm (Quinlan, J., 1986).  

C4.5 algorithm is considered on of the best decision tree methods for extracting rules from a 

data set. Modification to C4.5 named “C5” has been developed by (Quinlan. J., 1993). As for the 

ID3 algorithm, C4.5 uses information gain to select the root attribute.  

C4.5 builds decision trees from a set of training data in the same way as ID3, using the 

concept of Information Entropy. The training data is a set S = s1,s2,... of already classified 

samples. Each sample si = x1,x2,... is a vector where x1,x2,... represent attributes or features of the 

sample. The training data is augmented with a vector C = c1,c2,... where c1,c2,... represent the 

class that each sample belongs to. 

C4.5 uses the fact that each attribute of the data can be used to make a decision that splits the 

data into smaller subsets. C4.5 examines the normalized Information Gain (difference in entropy) 

that results from choosing an attribute for splitting the data. The attribute with the highest 

normalized information gain is the one used to make the decision. The algorithm then recurses on 

the smaller sub lists. 

This algorithm has a few base cases; the most common base case is when all the samples in a 

given list belong to the same class. Once this happens, the solution simply is to create a leaf node 

for the decision tree telling to choose that class. It might also happen that none of the features 

 Let a_best be the attribute with the highest normalized information gain 
 Create a decision node node that splits on a_best 
 recurse on the sublists obtained by splitting on a_best and add those nodes as children of node 

  Find the normalized information gain from splitting on a 
 For each attribute a 
 Check for base cases 

In pseudo code the algorithm looks like this: 
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give you any information gain; in this case C4.5 creates a decision node higher up the tree using 

the expected value of the class. It also might happen that you've never seen any instances of a 

class; again, C4.5 creates a decision node higher up the tree using expected value. 

Information Gain and Information Entropy 

As explained earlier in previous sections, Entropy(S) can be thought of as a measure of how 

random the class distribution is in S. Information gain is a measure given to an attribute a. a Can 

separate S into subsets Sa1,Sa2,Sa3,...,san the information gain of a is then Entropy(S) -

Entropy(Sa1) - Entropy(Sa2) - ... - Entropy(San). Information gain is then normalized by 

multiplying the entropy of each attribute choice by the proportion of attribute values that have 

that choice. Missing values are treated by C4.5 using probabilities that are computed based on the 

frequencies of the different values for an attribute at a particular node in the decision tree (Witten, 

I., et al, 2000). Consider an attribute P that has a missing data object P (p) in the training data. 

C4.5 algorithm assigns a probability to each values of P using the observed frequencies at a node 

n. For instance, suppose attribute P has three possible values at node n and n contains ten known 

examples with five P = 20, two with P = 30 and three with P =50. C4.5 then considers the 

probability that P(p)=20 is 0.5, the probability that P(p)=30 is 0.2 and the probability that 

P(p)=50 is 0.3. Each of these fractions is distributed to each possible branch for attribute P down 

in the tree. Finally, C4.5 algorithm uses these fractional examples for the process of estimating 

information gain.  

3.3.1.2 C4.5 Improvements over the ID3 Algorithm 

C4.5 made a number of improvements to ID3. Some of these are: 

• Handling both continuous and discrete attributes - In order to handle continuous 

attributes, C4.5 creates a threshold and then splits the list into those whose attribute value 

is above the threshold and those that are less than or equal to it. (Quinlan. J., 1993).  

• Handling training data with missing attribute values - C4.5 allows attribute values to be 

marked as? For missing. Missing attribute values are simply not used in gain and entropy 

calculations.  

• Handling attributes with differing costs.  
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• Pruning trees after creation - C4.5 goes back through the tree once it's been created and 

attempts to remove branches that do not help by replacing them with leaf nodes.  

Continuous attributes are discretized using a discretization method such as (Fayyad, U., et al, 

1993). One of the major extensions of the ID3 algorithm that C4.5 proposed is that of 

pruning. Two known pruning methods used by C4.5 to simplify the decision trees constructed 

are sub-tree replacement and pessimistic error estimation (Quinlan. J., 1993). 

3.3.2 Classification rules 

Rule classification (Huber, K., et al, 1995) seeks to present data in such a way that 

interpretations are actionable and decisions can be made based on the knowledge gained from the 

data. For data mining clients, they expect a simple explanation of why there are certain 

classification results: what is going on in a high-dimensional database, and which feature affects 

data mining results significantly, etc. For example, a succinct description of a market behavior is 

useful for making decisions in investment. A classifier learns from training data and stores the 

learned knowledge into the classifier parameters, such as the weights of a neural network 

classifier. However, it is difficult to interpret the knowledge in an understandable format by the 

classifier parameters. Hence, it is desirable to extract IF–THEN rules to represent valuable 

information in data as Figure 3.3.1 shows. 
 

Definition 3.3 (Classification Context). Let T, I, and C be respectively a finite set of 

transaction identifiers (TIDS-LIST) t, of items i, and class labels c. The classification rule context 

can be formalized as D = (T , I, C, Li , Lc). Each couple (t, i) in Li, Li ⊆ T ×I, expresses the 

occurrence of item i in transaction t. Each couple (t, c) in Lc, Lc ⊆ T × C, expresses the 

occurrence of class label c in transaction t. A transaction can contain a single class label.  

The antecedent, or precondition, of a rule is a series of tests just like the tests at nodes in 

decision trees, and the consequent, or conclusion, gives the class or classes that apply to instances 
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covered by that rule, or perhaps gives a probability distribution over the classes. Generally, the 

preconditions are logically ANDed together, and all the tests must succeed if the rule is to be 

applied. However, in some rule formulations the preconditions are general logical expressions 

rather than simple conjunctions.  
 

 

3.3.3 Common Classification Rule Approaches  

3.3.3.1 Repeated Incremental Pruning to Produce Error Reduction. 
 
 

RIPPER (Repeated Incremental Pruning to Produce Error Reduction), was proposed by 

(Cohen. W., 1995).It consists of two main stages: the first stage constructs an initial ruleset using 

a rule induction algorithm called IREP* (Cristianini, N., et al, 2000); the second stage further 

optimizes the ruleset initially obtained. These stages are repeated for k times. IREP* is called 

inside RIPPER-k for k times, and at each iteration, the current dataset is randomly partitioned in 

two subsets: a growing set, that usually consists of 2/3 of the examples and a pruning set, 

consisting in the remaining 1/3. These subsets are used for two different purposes: the growing 

set is used for the initial rule construction (the rule growth phase) and the pruning set is used for 

the pruning (the rule pruning phase). IREP* uses MDL (Clark, P., et al, 1993) as a criterion for 

stopping the process. 

The rule growth phase: The initial form of a rule is just a head (the class value) and an empty 

antecedent. At each step, the best condition based on its information gain is added to the 

antecedent. The stopping criterion for adding conditions is either obtaining an empty set of 

positive instances that are not covered or not being able to improve the information gain score. 

The rule pruning phase: Pruning is an attempt to prevent the rules from being too specific. 

Pruning is done accordingly to a scoring metric denoted by v*. IREP* chooses the candidate 

literals for pruning based on a score which is applied to all the prefixes of the antecedent of the 

rule on the pruning data.  
 
3.3.4 Statistical Approach 
 
3.3.4.1 Naïve Bayes  

Naïve Bayes (Duda, R., et al, 1973), is considered as a statistical classification approach, that 

has been given this name because it’s based on Bayes’s rule and “naïvely” assumes 

independence—it is only valid to multiply probabilities when the events are independent.  
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The assumption that attributes are independent (given the class) in real life certainly is a 

simplistic one. But despite the disparaging name, (Meretakis D., et al, 1999) works very well 

when tested on actual datasets, particularly when combined with some of the attribute selection 

procedures that eliminate redundancy, and hence nonindependent, attributes. One thing that can 

go wrong with Naïve Bayes is that if a particular attribute value does not occur in the training set 

in conjunction with every class value, things go badly awry. Table 3.2 shows a simple data set 

about the weather problem (Ian H., et al, 2005). 

 

able 3.3 (Ian H., et al, 2005) shows a summary of the weather data obtained by  

 and no) for 

ples, two of 

T

counting how many times each attribute–value pair occurs with each value (yes

play. For example, it is obvious from Table 3.2 that outlook is sunny for five exam

which have play = yes and three of which have play = no. The cells in the first row of the new 

table simply count these occurrences for all possible values of each attribute, and the play Figurer 

in the final column counts the total number of occurrences of yes and no. In the lower part of the 

table, the same information was formed as fractions, or observed probabilities. For example, of 
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the nine days that play is yes, outlook is sunny for two, yielding a fraction of 2/9. For play the 

fractions are different: they are the proportion of days that play is yes and no, respectively. 

Probability of yes = 2/ 9 × 3 /9×3/ 9×3/ 9×9 /14 = 0.0053. 

The fractions are taken from the yes entries in the table according to the values of the 

attr tion of 

es’s rule of conditional probability. Bayes’s 

rule

 (A) denotes the probability of an event A and Pr (A|B) denotes the 

pro

.4. Associative Classification 

association rule mining are two important data mining 

tech

tive classification (Baralis, E., et al, 2002) proposed the integration of association rule 

min

es 

that

ibutes for the new day, and the final 9/14 is the overall fraction representing the propor

days on which play is yes. A similar calculation for the outcome no leads to  

Probability of no = 3/5×1/5×4/5×3/5×5/14 = 0.0206. 

This simple and intuitive method is based on Bay

 says that if there is   a hypothesis H and evidence E that bears on that hypothesis, then  

Pr (H|E) = Pr (E|H) Pr (H) 
 

                      Pr (E) 

The notation Pr

bability of A conditional on another event B. The hypothesis H is that play will be, say, yes, 

and Pr (H|E) is going to turn out to be 20.5%, just as determined previously. The evidence E is 

the particular combination of attribute values for the new day, outlook = sunny, temperature = 

cool, humidity = high, and windy = true. 

 
 

3
Classification rule mining and 

niques (Liu B., et al, 1998). The target of mining is not pre-determined for association rule 

mining, while for classification rule mining there is one and only one pre-determined target, i.e., 

the class.  

Associa

ing and classification. Association rule is unsupervised learning that describes the co-

occurrence among data items in a large amount of collected data (Agrawal and Srikant, 1994). 

Whereas, associative classification is a supervised task that predicts the class label of set data.  

Differently from decision trees, associative classification uses association rules approach

 rely on the correspondence of values of different attributes, hence allowing one to achieve 

better accuracy. MCAR (Multi-class Classification based on Association Rule) (Thabtah F., et al, 

2004) conducted many experimental studies and showed that associative classification is a 
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promising approach, which builds more accurate classifiers than traditional classification 

techniques such as C4.5. 

Furthermore, with respect to other approaches (e.g., neural networks), the generated 

associative model is more understandable for a human being. Unfortunately, in large or highly 

correlated datasets, rule extraction algorithms adopted from association rules have to deal with 

the solution set (Toivonen, H., et al, 1995). This (i) makes the rule extraction process time 

consuming (and in some cases unfeasible), and (ii) makes it difficult to optimally exploit the 

generated rules. 

To tackle the problem of generating large number of rules in association rule, different 

methods have been investigated. Some works toward pruning the discovered rules in order to 

form a small rule set (Toivonen, H., et al, 1995), other approaches discard rules that are less 

relevant with respect to statistical parameters such as support, confidence, and (Brin, S., et al, 

1998). Other new developed methods have been proposed, as an alternative to rule pruning 

methods, to represent ITEMSETs and association rules in a compact form.  

Several more effective compact forms have been proposed, which allow the generation of the 

complete rule set. In associative classification, the research focus has been mainly on pruning 

techniques. These techniques discard rules that either are redundant from a functional point of 

view, or may cause incorrect classification. Furthermore, they discard rules that achieve less 

accuracy in classification according to statistical parameters such as support, confidence, and chi-

square test. Pruning is usually applied as a postprocessing step on the extracted rules. Only 

support based pruning is performed concurrently with the rule extraction process, since the 

downward closure property of support can be exploited to reduce the computational complexity.  
 

3.4.1 Associative Classification Framework 

This section introduces the associative classification problem. A training dataset R is 

characterized by a schema (A1. . . Ak, c), where (A1, . . . , Ak) are k distinct attributes and c is a 

class attribute. Each tuple in R is a data object, which is associated to a unique identifier called 

tid. The attributes may have either a categorical or a continuous domain. For categorical 

attributes, all values in the domain are mapped to consecutive positive integers. For continuous 

attributes, the value range is discretised into intervals, which are mapped into consecutive 

positive integers. In this way, all attributes are treated uniformly. 
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Each data object in R can be described as a collection of pairs (attribute, integer value), plus a 

class label (a value belonging to the domain of the class attribute c). Each pair (attribute, integer 

value) is called item in the remaining part of the article.  

In the following definition, the context for associative classification will be formalized. 
 

A classification context will be also called a dataset. Figure 3.4 reports a  

small dataset used as a running example. The dataset includes six rows, five different items (I = 

{a, b, c, d, e}), and two different classes (C = {c1, c2}) which label the rows. 

 

Definition 3.4 (L-ITEMSET and L-TIDS-LIST). Let c ∈ C be an arbitrary class label. Let X ⊆ 

2I be an arbitrary ITEMSET and T ⊆ 2T be an arbitrary TIDS-LIST. Xc  ⊆ 2I×C is a labeled 

ITEMSET (or l-ITEMSET) where ∀i ∈ X , c labels i. Tc  ⊆ 2T ×C  is a labeled TIDS-LIST (or l-

TIDS-LIST) where ∀t ∈ T, c  labels t. 

The traditional concepts of ITEMSET and TIDS-LIST can be seen as a particular instance (i.e., 

an unlabeled instance) of the above definitions. They describe sets of items and sets of 

transactions in D, by ignoring the class label associated to the elements in the set. In the dataset in 
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Figure 3.4, bcc1 and adec2 are l-ITEMSETs, and {1, 4}c1 and {2, 3}c2 are l-TIDS-LIST. abcd is an 

ITEMSET, and {1, 3, 4} is a TIDS-LIST, brackets were used to represent l-TIDS-LIST and TIDS-

LIST.  

The l-ITEMSETs mined from a dataset can be used to represent the classification rules that 

can be extracted from it. An arbitrary l-ITEMSET Xc in D encodes the classification rule r : X → 

c, where X and c are the antecedent and consequent of r, respectively. Figure 3.4 shows the 

complete set of rules that can be extracted from the example dataset. 

Accuracy is an important factor in assessing the success of data mining. When applied to 

data, accuracy refers to the rate of correct values in the data. When applied to models, accuracy 

refers to the degree of fit between the model and the data. This measures how error-free the 

model's predictions are. In associative classification, classification rules are used to model the 

most relevant properties characterizing classes of data, and to predict the class label for unknown 

(unlabeled) data. A classifier is a function from 2I to C that allows the assignment of a class label 

to a data object. A classifier, able to predict the class label for data objects with high accuracy, is 

generated from a collection of transactions (i.e., data objects with a label, also called training 

dataset). In associative classification, the classifier is generated by selecting the most appropriate 

set of association rules. A rule r : X → c classifies or matches a data object d when X ⊆ d. In this 

case, rule r assigns class label c to data object d. 

Several measures have been proposed to quantify the “interestingness” or the quality of an 

association (Yiming, M., 2000) (and a classification) rule. Frequently used quality indices are 

support and confidence (Agrawal and Srikant, 1994). In our setting, these measures correspond to 

the support and confidence of the l-ITEMSET encoding the classification rule. For an arbitrary 

classification rule Xc, the support sup(Xc) is the fraction of transactions in D which contain X and 

are labeled by class label c. For the rule antecedent X , the support sup(X ) is the fraction of 

transactions in D which contain X . 

The confidence of Xc is conf (Xc) = sup(Xc)/ sup(X ). A l-ITEMSET, or an ITEMSET, is said 

to be frequent when its support is above a given frequency threshold, in the following denoted as 

minsup.  
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For a specific given classification rule Xc, these measures are defined by taking into account 

also the frequencies of other l-ITEMSETs in the dataset. In particular, the fraction of  

transactions: including ITEMSET X , but labeled with classes different from c (denoted as X￢c); 

not including ITEMSET X and labeled with class c (denoted as ￢Xc); not including X and labeled 

with classes different from c (denoted as ￢X￢c) are considered. Also the fraction of transactions 

labeled by class label c (denoted as c), not including ITEMSET X (denoted as ￢X ), and labeled 

by a class label other than c (denoted as ￢c), are considered. 

These frequency counts can be tabulated in a 2 × 2 contingency table as shown in Figure 3.5. 

It can be easily seen that, for an arbitrary classification rule Xc, the content of each cell in the 

table can be expressed in terms of sup(X ), sup(c), sup(Xc), and the number of transactions in the 

dataset (denoted |T | in Figure 3.5.). Hence, for a rule Xc, any interestingness measure based on 

the frequency counts in the contingency table associated to Xc can be actually computed if sup(X 

), sup(c), sup(Xc), and |T | are known. The contingency table for an arbitrary classification rule Xc 

will be denoted MXc.  

In general, the associative classification approach consists 

of three major steps as Figure 3.6 shows:  

1) generating frequent sets (i.e., com- bining pieces of evidence), 
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2) inducing strong rules. 

3) ranking best rules and classification. 

Although associative classification methods (Liu, B., et al, 2001) present several interesting 

aspects, they also suffer from some limitations. First, most of methods (Yin, X., et al, 2003) 

reported in the literature work under the single-table assumption, which is a strong limitation in 

those application domains characterized by a spatial dimension. Second, they have a categorical 

output which conveys no information on the potential uncertainty in classification. Small changes 

in the attribute values of an object being classified may result in sudden and inappropriate 

changes to the assigned class. Missing or imprecise information may prevent a new object from 

being classified at all. 

 
 

3.4.2 CBA (Classification Based on Associations) Algorithm 

According to (Liu, B., et al, 2001) the integration of association rule and classification is done 

by focusing on a special subset of association rules whose righthand- sides are restricted to the 

classification class attribute. It is refered to this subset of rules as the class association rules 

(CARs) (Liu, B., et al, 2001). An existing association rule mining algorithm (Agrawal and 

Srikant, 1994) is adapted to mine all the CARs that satisfy the minimum support and minimum 

confidence constraints. This adaptation is necessary for two main reasons: 

1. Unlike a transactional database normally used in association rule mining (Agrawal and Srikant, 

1994) that does not have many associations, classification data tends to contain a huge number of 

associations. Adaptation of the existing association rule mining algorithm to mine only the CARs 

is needed so as to reduce the number of rules generated, thus avoiding combinatorial explosion 

(see the evaluation section).  

2. Classification datasets often contain many continuous (or numeric) attributes. The adaptation 

involves discretizing continuous attributes based on the classification pre-determined class target. 

There are many good discretization algorithms for this purpose (Fayyad U., 1996), (Dougherty, 

J., et al, 1995) 

Data mining in the proposed associative classification framework consists of three steps 

(Yiming, M., et al, 2000): 

° discretizing continuous attributes, if any 

° generating all the class association rules (CARs), and 

° building a classifier based on the generated CARs. 
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This work makes the following contributions: 

1. It proposes a new way to build accurate classifiers. Experimental results show that classifiers 

built this way are, in general, more accurate than those produced by the state-of-the-art 

classification system C4.5 (Quinlan. J., 1993). 

2. It makes association rule mining techniques applicable to classification tasks. 

3. It helps to solve a number of important problems with the existing classification systems. The 

framework helps to solve the understandability problem (Clark, P., et al, 1993), (Pazzani, M., et 

al, 1997) in classification rule mining. Techniques such as those in (Liu, B., 1996), (Liu, B., 

1997) can be employed to help the user identify understandable rules. 

A related problem is the discovery of interesting or useful rules. The quest for a small set of 

rules of the existing classification systems results in many interesting and useful rules not being 

discovered. In this framework, the database can reside on disk rather than in the main memory. 

Standard classification systems need to load the entire database into the main memory (Quinlan. 

J., 1993), although some work has been done on the scaling up of classification systems (Mahta, 

M., et al, 1996). 
 

CBA steps:  
It consists of two parts (Liu, B., et al,  2001), a rule generator (called CBA-RG), which is based 

on algorithm Apriori for finding association rules in (Agrawal and Srikant, 1994), and a classifier 

builder (called CBA-CB).  

CBA-RG algorithm: The CBA-RG algorithm (Liu, B., et al, 2001) generates all the frequent 

ruleitems by making multiple passes over the data. In the first pass, it counts the support of 

individual ruleitem and determines whether it is frequent. In each subsequent pass, it starts with 

the seed set of ruleitems found to be frequent in the previous pass. It uses this seed set to generate 

new possibly frequent ruleitems, called candidate ruleitems. The actual supports for these 

candidate ruleitems are calculated during the pass over the data. At the end of the pass, it 

determines which of the candidate ruleitems are actually frequent. From this set of frequent 

ruleitems, it produces the rules (CARs). 

The CBA-RG algorithm is given in Figure 3.7 (Liu, B., et al, 1998). 
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CBA-CB algorithm:  
 

Have three steps: 
 

Step 1: Sort the set of generated rules R according to the relation “>”. This is to ensure that we 

will choose the highest precedence rules for our classifier as Figure 3.8 shows (Liu, B., et al, 

2001). 
 

Step 2: Select rules for the classifier from R following the sorted sequence, to be a potential rule 

classifier. Then compute and record the total number of errors that are made by the current class. 

This is the sum of the number of errors that have been made by all the selected rules and the 

number of errors to be made by the default class in the training data. When there is no rule or no 

training case left, the rule selection process is completed. 

Step 3: Discard those rules that do not improve the accuracy of the classifier. The first rule at 

which there is the least number of errors recorded is the cutoff rule. All the rules after this rule 

can be discarded because they only produce more errors. The undiscarded rules and the default 

class of the last rule form the required classifier. 
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3.4.2.1 The intersections of training objects locations 
 

As we previously mentioned, there are two common representations of a target database; 

these are the horizontal (Agrawal and Srikant, 1994) and vertical (Zaki, M., et al, 2003) layouts. 

Table 3.4 illustrates a horizontal layout representation for a transactional database. In searching 

for frequent ITEMSETs in the horizontal layout, the database is scanned multiple times, once 

during each iteration, to perform support counting and pattern matching for candidate ITEMSETs 

at each level. Furthermore, computational overheads occur during support counting of candidate 

ITEMSETs. 

 According to (Zaki, M., et al, 2003), for each transaction with length l, during an iteration n, 

one needs to produce and evaluate whether all n-subsets of the transaction are contained in the 

current candidate list. In the vertical layout however, the database consists of a group of items 

where each item is followed by its TIDS-LIST (Savasere, A., et al, 1995) as shown in Table 3.5, 

which is a vertical representation of Table 3.4. A TIDS-LIST of an item is the transaction 

numbers (TIDS-LIST) in the database that contain that item. 
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Supports of frequent ITEMSETs are computed in the vertical layout by simple intersections of 

the TIDS-LIST. For instance, the supports of candidate ITEMSETs of size k can be easily obtained 

by intersecting the TIDS-LISTs of any two (k-1) subsets. The TIDS-LISTs that hold all the 

information related to items in the database are a relatively simple and easy to maintain data 

structure, and thus there is no need to scan the database during each iteration to obtain the 

supports of new candidate ITEMSETs, saving I/O time (Zaki, M., et al, 2003).  

AC algorithms (Toivonen, H., et al, 1995) extend TIDS-LISTs intersections methods of 

vertical association rule data layout (Zaki, M., et al, 2003) to solve classification benchmark 

problems Supports of frequent ITEMSETs are computed in the vertical layout by simple 

intersections of the TIDS-LIST. For instance, the supports of candidate ITEMSETs of size k can 

be easily obtained by intersecting the TIDS-LISTs of any two (k-1) subsets. The TIDS-LISTs that 

hold all the information related to items in the database are a relatively simple and easy to 

maintain data structure, and thus there is no need to scan the database during each iteration to 

obtain the supports of new candidate ITEMSETs, saving I/O time (Zaki, M., et al, 2003).  
 

 
3.4.2.2 Introducing Diffsets 
 

Since each class is totally independent, in the sense that it has a list of all possible ITEMSETs, 

and their TIDS-LIST, that can be combined with each other to produce all frequent patterns 

sharing a class prefix, to avoid storing the entire TIDS-LIST of each member of a class. Instead 
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this method keeps track of only the differences in the TIDS-LIST between each class member and 

the class prefix ITEMSET. These differences in TIDS-LIST are stored in what we call the diffset, 

which is a difference of two TIDS-LIST (namely, the prefix TIDS-LIST and a class member’s 

TIDS-LIST). 

Using the TIDS-LIST for an ITEMSET in association rule discovery is a good approach as the 

cardinality of the ITEMSET TIDS-LIST divided by the total number of the transactions gives the 

support for that ITEMSET. However, the TIDS-LIST intersection methods presented in 

association rule discovery need to be modified in order to treat classification problems, where 

classes associated with each ITEMSET (rule antecedent) are considered when computing the 

support. the replacement of item covers in incidence matrices by their relative complement in its 

superpattern, so called diffsets,  (Zaki, M., et al, 2003) developed a new approach called dEclat 

using the vertical database representation. They stored the difference of TIDS-LIST called diffset 

between a candidate k-ITEMSET and its prefix k-1- frequent ITEMSETs, instead of the TIDS-

LIST intersection set, denoted here as TIDS-LIST. 

 A number of vertical mining algorithms have been proposed recently for association mining, 

which has shown to be very effective and usually outperform horizontal approaches. The main 

advantage of the vertical format is support for fast frequency counting via intersection operations 

on transaction ids (TIDS-LIST) and automatic pruning of irrelevant data.  

In the vertical mining approaches there is usually no distinct candidate generation and support 

counting phase like in Apriori. Rather, counting is simultaneous with generation. For a given 

node or prefix class, one performs intersections of the TIDS-LIST of all pairs of class elements, 

and checks if min sup is met. Each resulting frequent ITEMSET is a class unto itself with its own 

elements that will be expanded in the next step.  

Diffsets drastically cut down the size of memory required to store intermediate results. We 

show how diffsets, when incorporated into previous vertical mining methods, increase the 

performance significantly. 

 
3.4.3 CMAR (Classification Based on Multiple Class-Association Rules) 

This method extends an efficient frequent pattern mining method (Wenmin L., et al, 2001), 

FP-growth, constructs a class distribution-associated FP-tree, and mines large database 

efficiently. Moreover, it applies a CR-tree structure to store and retrieve mined association rules 

efficiently, and prunes rules effectively based on confidence, correlation and database coverage. 
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The classification is performed based on a weighted X2 analysis using multiple strong association 

rules.  

CMAR (Li W., et al, 2001), is consistent, highly effective at classification of various kinds of 

databases and has better average classification accuracy in comparison with CBA and C4.5.  

Instead of relying on a single rule for classification, CMAR determines the class label by a set of 

rules. To improve both accuracy and efficiency, CMAR employs a novel data structure, CR-tree, 

to compactly store and efficiently retrieve a large number of rules for classification. CR-tree is a 

prefix tree structure to explore the sharing among rules, which achieves substantial compactness. 

CR-tree itself is also an index structure for rules and serves rule retrieval efficiently. To speed up 

the mining of complete set of rules (Wenmin L., et al, 2001), CMAR adopts a variant of recently 

developed FP-growth method. FP-growth is much faster especially when there exist a huge 

number of rules, large training data sets, and long pattern rules. 

The CMAR algorithm adopts the X
2
 testing in its rules discovery step. When a rule is found, 

CMAR tests whether its body is positively correlated with the class. If a positive correlation is 

found, CMAR keeps the rule, otherwise the rule is discarded. 

 

3.4.4 MCAR Multi-class Classification based on Association Rule 

First, MCAR (Thabtah F., et al, 2005) scans the training data set once to count the 

occurrences of single items, from which it determines those that pass the MinSupp threshold. It 

stores items along with their locations (TIDS) inside arrays. Then, by intersecting the TIDS of the 

frequent items discovered so far, it can easily obtain the remaining frequent items that involve 

more than one attribute. It also uses TIDS for frequent single items to obtain support and 

confidence values for rules involving more than one item. 

Once an item has been identified as a frequent item, the MCAR algorithm finds all rules with 

that item as condition which pass the MinConf.  Considering that, only the rule with the largest 

confidence is counted by MCAR algorithm. In the case that an item has two rules with identical 

confidence, the choice of the rule will be random. MCAR always looks for the best rules for the 

final classification system.  

The fact that training data set has been scanned only once to discover and generate the rules, 

makes this approach highly effective in runtime and storage since no multiple data scans are 

required. However in cases where there is large number of candidate items held in the main 

memory, the possible number of intersections required to generate frequent items is large. 
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3.4.5 Multi-label Classification 
Single-label classification assigns an object to exactly one class, when there are two or more 

classes. Multi-label classification is the task of assigning an object simultaneously to one or 

multiple classes. 

A novel approach for multi-label classification, was generated (Thabtah F., et al, 2004), is 

called multi-class, multi-label associative classification (MMAC). This technique assumes that 

for each training instance that passes certain thresholds, there is a rule associated with not only 

the most obvious class label, but with the second, third, kth possible class labels. 

MMAC (Thabtah F., et al, 2004) is an algorithm that follows the paradigm of associative  

 

 Input: Training data (D), MinSupp  and MinConf 
thresholds   
Output: A set of rules 

 Scan D for the set S of frequent single items   
Do 

  For each pair of disjoint items I1, I2 in S  
      If <I1 ∪ I2> passes the MinSupp threshold 
  S ← S ∪ <I1 ∪ I2> 
Until no items which pass MinSupp are found 
For each item I in S 
      Generate all rules which pass  cI →
             the MinConf threshold  
Rank all rules generated  
Remove all rules from S where there is 
some rule of a higher rank and

cI ′→′
cI → II ′⊆ . 

 
  Figure 3.9 MCAR algorithm 

 

 

 

 

 

 

 

 

Classification, which deals with the construction of classification rule sets using association 

rule mining. MMAC learns an initial set of classification rules through association rule mining, 

removes the examples associated with this rule set and recursively learns a new rule set from the 

remaining examples until no further frequent items are left. These multiple rule sets might 

contain rules with similar preconditions but different labels on the right hand side. Such rules are 

merged into a single multi-label rule. The labels are ranked according to the support of the 

corresponding individual rules. 

 The algorithm consists of three phases: rules generation, recursive learning and 

classification. In the first phase, it scans the training data to discover and generate a complete 

CAR. In the second phase, MMAC proceeds to discover more rules that pass the MinSupp and 

MinConf thresholds from the remaining unclassified instances, until no further frequent items can 
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be found. In the third phase, the rules set derived from all iterations will be merged to form a 

global multi-class label classifier, which will be tested against test data. Figure 3.10 represents a 

general description of the method.  

 
 

Input: Training data, confidence and support 
(σ) thresholds  
Output: A set of multi-label rules and the 
classification accuracy 
Phase 1: 

 Scan the training data T with n columns 
to discover frequent items 

 
 
 
 

 Produce a rules set  by converting any 
frequent item that passes MinConf into a 
rule 

 Rank the rules set according to 
(confidence, support, …, etc) 

 Prune redundant rules from the rules set 
Phase 2:  

 Discard instances Pi associated with 
rules set just generated in phase 1. 

 Generate new training data T  iPT

 
 
 
 
 
 −←/

 Repeat phase 1 on T  until no further  /

    frequent item is found 
Phase 3: 

 Merge rules sets generated at each 
iteration to produce a multi-label 
classifier 

 Classify test objects and calculate error 
rate using an accuracy measure 

 
Figure 3.10 MMAC algorithm 

 
 
 
 
 
 
 

 
 
 

3.5 Interesting Directions in Associative Classification 
Constructing association rule discovery methods for classification systems in data mining is 

known as associative classification. In the last few years, associative classification algorithms 

such as CBA, CMAR and MMAC showed experimentally that they generate more accurate 

classifiers than traditional classification approaches such as decision trees and rule induction 

(Lim, T., et al, 2000). However, there is room to improve further the performance and/or the 

outcome quality of these algorithms (Thabtah, F., et al, 2006). 
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Associative classification is becoming a common approach in classification since it extracts 

very competitive classifiers with regards to prediction accuracy if compared with rule induction 

There are some challenges facing  associative classification approach, which could improve 

solution quality and performance and also minimize drawbacks and limitations,  such as 

incremental learning, noise in test data sets, exponential growth of rules and many others,  

probabilistic and decision tree approaches. However, challenges such as efficiency of rule 

discovery methods, the exponential growth of rules, rule ranking and noise in test data set need 

more consideration. Furthermore, there are new research directions in associative classification, 

which have not yet been explored such as incremental learning, multi-label classifiers and rules 

overlapping (Thabtah, F., et al, 2006).  

 

 
 
 
 

 49



3.6 Summary 
 

In the beginning of this chapter, we surveyed different AC methods, and discussed their 

approaches used to find rules. Research work on AC to date is devoted to general classification 

problems where the aim is to build a classifier that contains single label rules. Most of AC 

algorithms aim to build accurate classifiers such as CBA, CMAR, MCAR and MMAC, these 

algorithms succeeded to build an accurate classifier, where only the most obvious class correlated 

to a rule is created and other classes are simply discarded. Sometimes the ignored class labels 

have frequencies in the training data above certain user thresholds, making their presence in the 

classifier important. 

Also we referred to some challenges and interesting research Directions in Associative 

Classification approach, which should be considered in the future work. 
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CHAPTER 4 

 
 

VERTICAL TEXT CATEGORIZATION (VTC) 
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4.1 Introduction 
 

Text Categorization (TC), also known as Text Classification, is the task of automatically 

classifying a set of text documents into different categories from a predefined set (Sebastiani, F., 

2002). If a document belongs to exactly one of the categories, it is a single-label classification 

task; otherwise, it is a multi-label classification task. 

Associative classification (AC) (Baralis, E., et al, 2002) is the integration of association rule 

mining and classification. Association rule is unsupervised learning that describes the co-

occurrence among data items in a large amount of collected data (Agrawal and Srikant, 1994). 

Whereas, associative classification is a supervised task that predicts the class label of test cases. 

Many studies show that AC frequently builds more accurate classifiers than traditional 

classification techniques, and that many of the rules found by AC methods can not be discovered 

by traditional classification algorithms (Thabtah F., et al, 2005). Also, classifiers generated by 

AC techniques contain rules that are easy to understand and can be manually altered by domain 

experts (Antonie, M., et al, 2002).  

Data used is taken from Reuters-21578, Distribution 1.0" corpus, currently the most widely 

used benchmark in text categorization research. Reuters-21578 consists of a set of 12,902 news 

stories, partitioned (according to the "ModApte' split) into a training set of 9,603 documents and 

a test set of 3,299 documents, as well as different data sets from UCI data collection (Merz and 

Murphy, 1996). 

Mining frequent patterns on the vertical data structures usually shows improvements of 

performance over the classical horizontal structure. This is because the vertical data structure 

supports fast frequency counting via intersection operations on transaction identifiers (TIDS-

LIST). Recently, Diffsets (Zaki M., et al, 2001), a vertical data representation, has been 

introduced to improve memory requirement for intermediate TIDS-LIST storage in the mining 

process. 

This thesis aims at finding better text classifiers along two of the following directions: (1) 

Using AC classifiers in order to improve the quality of the results with respect to classification 

accuracy, and (2) Employing the efficient method of vertical data format to represent the text 

documents in order to improve the efficiency of the classification model.  

Most of the previous works on mining associations are based on the traditional horizontal 

transactional database format (Baralis, E., et al, 2002),8,12,13,15,16,18), a variant of Apriori-like 

Approaches, i.e. (1) (Baralis, E., et al, 2002) ( ) ( ), have utilized the horizontal data format, as 
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shown in Figure 4.1(Zaki M., et al, 2001),  where DB = {1, 2, 3, 4, 5, 6},  and I = {A, B, C, D, E} 

is a set of five different items  

 

 
Figure 4.1 Horizontal and Vertical representation 

in the database. Which represent the common horizontal data format that has been used often in 

mining associations. In this horizontal format, each transaction has a tid along with the ITEMSET 

comprising the transaction. However, recently a number of vertical mining algorithms such as 

VIPER (Shenoy, P., et al, 2000) and ECALT (Zaki M., et al, 2001) have been proposed for 

mining associations. In the vertical format, each item is associated with its corresponding TIDS-

LIST, the set of all transactions (or TIDS-LIST) which contains that item as shown in Figure 4.1. 

Mining algorithms on the vertical format have shown to be very effective and usually outperform 

horizontal approaches (Agrawal and Srikant, 1994). This is since frequent patterns, which implies 

corresponding occurrence frequencies in the database for a given ITEMSET, can be counted via 

TIDS-LIST intersections, instead of using complex internal data structures Apriori candidate 

generation function (Agrawal and Srikant, 1994), which requires high computations. Diffset (Zaki 

M., et al, 2001) is a vertical data representation that keeps track only on the difference in the 

TIDS-LIST of a candidate pattern from its generating frequent patterns. It drastically cuts down 

the size of memory required to store intermediate results. The initial database stored in the 

format, instead of the TIDS-LIST, can also reduce the total database size.  

Association mining works as follows. Let I be a set of items, and T a database of transactions, 

where each transaction has a unique identifier (tid) and contains a set of items. A set X ⊆ I is also 

called an ITEMSET, and a set Y ⊆ T is called a TIDS-LIST.  

Using the TIDS-LIST for an ITEMSET in association rule discovery is a good approach as the 

cardinality of the ITEMSET TIDS-LIST divided by the total number of the transactions gives the 

support for that ITEMSET. However, the TIDS-LIST intersection methods presented in 
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association rule discovery need to be modified in order to treat classification problems, where 

classes associated with each ITEMSET (rule antecedent) are considered when computing the 

support. The replacement of item covers in incidence matrices by their relative complement, so 

called diffsets, (Zaki, M., et al, 2003) developed a new approach called dEclat using the vertical 

database representation. dEcalt stores the difference of TIDS-LIST called diffset between a 

candidate k-ITEMSET and its prefix k-1- frequent ITEMSETs, instead of the TIDS-LIST 

intersection set, denoted here as TIDS-LIST. 

Our proposed algorithm deals with vertical mining and it is called the Vertical Text 

Categorization (VTC), which mines a complete set of frequent patterns within a given text on 

Diffset structure. The algorithm is instantiated using diffset structure based on AC approach to 

deal with text classification benchmark problems.  

A common shortcoming in many TC applications is that it is expensive to classify data for the 

training phase, in order to learn a classifier that is able to correctly classify unseen documents. To 

deal with this shortcoming, it is necessary to train the TC algorithm with some pre-classified 

documents from each category, in such a way that the classifier is then able to generalize the 

model it has learned from the pre-classified documents and use that model to correctly classify 

the unseen documents. 

For example, let’s consider the SPAM DETECTION, Spams or, more formally, unsolicited 

commercial electronic messages, which can undermine the usability of electronic messages. 

Technical counter-measures include the development of spam filters, which can automatically 

detect a spam message. The problem is to classify if a given electronic message is spam or 

legitimate (a message is a data instance). Spams correspond to 25% of the total number of 

messages.  

The organization of this chapter is as follows: Text Categorization problem is discussed in 

Section 4.2, and VTC is presented in Section 4.3. Section 4.4 points out general classification 

evaluation Metrics, and Section 4.5 discusses TC related evaluation methods. Data, preprocessing 

operation, and experimental results are presented in Sections 4.6, 4.7, and 4.8, respectively. 

Finally Section 4.9 is devoted to chapter summary. 

 

4.2 Text Categorization Problem 
The main goal of TC is to derive methods for the classification of natural language text 

(Sebastiani, F., 2002). The objective is to automatically derive methods that, given a set of 

training documents D = {d1, . . . , dr} with known categories C = {c1, . . . , cq} and a new 
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document q, which is usually called the query, will predict the query’s category, that is, will 

associate with q one or more of the categories in C. The methods that are used in TC are 

generally the same that are used in the more general area of Information Retrieval (IR) or 

classification data mining, where the goal is to find relevant documents within a collection of 

documents that are related to a particular user query. By considering the document to classify as 

the query and the classes of the documents that are retrieved as the possible classes for the query, 

a method developed for IR can be used for TC tasks. 

TC techniques are necessary to find relevant information in many different tasks that deal 

with large quantities of information in text form. Some of the most common tasks where these 

techniques are applied are: finding answers to similar questions that have been answered before; 

classifying news by subject or newsgroup; sorting spam from legitimate e-mail messages; finding 

Internet pages on a given subject. In each case, the goal is to assign the appropriate category or 

label to each document that needs to be classified. 
 

4.2.1 Document Term Weighting 
 

Document indexing is the process of mapping a document into a compact representation of its 

content that can be interpreted by a classifier. The techniques used to index documents in TC are 

borrowed from IR, where text documents are represented as a set of index terms which are 

weighted according to their importance for a particular document and for the collection in general 

(Salton G., 1968; Salton, G. 1971; Sebastiani, F., 2002; Yang, Li., 1999). In most of the current 

association classification methods, a shortage exists when these methods ignore the information 

about word's frequency in a text; this thesis presents a text categorization algorithm based on 

frequent pattern with term frequency.  

Term frequency is important for text datasets, since it leads to higher performance, so it can't be 

ignored, especially to association rules defined based on probability of words occurrence (Koller, 

D., et al, 1997). A text document is represented by an n-dimensional vector of index terms 

or keywords, where each index term corresponds to a word that appears at least once in the initial 

text and has a weight associated to it, which should reflect how important this index term is. 

Regarding the problem of how to weight the terms in the documents, term weights can be binary-

valued, indicating presence or absence of the term in the document; or real-valued, indicating the 

importance of the term in the document. There are multiple approaches for how real-valued 

weights can be computed. For example, (Sable, C., et al, 2001) introduces a bin-based term 

weighting method intended for tasks where there is insufficient training data to estimate a 
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separate weight for each word. (Sebastiani, F., et al, 2004b) proposes a supervised term 

weighting, where information on the membership of training documents to categories be used to 

determine term weights. However, none of the most recent approaches consistently outperforms 

the popular term weighting method proposed by (Salton, G., et al, 1988).  

Formally, wi j, the weight of term ti for document , is defined as: 
       
       
   (4.1) 
 

 

For the reasons explained above, text documents are usually represented as a set of index 

terms which are weighted according to their importance for a particular document and for the 

collection in general, where the words in the document correspond to the index terms. The 

importance of each term, that is, its weight, can be computed in several ways, and the next 

sections describe the popular tfidf. 

 
4.2.2 Term Frequency / Inverse Document Frequency 
 

In the most usual case in TC, the weight wij of a term ti in a document increases with the 

number of times that the term occurs in the document and decreases with the number of times the 

term occurs in the collection. This means that the importance of a term in a document is 

proportional to the number of times that the term appears in the document, while the importance 

of the term is inversely proportional to the number of times that the term appears in the entire 

collection. This term-weighting approach is referred to as term frequency/inverse document 

frequency (tfidf ) (Salton and Buckley, 1988). 

The mostly used weighting scheme in IR and TC method is the TFIDF (term frequency / inverse 

document frequency). TF(w,d) (Term Frequency) is the number of times word w occurs in a 

document, and d.DF(w) (Document Frequency) is the number of documents in which the word w 

occurs at least once. 

The inverse document frequency is calculated as 

  

          (4.2) )log(( )DFIDF =) (
||
w

Dw

 

Where wi j, the weight of term ti for document , is defined as: 
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                                        (4.3)                                                                                        

                               

 

 

Where freqi j is the number of times that term ti appears in document , |D| is the total number 

of documents in the collection, and nti is the number of documents where term ti appears. 

 
4.3 VTC Algorithm 

Usually in searching for frequent ITEMSETs in the horizontal layout, the database is scanned 

multiple times, once during any iteration, to perform support counting for candidate ITEMSETs at 

each level. Furthermore, computational overheads occur during support counting of candidate 

ITEMSETs, according to (Zaki, M., et al, 2003), for each transaction with length l, during an 

iteration n. However In the vertical layout, the database consists of a group of items where each 

item is followed by its TIDS-LIST (Savasere, A., et al, 1995). A TIDS-LIST of an item is the 

transaction numbers (TIDS-LIST) in the database that contain that item. 

Supports of frequent ITEMSETs are computed in the vertical layout by simple intersections of 

the TIDS-LIST. For instance, the supports of candidate ITEMSETs of size k can be easily obtained 

by intersecting the TIDS-LISTs of any two (k-1) subsets. The TIDS-LISTs that hold all the 

information related to items in the database are a relatively simple and easy to maintain data 

structure, and thus there is no need to scan the database during each iteration to obtain the 

supports of new candidate ITEMSETs, saving I/O time (Zaki, M., et al, 2003).  

AC algorithms (Toivonen, H., et al, 1995) extend TIDS-LISTs intersections methods of 

vertical association rule data layout (Zaki, M., et al, 2003) to solve classification benchmark 

problems. We propose in this section a supervised learning method for text categorization called 

Vertical Text Categorization (VTC). During the Preprocessing phase, we introduce the terms 

frequent, and term frequency, and in the training phase, an extraction of the categories features is 

carried out. Then, the training data set is scanned once to discover frequent one-ruleitems, and 

then ruleitem with support and confidence larger than minsupp and minconf, respectively, is 

created as a potential rules. The next phase is called scoring and classification in which a given 

test data is assigned a class label based on the rules learned during the training phase. The 

proposed algorithm uses the vertical layout (Zaki, et al., 1997) for data representation and the fast 
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intersection method to discover the rules, as we will show below. Figure 4.2 shows the 

pseudocode of the proposed algorithm, which we will explain in details in section 4.3.2.  

Input: Training data (D), min_supp, min_conf thresholds, the set of 
predefined categories C ={C1, . . .,Cm}, where items start from i to 
j . 
Output: A set of rules 
 
Preprocessing phase 
scan the training document d, 
eliminate stopwords, 
stemm words, 
collect words and their TFs, 
insert all these words into D. 
Step 4: Convert data into the vertical diffset format using DiiffVTC 
procedure. 
The Algorithm 
 
Step 1: Find frequent items using the vertical data format 
Step 2: Scan the database D and find the frequent 2-ITEMSETs and 
their supports using produce function. 
Step 3: For each transaction T: 
 

1SR ←  

1←i  
while (  )0≠iS
{ 
  )(1 ii SproduceS ←+

  1+∪← iSRR
  1+← ii
 
} 
 
          Procedure DiffVTC 
    { 

DiffVTC((S)):     
for all Xi ∈ (S) do 
for all Xj ∈ (S), with j > i do 
R = Xi∪ Xj ; 
d(R) = d(Xj) − d(Xi); 
if min_ sup  (R)  ≥σ  then 
Ti = Ti ∪{R};  
for all    Ti φ≠  do DiffVTC(Ti); 

           } 
 

 
Fig. 4.2 VTC algorithm 

Figure 4.3 shows the training phase of the VTC, which we will explain in Section 4.2.2. Data 

used by VTC contain a header that indicates file name, attribute names, and a number of rows. 

Values for each training data instance are comma-separated, and the class attribute must be the 

last column in the header file.  

 

 58



 
  Function produce 
 Input: A set of ruleitems S 
  Output: set of Τ produced ruleitems i

 
0←iΤ  

Do 
 For each pair of disjoint items Xi, Xj in T Do 
          If (<Xi ∪ Xj>, c) passes the minsupp threshold 
               if (<Xi ∪ Xj>, c) passes the minconf threshold 
              Τ  ),( cXXiΤi ji >∪<∪←
 
  end if 
          end if 
      end  
end 
Return Τ  i
 

Fig 4.3 The training algorithm of VTC 

 
 
4.3.1 Training Data Format 

According to (Agrawal and Srikant, 1994) and (Zaki, M., et al, 2003), the main advantage of 

the vertical format is support for fast frequency counting via intersection operations on 

transaction ids (TIDS-LIST) and automatic pruning of irrelevant data.  

In the vertical mining approaches there is usually no distinct candidate generation and support 

counting phase like in Apriori. Rather, counting is simultaneous with generation. For a given 

node or prefix class, one performs intersections of the TIDS-LIST of all pairs of class elements, 

and checks if min sup is met. Each resulting frequent ITEMSET is a class unto itself with its own 

elements that will be expanded in the next step.  

 
 
4.3.2 Frequent Ruleitems Discovery 

To show how we find a frequent ruleitem, it is assumed that DB = {1, 2, 3, 4, 5, 6}, as 

shown in Table 4.1, and I = {FORECAST, BANK, ACCOUNT, OPER, MARKET } is a set of 

five different items in the database taken from Retuters 21578 dataset and was applied on VTC. 

Figure 4.4 depicts on the right part a common data format that has been used often in mining 

associations. In this horizontal format, each transaction has a tid along with the ITEMSET 

comprising the transaction. In contrast, the vertical format on the left part maintains for each item 

its TIDS-LIST, the set of all TIDS-LIST where the item occurs. 

Figure 4.4(a) shows Diffset structure with support = 50%. In Figure 4.4(b), Diffset structure 

is sorted by the support in an  ascending order and, hence, it has a better chance that more  postfix 
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can be shared. Based on the example database in Table 4.1 and its diffset that arises in Figure 4.4, 

we will illustrate how to evaluate the support of ITEMSETs and, then, determine whether the 

ITEMSETs are frequent patterns.  

It is assumed that the support threshold is 

specified as 50% which equals to 3. Now, let’s 

examine a 2-ITEMSET 

(FORECAST,MARKET) first. We found that 

d(FORECAST,MARKET) = t(MARKET’) - 

t(FORECAST’) = {1, 3}, and the support of 

item FORECAST is σ(FORECAST) = 4. 

Consequently, the support of 

(FORECAST,MARKET) is 

σ(FORECAST,MARKET) = σ(FORECAST) - |d(FORECAST,MARKET)| = 4 - 2 = 2. 

ITEMSET FORECAST,MARKET is not a frequent pattern. If we evaluate a 3-ITEMSET 

(FORECAST,ACCOUNT,OPER), we will obtain that |d(FORECAST,ACCOUNT,OPER)| = |Ø| 

= 0, and σ (FORECAST,ACCOUNT) = 3. Hence, σ (FORECAST,ACCOUNT,OPER) = 3 - 0 = 

3 which leads to a conclusion that FORECAST,ACCOUNT,OPER is a frequent pattern. 

                  Table 4.1: Training Data 
 

TID  Term  

1 
FORECAST, BANK, 
ACCOUNT, OPER 
BANK, MARKET, 

OPER  2 
FORECAST, BANK, 
ACCOUNT, OPER  3 

FORECAST, BANK, 
MARKET, OPER  4 

FORECAST, BANK, 
MARKET, ACCOUNT, 

OPER  5 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FORECAST BANK MARKET ACCOUNT OPER 

2   1 2 6 

6   3 4   

     
FORECAST MARKET ACCOUNT OPER BANK 

 2    1    2    6   

 6    3    4       

        Horizontal Structure                           Vertical Structure 
       FORECAST BANK MARKET ACCOUNT OPER 

1 FORECAST  BANK ACCOUNT OPER 1 1 2 1 1 

2 BANK  MARKET  OPER    3 2 4 3 2 
3 FORECAST  BANK  ACCOUNT  OPER  4 3 5 5 3 
 4 FORECAST  BANK  MARKET  OPER  

  

5 4 6 6 4 

5 FORECAST  BANK  MARKET  ACCOUNT OPER 5    5 

6 BANK  MARKET  ACCOUNT     

  

6   

 

BANK, MARKET, 
ACCOUNT  

Figure. 4.4(a) diffset for the training data in Table 4.1 
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Figure 4.5 (Zaki M., et al, 2001) shows how a typical vertical mining process would proceed 

from one class to the next using intersections of TIDS-LIST of frequent items. For example, the 

TIDS-LIST of FORECAST (t(FORECAST) = 1345) and of MARKET (t(MARKET) = 2456) can 

be intersected to get the TIDS-LIST for FORECAST,MARKET (t(FORECAST,MARKET) = 45) 

which is not frequent. Moreover, Figure 4.6 (Zaki M., et al, 2001) shows how diffsets can be used 

to enhance vertical mining methods. We can  
FOREC
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 Figure 4.5 : TIDSet intersecion Figure 4.5 : Diffset intersecion 

start with the original set of TIDS-LIST for the frequent items, or we could convert the TIDS-

LIST representation to a diffset representation at the very beginning. One can clearly observes 

that for dense datasets, a great reduction in the database size is achieved using this 

transformation.  

The main operation used in the training phase of VTC is simple intersections between TIDS 

(TIDS-LISTs) of frequent ITEMSETs. There are no multiple database scans or candidate 

generation step, rather and during each iteration, only TIDS-LISTs of frequent ITEMSETs 

produced at the previous iteration are kept for further intersections. This reduces the amount of 
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information held in  each iteration.To find frequent ITEMSETs at the current iteration, may lead 

to less memory use than keeping TIDS-LISTs for the whole frequent ITEMSETs generated in all 

previous iterations (Zaki M., et al, 2001). 

 

4.3.3 Support and Confidence Computation and Rule Generation 

In this section we briefly explain how support and confidence for ruleitems are calculated using 

an example and show how rules are generated. To find the support for a ruleitem, we use the 

TIDS-LIST of its ITEMSET to locate classes associated with it in the category array and select 

the category with the largest frequency. Then by taking the cardinality of the set of the TIDS 

where the ITEMSET and its largest category occur and dividing it by the size of the training data 

set, we can obtain the ruleitem support.  

The calculation of the confidence is done similarly except that the denominator of the fraction 

is the size of the set of the TIDS of the ruleitem condition (its ITEMSET) instead of the size of the 

whole training data set. Frequent ruleitems are generated recursively from ruleitems conditions 

having a smaller number of attributes, starting from frequent one- ruleitems derived in a single 

pass through the training data set. It should be noted that every time a frequent ruleitem is found, 

only the rule with the largest confidence is considered. In the case that a ruleitem is associated 

with two classes with identical confidence, the choice of the rule is random.  

Consider the vertical representation shown in Figure 4.3 earlier for the training data set shown 

in Table 4.1. Assume that minsupp and minconf have been set to 20% and 50%, respectively. 

During the scan, the frequent one-ITEMSETs that pass the minsupp threshold are identified, and 

all other infrequent ITEMSETs and their TIDS are discarded. Candidate two-ITEMSETs, which 

are produced by merging disjoint frequent one ITEMSETs are shown in Figure 4.5.  

In order to avoid storing the entire TIDS-LIST of each member of a class, this algorithm keeps 

track of only the differences in the TIDS-LIST between each class member and the class prefix 

ITEMSET as we explained earlier. These differences in TIDS-LIST are stored in the diffset, which 

is a difference of two TIDS-LISTs; Figure 4.5 shows the diffset for our ITEMSETs. Once these 

ITEMSETs are identified, we check their supports and confidences simultaneously by locating 

classes that occur with their TIDS. 

There is no separate phase to calculate the confidences for all frequent ruleitems in VTC, 

whereas the majority of current AC techniques (Liu, et al., 1998; Yin and Han, 2003; Baralis, et 

al., 2004; Antonie and Zaïane, 2004) produce frequent ruleitems in one step and find their 

confidences in a separate step. 
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4.4 Evaluation Metrics 
 

The evaluation of the computational systems performance is often done in terms of the resources 

(time and space) they need to function. Text Classification mission is to classify a query 

document, by associating with it an ordered list of categories to which the query belongs, so it is 

not enough to classify a document as belonging to any set of categories in a reasonable amount of 

time. In addition, the categories should also be the correct ones, that is, the ones that the 

document in really belongs to.  

The evaluation of a text categorization system is based on test samples that have been already 

labeled by human experts. For text categorization systems, the evaluation strategy used is 

inherited from traditional IR experience. David D. Lewis has an interested review on how 

evaluation is carried out in TC systems (Lewis, D., et al, 1992). The starting point is to compare 

between human-assigned key words and computer-assigned ones. Table 4.2 summarizes 

contingency four possible situations. Notice the subscript i at every value. That means that we 

compute those numbers for every class by looking the documents it has been assigned to, and the 

same could be done for every document by looking at assigned classes. In the following 

subsections, we survey popular evaluation measures used in IR and TC applications. 
 
 
4.4.1 Accuracy 
 

Accuracy is defined as the percentage of correctly classified documents from all documents 
which have been retrieved. It is generally used to evaluate single-label TC tasks (see, for 
instance, (Nigam et al, 2000; Han and Karypis, 2000; Chuang et al., 2000; Han et al., 2001; 
Lertnattee and Theeramunkong, 2004; Sebastiani, F., 2005)). Usually, Accuracy, which is shown 
in equation (4.4) is represented as a real value between 0 and 1. 
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                    (4.4) 

 
 
4.4.2 Cross validation 
 

A supervised learning algorithm needs labeled data to be trained and labeled data to be tested. 

Of course, these two sets must be disjoint to avoid a false estimation of performance, and this is 

the reason why multiple runs of the experiments are usually launched with a different partition at 

each turn. As soon as data has to be split into disjoint sets, one for training and another for 

testing, our results may differ depending on how we have chosen such partitions. For that, cross 

validation strategy  tends to reduce the possible bias introduced by this process, we used a 

random seed when partitioning the training data in cross validation, by this random partitioning, 

and several times the same data set, it allow some items to be in each of the two sets. Thus, 

several partitions are made and the final result is an averaged measurement of the experiment 

over every partition made. Some studies, as pointed by Witten and Frank in their book (Witten, 

E., et al, 1999), estimate that 5 is a stable number for assuring a certain statistical independence 

when computing the evaluation values from the partitions done on the collection.  

 
4.5 Other Evaluation Methods in Classification 

AC techniques use an error-rate method (Witten and Frank, 2000), which is the opposite of 

accurate measure discussed above to evaluate the effectiveness of their classifiers (Liu, et al., 

1998, Li, et al., 2001; Yin and Han; 2003). Using this method, the classifier simply predicts the 

class of a test data object, if it is correct, this will be counted as a success, other wise it will be 

counted as an error. The number of error cases divided by the total number of cases in a test data 

gives the overall error on this data. The error-rate of a classifier on a test data set measures its 

predictive accuracy. 

Another evaluation method in classification applications such as text categorisation is 

precision, which has been originated with another method named recall in the Information 

Retrieval (IR) field by (Van, R., 1979). Precision and recall work as follow: one starts with a 

collection of objects/documents and has a query. Some of the objects pertain to the query and 

others do not. When objects are retrieved based on the query, we may make two kinds of 
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mistakes, false positives and false negatives. Precision measures the proportion of correct 

answers from all those that were retrieved. Recall measures the proportion of correct answerers 

retrieved from the set of all correct answers.  

Generally and with respect to a given 

query, documents can be divided into 

four different sets as shown in Table 

4.3 According to Table 4.3, 

precision= YX
X
∪  

     Table 4.3: Documents possible sets based on a query in IR 
Iteration Relevant Irrelevant 

Documents Retrieved  X Y 
Documents not Retrieved Z W 

 

 And recall= ZX
X
∪ . For example, let’s say someone has 5 blue and 7 red tickets in a set and he 

submitted a query to retrieve the blue ones. If he retrieves 6 tickets where 4 of them are blue and 

2 that are red, it means that he got 4 out of 5 blue (1 false negative) and 2 red (2 false positives). 

Based on these results, precision=4/6 (4 blue out of 6 retrieved tickets), and recall= 4/5 (4 blue 

out of 5 in the initial set). 

For classification problems in data mining, precision is similar to accuracy and we can look at 

this class by class or globally. For each class one can divide the number of correct classifications 

by the number of instances classified in that class to get precision. Globally, precision is the 

number of correct classifications divided by the total number of instances in the test set. Recall is 

better seen class by class, for a given class; one can divide the correct classifications by the 

number of instances that should have been classified in that class to obtain recall. 

For multi-class and multi-label problems, methods such as precision and recall need to be 

combined in order to measure the performance of all classes. Therefore, a hybrid method, called 

F1 (Van, R., 1979), which measures the average effect of both precision and recall together, has 

been used in IR and text categorization. Overall, AC algorithms, including (Liu, et al., 1998; 

Baralis, et al,, 2000; Li, et al., 2001; Yin et al, 2003; Antonie, M., et al, 2004) use error-rate 

(accuracy) method to come up with the effectiveness of their classifiers. Using error-rate method 

to validate the predictive strength of classifier is not the optimum choice for multi-label 

classifiers, since only one class per rule contributes to overall effectiveness of the classifier.  
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4.5.1 Evaluation Methods Effect on Classification Data 

4.5.1.1 Traditional Classification Data 

The error-rate method considers only one class for each rule in computing the correct 

predictions and thus, it can be criticized for favoring only one class. Alternatively, label-weight 

assigns a value for each possible class in a rule according to its frequency in the training data. 

This gives the top ranked class in a rule the highest weight and not all the weight as error-rate 

method does. This method does not favor any class no matter what its ranking in a rule; instead it 

reflects the true distribution frequency for each class when associated with a particular ITEMSET.  

 

 

4.5.1.2 Text Categorisation Data 

Text categorization is a very effective way to organize enormous number of documents in 

Digital Libraries. Accurate classification of documents is able to not only enhance document 

search precision, but also facilitate browsing-by topic functionality. It is, nonetheless, difficult to 

obtain a satisfactory categorization accuracy compared to the corresponding results given by 

professional catalogers. This is due largely to the complexity of the pre-defined large-scaled 

category hierarchies that makes it difficult for learning algorithms to distinguish among 

categories.  

In measuring the quality of a text categorizer, the test data collection as whole is normally 

divided into parts according to documents categories (class labels). Each document is evaluated 

in turn to identify whether or not it belongs to each category and the process is repeated for all 

available categories. In addition, methods like macro-averaging or micro-averaging (Yang, et al., 

2002) can be utilized to summarize the values of recall (precision) for all available categories, 

aiming to derive the effectiveness of the classifier on the whole test data set. 

 

4.6 Datasets 
Datasets are collections of pre-classified documents. They are essential to develop and 

evaluate a TC system, that is, to train the system and then to test how well it behaves, when given 

a new document to classify. A dataset consists of a set of documents, along with the category or 

categories that each document belongs to. In a first step, called the training phase, some of these 

documents (called the training documents) are used to train the TC system, by allowing it to learn 

a model of the data. Afterwards, in a step called the test phase, the rest of the documents (called 
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the test documents) are used to test the TC system, to see how well the system behaves when 

classifying previously unseen documents. 

In the TC field, the most commonly used collections are the 20-Newsgroups collection, the 

Reuters-21578 collection, and the Webkd collection, for this work, we choose the Reuters-21578 

collection as well as UCI repository data to work on. 

 
4.6.1 The Reuters-21578 Collection 
 
 

One of the most widely examined text corpora from text classification is known as Reuters-

21578, which comes from the Carnegie Group, Inc. and Reuters, Ltd. It is a collection of 21578 

real-world news stories and news-agency headlines in the English language. The total dataset size 

is approximately 25 megabytes. Most of the stories are annotated with zero or more topics, 

according to their economic subject categories.  

Other (orthogonal) annotations categories are present, such as people, places, organizations 

etc. Each of the annotation categories can be chosen for a prediction task, but topics is preferred 

in existing literature because it is more abstract. People, places and organization may likely be 

found when the corresponding name is spotted into the story text. Typically a document assigned 

to a category from one of these sets explicitly includes some form of the category name in the 

document's text. (Something which is usually not true for topics categories.) However, not all 

documents containing a named entity corresponding to the category name are assigned to this 

category, since the entity was required to be a focus of the news story (David D. Lewis, 1997). 

Thus these proper name categories are not as simple to assign correctly as might be thought. 

All the documents contained in the Reuters-21578 collection appeared on the Reuters 

newswire and were manually classified. This collection is much skewed, with documents very 

unevenly distributed among different classes. The ModApté train/test split is generally used for 

classification tasks (Sebastiani, F., 2002). 

Each text may be given one, more, or zero category labels. A "negative" example for a given 

category is a text for which that category has not been assigned. Text with no category labels 

assigned act as negative examples for all categories. As it is apparent from Figure 4.7, the 

majority of stories (47%) are a negative example for all categories. Almost all of the remaining 

texts have exactly one topic (44%), and the remaining 9% has two or more labels. In summary, 

the data set is unbalanced towards negative examples. The correctness of so many unlabelled 

documents is under question, so restricting training set to documents with at least one label might 
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be a good choice. Figure 4.7 shows the frequencies of the most frequent categories. The most 

represented category is topic earn, which was assigned to 17% of the assigned documents. 

Top 20 categories of Reuter news in 1987-91
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Figure 4.7 Reuters Categories

 

 

 

 

 

 

 

Reuters-21578 dataset from David Lewis' page  (David D. Lewis,1997) used the standard 
"modApté" train/test split, the distribution of the documents per number of topics appears in the 
Table 4.4, here # train docs and # test docs refer to the Mod Apté split and # other refers to 
documents that were not considered in this split:  

 
 
 
two sub-collections are usually considered for text categorization tasks (Debole and Sebastiani, 

F., 2004a): 

• R10 – The set of documents belonging to the 10 classes with the highest number of positive 

training examples. 

• R90 – The set of documents belonging to the 90 classes with at least one positive training and 

testing example. 
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Besides being much skewed, many of the documents in this collection are classified as having no 

topic at all or with more than one topic.  

For the Reuters-21578 collections, from the original documents, the following pre-processing 

was applied: 

1. Substitute TAB, NEWLINE, RETURN and punctuation characters by SPACE. 

2. Substitute multiple SPACES by a single SPACE. 

3. Turn all letters to lowercase. 

4. Add the title/subject of each document in the beginning of the document’s text. 

5. Remove words that are less than 3 characters long. 

6. Remove the 524 SMART stopwords. Some of them had already been removed, because they 

were shorter than 3 characters. 

7. Apply Porter’s Stemmer to the remaining words. 

8. Feature weights were assigned using the ltc TF.IDF scheme (where l stands for logarithmic 

term frequency, t for logarithmic inverse document frequency, and c for cosine 

normalization). 

All the files for the processed datasets are text files containing one document per line. Each 

document is composed by its class and its terms. Each document is represented by a "word" 

representing the document’s class, a TAB character and then a sequence of "words" delimited by 

spaces, representing the terms contained in the document.  

 
4.6.2 UCI Dataset. 

Databases from UCI machine learning database repository (Merz, C., 1996), obtained from 

http://www.ics.uci.edu/_mlearn/MLRepository.html (UC-Irvine Machine Learning Data 

Repository), The University of California at Irvine (UCI) maintains a Machine Learning 

Repository of data sets for the development and testing of classification algorithms. It also 

maintains a Knowledge Discovery in Databases (KDD) Archive, an online repository of large 

data sets that encompasses a wide variety of data types, analysis tasks, and application areas. For 

information on these two repositories, see www.ics.uci.edu/~mlearn/MLRepository.html and 

http://kdd.ics.uci.edu. 
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4.7 Data Preprocessing. 
As it is widely accepted that the way that documents and queries are represented influences 

the quality of the results that can be achieved. Keeping this fact in mind, there are several 

proposals that aim at improving retrieval results. The main aim of pre-processing the data is to 

reduce the problem’s dimensionality by controlling the size of the system’s vocabulary (the 

number of different index terms). In some situations, aside from reducing the complexity of the 

problem, this pre-processing will also make the data more uniform in a way that improves 

performance. 

 
 
4.7.1 Stoplist Word Removal 

Definition 4.1 (Stoplist) Stoplist is a list of words that are most frequent in a text corpus 

and are not discriminative of a message contents, such as prepositions, pronouns and 

conjunctions. Examples of stop words are “the”, “and”, “about”, etc. Zipf’s law is used to 

formulate a rule (Rij79) stating that the most frequent and the least frequent terms are usually not 

significant. Stoplists is one of the ways to eliminate the most frequent terms. Elimination of the 

least frequent terms is performed at the stage of rule generation by specifying a minimum support 

threshold. A set of words in a stoplist is very domain-specific. For example, the word “computer” 

can be discriminative in non-technical documents, but becomes a stop word in a corpus where all 

articles are dedicated to some computer science topic. Some sources suggest predefined stoplists, 

for example (Frakes, W., et al, 1992).  

The stoplist used in the experiments contains 833 words and was obtained from the list in 

(Frakes, W., et al, 1992) by removing some words that turned out to be useful for the corpus and 

adding some others. The terms added are mostly those that are widely used in conversational and 

informal correspondence English, such as “I’m”, “isn’t”, “asap”, “thanks”, “sorry”, “can’t”, etc. 

The system provides a user with the interface to add/remove terms to/from the stoplist. Another 

way of satisfying Zipf’s law would be to use corpus statistics and discard, say, 10% of the most 

frequent words. But this approach does not take into account a domain knowledge and can lead to 

the loss of words that are frequent by themselves but still quite informative if considered as part 

of a phrase.  
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4.7.2 Stemming 

Definition 4.2 (Stemming) Stemming is the process of suffix removal to generate word stems. 

Although not always absolutely true, terms like “report”, “reported” and “reports” do not make 

big difference for the purpose of distinguishing messages containing trip reports, for example, 

and can all be replaced by their stem “report”. This increases support of the terms and thus avoids 

“losing” them when infrequent terms are filtered. Stemming also reduces feature space by almost 

50% (Frakes, W., et al, 1992). Several different methods for automatic stemming are described in 

(Frakes, W., et al, 1992). One of them, Porter stemming algorithm, is used in the system. 

 

4.8 VTC Analysis 
Before starting our experiments, many steps had been made in order to prepare the Reuters 

documents for modeling, we summarize it as follows: 

1. Documents were saved in txt file and indexed with an ID. 

2. Training documents, whose NewID ranged according to the number of  

Phases performed by VTC system are the following, 

1. Preparation collection. Since we are in a Supervised Learning approach, we have to let our 

developed system learn from training data. Therefore, a collection of already indexed documents 

is provided. 

2. Document representation. Documents are then processed and we find frequency for each term 

that occurs within the document. 

3. Classifiers learning. For each class we train a classifier using documents labeled with such a 

class. After the training, a classifier per class is ready. 

4. Testing/classification. Once the system is trained, we can either perform an automatic 

classification of new incoming documents or use an already labeled collection to test the 

performance of the trained system. 

Our developed system implements cross-fold validation, and, therefore, the weighting of features 

and other operations cannot be performed before knowing the split of documents into training, 

validation and test sets: 

• Training set: these documents are used for training the classifiers. 

• Test set: these documents are used to compute the final performance of the system. 

 The amount of data available is enough to consider a k-fold cross validation methodology in 

the evaluation of different configurations for the experiments carried out. A cross validation (a 
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big part of the collection for training and the rest for testing) is performed k different times using 

a different partitioning at each turn into training and testing sets. The overall results are computed 

as an average of the subsequent k measurements registered. 

 Thus, these sets are produced in N different partitions (N being the number of folders used) 

which in our case has been set to 5. At every turn  of the folding process, just one fold is used as 

test set, 1=5 of remaining folds as validation set, and the rest (4=5 of folds) is used as training set. 

 Once the system has been trained, it can assign labels automatically to new plain text 

documents. At each fold, values for different measures for the most frequent classes are given 

and the values of the averaged measures for the fold are shown. At the end, the averaged values 

of fold measures are computed.  

 For Reuters, which allowed the achievement of a high Accuracy using all 5485 training 

documents with VTC and SVM, Accuracy varies from 0.67 with one labeled document per class 

to 0.97 with 40 labeled documents per class for the VTC method. 

     In order to verify if the results obtained in the next section, 5-fold cross-validation tests were 

performed using all the datasets and the results were compared with the results obtained by each 

of the classification methods VTC, SVM, Naive Bayes, k-NN. The average is computed for the 

values of Accuracy for each of the 5 folds, and average Accuracy over all the folds for dataset 

and method. 

Providing type of ranking classifiers makes the effects of thresholding strategies explicitly 

observable. A well-known baseline approach to category ranking, when categorical supervision is 

available, is to train a classifier independently for each class, and then to rank categories based on 

the confidence and support of the output of different classifiers. 

The effects of thresholding strategies vary in different classifiers. In addition to varying cross 

validation randomization upon the given datasets, assigned for testing, it was noted that if two 

collections are statistically homogeneous, then the performance of a classifier should not vary 

appreciably between them; on the other hand, if the performance of a classifier changes 

dramatically when switching from a collection to a supposedly similar one, the differences 

between the collections is called for. Since the results of one classifier may be biased, we chose 

three different classifiers SVM, kNN and NBayes to evaluate the different versions of the Reuters 

collection. We chose these classifiers because they have fundamentally different classification 

algorithms, and we could closely control the conditions under which they were run, and support 

the same parameters and environment for testing same data sets. 
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4.8.1 VTC Experimental Results  

In order to test the performance of our approach, we implemented the VTC algorithm in Java 

environment. In our experiments we have used the "Reuters-21578, Distribution 1.0" corpus, 

currently the most widely used benchmark in text categorization research. Reuters-21578 consists 

of a set of 12,902 news stories, partitioned (according to the "ModApte' split we have adopted) 

into a training set of 9,603 documents and a test set of 3,299 documents. We have discarded the 

categories that have no training examples, leaving us with 115 categories with at least one 

training example. We have also discarded all the (training and test) documents that have no label 

(originally, these documents were meant to be considered legitimate negative examples for all 

categories). This leaves us with a training set S consisting of 7,775 documents and a test set IT of 

3,019 documents. The average number of categories per document is 1.08, ranging from 1 to 16; 

the number of positive examples per category ranges from 1 to 3964. 

 (VTC) were implemented in Java under Windows XP on a Pentium IV 3.2 Ghz, 896 RAM 

machine. Many studies have shown that the support threshold plays a major role in the overall 

classification accuracy of the set of rules produced by existing AC techniques (Liu, et al., 1998; 

Li, et al., 2001). The minsupp and minconf values were set to 3% and 30%, respectively, in the 

experiments. VTC algorithm and due to considering the term frequency in addition to applying 

AC thresholds, support and confidence measures, enhanced classification accuracy. 

From our experiments, we observed that classifiers derived when the support threshold was 

set between 3% achieved good classification accuracy, and following the experiments, the 

minsupp was set to 3%. The confidence threshold, on the other hand, has a smaller impact on the 

behaviour of any TC method, and it has been set in our experiments to 30%. The results indicate 

that our proposed algorithm outperforms the other text categorization methods in terms of 

accuracy, which measured according to equation 4.1. Five-fold cross validation was used to 

derive the classifiers and error rates in the experiments. 

The performance of association classification method is equal or sometimes higher than 

Bayes, KNN and SVM under lower feature numbers.  

We presented experimental results with (Reuters). Results showed that improvements in average 

accuracy are performing well. 
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Figure 4.8   

     From the chart, it is obvious that for dataset, the algorithms underlying the SVM method 

generally work very well on very different datasets. By considering average Accuracy values, one 

can see that the VTC method is the second best, following the state-of-the-art SVM method for 

some data sets. After considering that the VTC method is accurate classifier, another important 

advantage of the VTC method is that it require a very small amount of memory to build the 

model of the data (only one vector to represent each class) during the training and test phases, as 

Figure 4.9 shows, due to using the vertical data representation, and Diffset structure, while others 

need to have all the training documents in memory at the same time to build the model of the 

data. 

 

 
 Table 4.5: Values of Accuracy for each of the classification 

 
  methods VTC, SVM, Naive Bayes, k-NN, and 
Vector.  

Dataset Fold VTC SVM N-Bayes k-NN 
1 0.93641 0.9245 0.705 0.8741 
2 0.92131 0.8921 0.6727 0.8561 
3 0.9635 0.9759 0.9557 0.9134 
4 0.9596 0.9661 0.9459 0.8853 

 

 

 

 

 

  
  
Reuter 
21578 
  

   5 0.9611 0.9739 0.9531 0.8899 

 74



We used 5-fold cross-validation tests using all the datasets and compared the results obtained 

by each method. Table 4.5 contains the values of average Accuracy for each of the classification 

methods VTC, SVM, Naive Bayes, k-NN, and Vector, for each of the 5 folds, and average 

Accuracy over all the folds for each dataset and method as Figure 4.8 showed.  

We also Experimented VTC on six different data sets from the UCI data collection (10) 

conducted using stratified ten-fold cross validation. The learning procedure is executed n times 

on slightly different training data sets. 

Experiments on different data sets from UCI data collection (Balloon, Contact, Iris-Id, Led7, 

weather, and glass) were conducted. The experiments for both the CBA(Classification Based on 

Association) training step and our proposed algorithm with reference to the number of times 

ITEMSETs are merged in the training phase in each method. The MinSupp and MinConf used in 

the experiments were set to 5% and 40%, respectively The ultimate aim of the experiments is to 

compute the number of times ITEMSETs have been joined (merged) during each iteration in both 

CBA and our proposed method.  

Comparing VTC to CBA (merging number at each iteration )
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 Figure 4.10 Comparing VTC to CBA(merging numbers)

 

 It should be noted that we are only investigating the training phase (learning the rules) and 

not the classification step (building a classifier). Figure 4.10 shows the reduction of number of 

times ITEMSETs have been joined in each iteration for different classification benchmark 

problems, such as UCI data repository (Merz and Murphy, 1996) using the two approaches we 

consider, VTC and CBA. Particularly, we compute the number of times ITEMSETs have been 

merged at each iteration and for each data set we use. With our approach, the number of 

ITEMSETs that have been joined during each iteration is reduced significantly for Led7, Glassd, 
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Balloon, Contact, Iris-Id, weather, data sets. VTC has also reduced the number of joining in the 

training phase for the rest of the data sets.  
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4.9 Summary 
Text Categorization is a research area that has provided efficient, effective, and working 

solutions that have been used in a variety of application domains. Two of the reasons for this 

success have been the involvement of the Machine Learning community in TC, which has 

resulted in the use of the very latest Machine Learning technology in TC applications, and the 

availability of standard data collections, which has encouraged research by providing a setting in 

which different research efforts can be compared to each other, so that the best methods can be 

discovered. 

Currently, TC research is pointing in several interesting directions. One of them is to try to 

improve existing classifiers, by improving their effectiveness, or by making them faster to train 

or to test. Another is the attempt to find better representations for text. 

In this chapter, we investigated the problem of generating rules using AC technique after 

applying Diffset structure to data representation to classification data. The results are a proposed 

approaches for text categorization VTC, which may result in higher classification accuracy for 

future instances. Data sets from Reuters data collection was tested indicated that VTC algorithm 

is effective, consistent and has higher classification accuracy than other algorithms. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
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5.1 Conclusions 
AC algorithms proposed in the literature usually adopt horizontal association rule mining 

methods to discover frequent ruleitems. In order to accomplish this task, these AC algorithms 

generally use the Apriori candidate generation or Frequent Pattern Growth approaches. However, 

these frequent ruleitems discovery approaches require multiple database scans, which necessitate 

high CPU time and large amount of data access. Alternatively and in order to improve the 

efficiency of frequent ruleitems discovery in AC, we present in this thesis a fast intersection 

method, which extends the vertical association rule mining approach to handle text categorization 

benchmark problems. 

Our frequent ruleitems method has been used in the VTC algorithm, which finds rules in a 

single training data scan by performing fast intersections between frequent ITEMSETs TIDS-

LISTs. Using a TIDS-LIST for an ITEMSET is a good approach since the cardinality of the 

ITEMSET TIDS-LIST divided by the total number of the transactions in the training data gives the 

support for that ITEMSET, then using Diffset structure which is a vertical data representation that 

keeps track only on the difference in the TIDS-LIST of a candidate pattern from its generating 

frequent patterns. It drastically cuts down the size of memory required to store intermediate 

results. The initial database stored in the format, instead of the TIDS-LIST, can also reduce the 

total database size.  

  Experimental results have showed that VTC is performing better results in term of accuracy 

on text categorization data sets and other classification benchmarks, comparing to other TC 

methods as SVM, KNN, and N.Bayes. The association categorization technique based on 

frequent patterns builds the classification rules by frequent patterns in various categories and 

classifies the new text employing these rules. However, in most of the current association 

classification methods, shortage exists when it is applied to classify text data, that these methods 

ignore the information about word's frequency in a text. In this thesis we consider term frequency 

probability of words occurrence, and enhance performance than other association categorization 

methods and some current text classification methods, since term frequency information of text is 

neglected in other text classification methods, based on association rules our method can achieve 

better efficiency even without rule pruning. Support is used for filtering out infrequent rules, 

while confidence measures the implication relationships from a set of items to one another. 

This work also provided a comparison between the most used classification methods and other 

categorization methods. This comparison led to the conclusion that the use of AC can improve 
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the results obtained by the individual methods, even when they initially showed a good 

performance for some datasets, and that the improvement also depends on the difficulty level of 

the dataset that was used. 

As there are many AC algorithms proposed in the literature that adopt horizontal association 

rule mining methods to discover frequent ruleitems. These AC algorithms generally use the 

Apriori candidate generation or Frequent Pattern Growth approaches to accomplish this task. 

However, these frequent ruleitems discovery approaches require multiple database scans, which 

necessitate high CPU time and large amount of data access. Alternatively and in order to improve 

the efficiency of frequent ruleitems discovery in AC, we present in this thesis a fast intersection 

method, which extends the vertical association rule mining approach to handle classification 

benchmark problems. 

Our frequent ruleitems method has been proposed in the VTC algorithm, which finds rules in 

a single training data scan by performing fast intersections between frequent ITEMSETs TIDS-

LISTs. Using a TIDS-LIST for an ITEMSET is a good approach since the cardinality of the 

ITEMSET TIDS-LIST divided by the total number of the transactions in the training data gives the 

support for that ITEMSET.  

We compare the proposed algorithm with the CBA rule generation algorithm on six data sets 

from the UCI data repository in terms of database usage and run time. The proposed algorithm 

has shown good results, especially in terms of number of mergings in each iteration and 

execution times for almost all the data sets we consider. The physical memory usage is also 

reduced for most the data sets used in the experimental section. For future development, the VTC 

classifier approach will be tested and validated against further test data sets. This new approach 

of merging ITEMSETs can be used in most rule-based associative algorithms, to improve the 

execution times and to decrease the memory usage. 
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5.2 Future Work 
In AC technique, the numbers of produced rules are still large; as a result, there is a need for 

new pruning methods in order to decrease the number of generated rules by AC techniques. Also 

a very active research area concerns Web, that refers to a second generation of web-based 

services in general not only documents which, among other things, allows internet users to 

publish documents that they find interesting along with classification keywords. The goal of these 

keywords is to facilitate searches on related topics. The classification methods studied in this 

work may be successfully applied to improve these searches. Moreover the presence of term in 

categorized documents is considered, we might study possibilities of absence of terms in the 

classification rules. 

Usually, a classifier is constructed from labeled data records, and later is used to predict 

classes of previously unseen data as accurately as possible. Training and test data sets may 

contain noise, including, missing or incorrect values inside records. We should consider the 

importance of missing or incorrect values in test data sets in the prediction step. There have been 

some solutions to avoid noise in the training data sets. Naïve bayes for instance ignores missing 

values during the computation of probabilities, and thus missing values have no effect on the 

prediction since they have been omitted. Other classification techniques such as CBA treat them 

like other possible attribute values. However, the problem of dealing with noise in test data sets 

has not yet been explored well in AC. There are needs for developing processing methods that 

can handle test data with noise to effectively derive classifiers. 

Selecting appropriate parameters to favour one rule on another in rule ordering is crucial task 

since most AC algorithms use rule ranking as the basis to select rules while constructing the 

classifier. The VTC algorithm favour rules principally with reference to confidence, support and 

lower cardinality. When several rules have identical confidence, support and cardinality, our 

method randomly choose one of the rules, which in some cases may degrade accuracy. Since AC 

approach generates normally large sized classifiers, where rules can be in the order of thousands, 

so that, there may be several rules with the same support, confidence and cardinality, for future 

work we might propose a rule ranking technique, to improved the accuracy of the resulting 

classifiers. 

Another issue to be studied is the problem with Vertical format approach, when intermediate 

results of vertical tid lists become too large for memory, affecting the algorithm scalability. 
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APPENDIX A 

 

 
Datasets 
This appendix contains tables with the number of training documents, number of test documents 

and total number of documents per class for each dataset, for the train/test split used in my 

experiments. It also has a section about UCI data repository which we used within our work. 

 

 

Reuters-21578 collection: 
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SAMPLE UCI DATA 

 

YELLOW,SMALL,DIP,ADULT,F 

YELLOW,SMALL,DIP,CHILD,F 

YELLOW,LARGE,STRETCH,ADULT,T 

YELLOW,LARGE,STRETCH,ADULT,T 

YELLOW,LARGE,STRETCH,CHILD,F 

YELLOW,LARGE,DIP,ADULT,F 

YELLOW,LARGE,DIP,CHILD,F 

PURPLE,SMALL,STRETCH,ADULT,T 

PURPLE,SMALL,STRETCH,ADULT,T 

PURPLE,SMALL,STRETCH,CHILD,F 

PURPLE,SMALL,DIP,ADULT,F 

PURPLE,SMALL,DIP,CHILD,F 

PURPLE,LARGE,STRETCH,ADULT,T 

PURPLE,LARGE,STRETCH,ADULT,T 

PURPLE,LARGE,STRETCH,CHILD,F 

PURPLE,LARGE,DIP,ADULT,F 

YELLOW,SMALL,STRETCH,ADULT,T 

YELLOW,SMALL,STRETCH,CHILD,F 

BALLOON DATASE: 

YELLOW,SMALL,STRETCH,ADULT,T  
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