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Abstract 

   The conventional Inheritance concept which is adopted in the current Object 

Oriented Programming (OOP), where it is acting on "is-a" hierarchy model, has some 

defects. Where OOP is trying to be more close to the real life, it is still far from 

genetics principles. 

   Inheritance means that the child class can inherit, and get everything that is public in 

the parent class automatically. This process has solved many problems, but it does not 

simulate what is really happening in our life, where each object can gain just the 

needed traits from the parent class. That means the conventional inheritance is not 

selective and is generating identical objects.  

   While conventional Inheritance acts on “is-a” hierarchy model, the works that 

introduced the selective inheritance were also done on this model. 

   The inspiration from genetics has led to a selective inheritance acting upon a 

“Composed by” model rather than the “is-a” model; where in biology, the needed 

traits are selected from the Genome which holds all the aspect traits. Those traits are 

classified into several classes according to "Composed by" relation. 

   After evaluation, it has shown that the selective inheritance that acts on "composed 

by" model is better than the selective inheritance over “is-a” hierarchy model.  
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   Since Object Oriented Programming has been created, in which everything in a 

program is an object, which tries to mimic real life, a lot of concepts have been 

adopted, and one of the most important is the inheritance.  

 

   Inheritance means that the child class can inherit, and get everything that is public in 

the parent class automatically. This process minimizes the amount of duplicate code 

in an application by putting common code in a parent class and sharing it amongst 

several child classes. This process is applied on a “is-a” hierarchy model. 

 

1.1 Problem Statement 

   Although this concept solved many issues, there also were some defects. Existing 

Inheritance (classical) obligates objects to have the same behavior as the parent class 

(ancestor) because when they inherit from a super-class , they get all public attributes 

and behaviors from that super-class (even if we do not want some of those 

“things”)(A.Pillay,2007), and latter each object can add additional behavior to provide 

special action for specific needs. By this way, we can have many identical objects in 

the same class. But this does not happen in real life. Taking into consideration that we 

want to be as close as possible to real life, where objects can inherit selectively 

specific and needed traits (variables/methods) from one or more class as long as they 

are compatible, so that we can have different objects for each class. 

 

   Selective inheritance (S.Brinke, 2007, J.Bastian et al, 2005, S.Ghoul, 2011) offers 

many of the benefits of multiple inheritance and avoids name overlapping and 

repeated inheritance problems, and it limits the amount of information in each object, 

so we can focus our attention on the features which are relevant to our interest. 

 

Assume that we have two Classes: Fish class and Mammals class, where: 

 

 

 

 

 

 

 

Class Fish 

  { 

Live-In-Water (); 

Swim (); 

Lay-Egg (); 

Has-Fins (); 

Breath-By-Gills (); 

  } 

 

Class Mammals 

  { 

Live-On-Land (); 

Walk (); 

Give-birth (); 

Has-legs (); 

Breath-by-lungs (); 

Has-sound () ;   } 
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If we want to create a class Dolphin; which class should it inherit from? 

   By applying current OOP inheritance concepts, if Dolphin inherits from Fish and 

Mammals that means Dolphin will lay-egg () and give-birth () at the same time, or we 

should create a new class called Dolphin to place the required traits, but, why can’t 

Dolphin select and inherit just the needed traits (methods/ variables) from Fish and 

Mammals as shown in Figure (1-1). 

   By achieving this feature we can minimize the number of classes, by allowing the 

class to select and inherit specific and required traits from existing classes instead of 

building a new class that re-contains traits existing in other classes.  

 

 

 

 

 

 

 

 

 

 

 

Figure (1-1): Dolphin inherits selectively from Fish and Mammals classes 

 

 Several works have agreed on the importance of using selective inheritance concept 

(T.Oplustil, 2002, S.Brinke, 2007), and others have proposed the selective inheritance 

as a solution to use in their works (J.Bastian et al, 2005, N.Sakkinen, 2005, 

S.Herrmann, 2005). 

 

   To solve the overlapping properties in classical inheritance, semi-selective 

inheritance mechanism was suggested, and a simple syntax for it was proposed where 

the object can only select parts of what it inherits (T.Oplustil,2002),. 

 

   In Intel IA-32 Specification (J.Bastian et al, 2005), the term conditional inheritance  
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was used where a parent with the best fit is pre-determined to the object, not the 

object who selects the best fit. This will not make the object to be flexible and free to 

choose traits implicitly as we aspire. 

 

   Reverse inheritance, which is not supported in the current OOPLs, was proposed in 

(N.Sakkinen, 2005) as generalization inheritance. Author argues that it is preferable to 

be selective, because not all common features need to be exherited (generalized from 

subclasses to super-classes). 

 

   Another case and different approach of using selective inheritance was introduced in 

the dynamic view of methods in role class, a callout binding approach is used to bind 

methods from a role class to its base (S.Herrmann, 2005). The idea of this binding is 

to apply a selective inheritance, where mapping a feature in a callout means that it is 

shared between the role and the base, otherwise, it is invisible at the role. 

 

   Due to that importance, and that object oriented programming languages do not 

support the selective inheritance feature (S.Brinke, 2007), several studies have been 

done on Selective inheritance, the majority relied on the use of genetics concepts, but 

two different approaches were adopted: Selective inheritance at class level and 

selective inheritance at object level. 

 

   Selective inheritance at class was proposed in (T.Martin, 2004), which means, it is 

not the object which selects the desired traits, but the class restricts the traits which 

are not desired to be inherited by specifying whether the trait is inheritable or not. 

Here, the object will remains forced to inherit all the inheritable traits which mean 

that the identical objects problem has not been solved and the object does not have the 

permission to inherit only what it needs. 

 

   Selective inheritance and genetics principle have been used also in the multiple 

inheritance field (D.Dori, 1994), where instead of inheriting all features from all 

ancestors, the object will dynamically select any ancestor subset to inherit from. This 

approach is not working on feature selection, as the object will select its ancestors but 

it will inherit all their features. 
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   Selective inheritance at object level is the closest to the real life, where the object is 

more flexible, able and allowed to select/ reject required but not contradictory traits 

from the ancestor(s) inheritable traits. The explicit and coherent selection or rejection 

of any property in the class hierarchy is done according to control rules (J.Meslati and 

Ghoul, 1997, S.Ghoul. 2011). 

 

   Non-genetic approach was adopted by (Al-ahmed et al, 1999). Al-ahmad has 

addressed the issues related to instance variables and methods in specialization 

inheritance, and proposed solutions to inherit with maximum code reuse and 

minimum operation redefinition. The proposal has an efficiency problem and it needs 

support from the compiler. 

 

   Genetic approaches were adopted in several studies. (J.Meslati and Ghoul, 1997) 

introduced the concept of semantic classification. The work proposed the alternation 

concept and a genetic program associated with each class to constitute variants of 

class. This work uses the concepts of conventional classes, and the object may inherit 

from several classes.  

 

   The work (S.Ghoul, 2010) has proposed a model that suggests a platform for 

genome evolution and genotype definition process. Where the author has clarified the 

fundamental principles of the integrated model for bio-inspired systems, he 

demonstrated the relation between the genome and the genotype (Selected traits) 

where the latter is a genome with Enabled/Disabled traits. These traits are defined 

according to control rules.  

 

   In (S.Ghoul, 2011), the work has introduced several concepts that were not 

supported by current Aspect-Oriented paradigm. The author has also provided a 

coherent software design methodology that combines the Bio-Inspired approach 

together with the Object-Oriented, Aspect-Oriented, and Subject-Oriented 

approaches. The work has suggested an implementation for the Genome configuration 

(Coherent selected variations), but without modeling the relations between the genetic 

concepts; genome, genotype and phenotype, and without studying the control genes/ 

rules that govern the classification inside the genome and those which control the 

selection process. 
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1.2 Motivation 

From the previous studies, we state that several insufficiencies exist: 

- Current OOPL inheritance is acting in “is-a” hierarchy, this leads to several 

problems (exponentially increased ancestors, conflicts in attributes name 

…etc.). 

- Same objects of the same class ("whole" conventional inheritance or selective 

inheritance on class level). 

- Several classes exist to allow objects to collect their properties (Selective 

inheritance on object level). 

- Objects are complex and have unwanted properties that never used. 

- The actual bio-inspired approaches are general and not really modeled. 

 

   Recently, the importance of using bio-inspired (J.Blaylock, 2008, S.Ghoul, 2011, 

W.Braynen et al, 2007 and T.Otter, 2005) concepts began to spread and has led all 

works to be tended to it. 

 

1.3 Contribution   

 So, inspired from genetics, our work aims to deal with the previous problems by: 

- Replacing the “is-a” inheritance hierarchy model used in current OOPL by the 

“composed by” inheritance model induced by the Genome architecture; where 

there will only be one class “composed by other classes” that holds all 

properties associated to specific aspect instead of inheriting these properties 

from several classes and their ancestors. 

- Formally and deeply model the selective inheritance based on the “composed 

by” class model.  

- Studying the value of “composed by” selective inheritance model relative to 

the “is-a” selective inheritance model and the composition of the two models. 

- Use and develop the language extension proposed in (S.Ghoul, 2011) for the 

current OOPL to be able to implement our approach. 

This will lead to: 

- Reducing the number of classes. 

- Allowing different objects to be instantiated from the same class, which is a 

genetic class: the Genome. 
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- Discharging the object from not useful properties. 

   In Figure (1-1) we illustrated a very simple example to explain the actual general 

idea of selective inheritance. In Figure (1-2) we illustrate the selective inheritance 

using our approach. The figure shows a natural implementation in the flowers which 

are seen in many types and colors, where each flower inherits its traits from a 

"Genome" class called Flowers. The Flowers Genome is composed of several 

traits”Genes”: Colors, Petals, etc. Each trait in turn contains a set of alternatives 

“Allele”. One or more alternatives are selected from each trait; selecting a specific 

color from all colors alternatives, a specific petal shape from all petals alternatives, 

etc., but the selection process depends on several rules and controls and may be 

affected by other factors. But the "final gained traits" must be selected in a manner 

that ensures their compatibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1-2): Natural Inheritance Process in Flowers 

 

   Selective inheritance is one of the promising concepts in OOP. It can be represented 

by several approaches, but in our work, we aim to extend the benefits by getting 

closer to the real world and inspiring from the genetics concepts in modeling our 

model. 

 

So, our selective inheritance modeling is specified by: 
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 Genotype Program, to define wanted traits or the most important ones to be 

enabled. 

 Genotype Program Interpretation process that is governed by several rules to 

produce the genotype with wanted and coherent properties. 

 

   Our approach is at a conceptual level, we present as formally as it is required for its 

understanding. Its formalization is out of scope of our work. It may be developed 

when the idea is largely accepted. 

 

    In the following chapter, we will present the Geometric Shapes inheritance as a 

case study for the whole work. In chapter three, we will give an overview on selective 

inheritance approaches. In chapter four, we will present our genetic approach to 

inheritance modeling. In chapter five, we will show its scientific value and 

complexity. At last, in chapter six, we will present implementation issues, evaluation, 

and future work. We would like to point out that, all the figures will be presented 

using UML notation except those which we clarified their legends.  
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In this chapter, we will introduce a case study which will be used as a support to all 

our work. Our case study is to illustrate the idea of our approach and not to compute 

its value. 

 

In Geometry, Shapes are mainly used. These shapes are classified into several 

categories (polygonal shapes like square, curved shapes like circle, etc.); also shapes 

can combine between two categories (such as semicircle, crescent, etc.). Any shape 

category can also be either flat or solid (balls, cubes, cones, etc.).  

 

Each shape has its own properties (sides, angles, center, etc.) and its special functions 

(area, perimeter, etc.). The function for a particular shape has its own body that differs 

from other shapes function although they may have the same name; e.g. the area of 

the circle is different from the area of the square. 

 

To define any of these shapes using OOP, we must choose the correct class to inherit 

the appropriate properties and methods for that shape. 

 

So, if we want a Rectangle, we assume that: 

 

-We have a class called Polygons:  -Then, a class Rectangle can inherit from 

      the Polygons class, as follows: 

 

 

 

 

 

 

 

After that, in the main class, we instantiate rectangle1, rectangle2 objects from the 

Rectangle class, as follows: 

 

 

As we notice, Rectangle class has inherited all public properties from Polygons class 

and it can add new properties (such as Diagonal (), etc.). 

Class Polygons 

  { 

Length, Width, X, Y; // X,Y for center. 

Angle1, Angle2, Angle3, Angle4; 

Area (); 

Circumference (); 

Center (); 

  }; 

 

Class Rectangle: public Polygons 

  { 

Diagonal (); 

….. ; 

  } 

 

Rectangle rectangle1, rectangle2; 

 



 00 

rectangle1 and rectangle2 will have all public properties that exist in Polygons class 

and those which exist in Rectangle class. rectangle1 and rectangle2 are similar 

objects in terms of that they have the same properties and methods. 

 

Now, if we have been asked to create a circle Object, we will not be able to use the 

Polygons class, so we will assume that: 

 

- We have class called Curved:   -And a class Circle that inherits from it: 

 

 

 

 

 

 

 

As we notice, there are similar properties in Curved and Polygons classes. So, to 

apply the reuse feature, we can merge repeated properties into one super-class, let it 

be Shapes class, and then the two classes Curved and Polygons can be sub-classes 

from it, as in the figure (2-1). After that, by using Extension concept each subclass can 

add new properties and methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2-1): Shapes super-class and its sub-classes 

 

Because area () and Circumference () for Circle class are different from area () and 

Circumference () for Rectangle class; they are not implemented in Shapes class and 

Class Curved 

  { 

Radius, X, Y; // X,Y for center. 

Area (); 

Circumference (); 

Center (); 

  } 

 

Class Circle: public Curved 

  { 

Move (); 

… ; 

  } 

 



 01 

left for the child classes to implement them, this is known as specialization as shown 

in figure (2-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2-2): Using Specialization to Implement Methods in Subclasses  

 

Now, let’s create a Cone object. It needs different properties, it consists of a circle and 

a pyramid, but as we see these properties exist in the two classes Curved and 

Polygons. Cone class can inherit its properties from both classes, but it's still missing 

an important one which is the height which makes it a stereophonic. So it will add this 

new property. Also, if we want to create a Cube object, it will inherit from Polygons 

class and will add the height property. From that we conclude that a new class called 

Stereophonic must be created as a super class for Cube and Cone classes, But, what 

about Balls and Cylinders classes? 

 

With the growing need for new shapes and properties, new classes will be created, 

which makes the hierarchy more complicated, and the objects more complex; for 

example, what if circle1 object does not want the method MoveTo () which exists in 

the Curved class? 

Other types of shapes make the previous classification incomplete, where, Quinary is 

a shape that consists of five sides, two of them are parallel, while the rest are not, and 

it contains five angles. Assume that we have a class for each kind of polygons, how 

many one will we create? 
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Figure (2-3) shows one simple sample for the shapes hierarchy that may be created, if 

we also take into account that there is Parallelogram, non- Parallelogram and Flat 

shapes. 

 

Figure (2-3): sample on shapes hierarchy that may be created for Geometry. 
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SELECTIVE INHERITANCE APPROACHES 
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Because of the importance and the growing need for selective inheritance, there are 

a lot of studies in this area. Approaches are different and the topic has been analyzed 

from different aspects. But they always worked on the current inheritance “is-a” 

hierarchy model 

 

As is known, inheritance is a process that a child class gains its properties from a 

parent class. For that, some approaches have adopted the selection process at the class 

level, where the others have done it at the object level. In the following we will 

consider these two approaches. 

 

3.1 Selective Inheritance at Class Level 

(T.Martin, 2004) addressed some problems associated with computer languages, 

and he concludes that there must exist a more useful set of semantic entities which is 

capable of providing greater expressiveness and intuitiveness than is available from 

conventional computer languages. He provided a program and a method of managing 

entities in an Object Oriented environment in which parameters are selectively 

inherited from the parent into child responsive to persistent indications of the 

inheritability of these parameters stored in a non-volatile memory. 

Selective inheritance feature adopted in this work is that it does not require changes 

to an underlying database schema. Parameters in a parent entity, which is not desired 

to be inherited by a child entity, may be selectively restricted from being inherited. 

So, fields which are capable to be inherited are referred to as “gene” fields, while 

others are referred to as “non-gene”. This approach requires that the class is who 

determines which traits to be allowed\prevented to be inherited by a child. This will 

make the object confined to set of traits to inherit them; this will still lead to identical 

objects from the same class. Figure (3-1) shows how to use selective inheritance, in 

our case study, using this approach. 

 

By the approach, a Shapes, Polygons and Curved entities have been modeled. All 

three entities are assigned different types of Areas () and Circumference () methods. 

To avoid storing an empty or unused field on Curved or Polygons, the Shapes’ Area () 

and Circumference () fields may be defined as non-gene, while other fields X, Y and 

Center () that are common to a Shapes, Curved and Polygons entities may be defined 

as genes, and thus inherited into Curved and Polygons. Also, Curved and Polygons 

may have an Area () and Circumference () fields that may be a gene or non-gene. And 
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Shape’s non-gene fields are kept from being inherited into the Curved and Polygons. 

Through this selective inheritance concept, we avoid any programming errors or 

confusion that may happen when an entity has two Area () or Circumference (). 

 

   We conclude that, the parent (class) in this approach holds two types of parameters: 

inheritable and non-inheritable, where all the inheritable parameters will be inherited 

into child (object). Therefore the object does not have the ability to select only the 

parameters that it needs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3-1): The Use of Selective Inheritance in (T.Martin, 2004) Work, Using its 

own Notations. 

 

Another work (D.Dori et al, 1994) has adopted the selectivity at class level, but it 

was in the multiple inheritance field. In conventional multiple inheritance, a subclass 

(child) inherits from more than one super class (parent), and so, it will inherit from all 

the super classes ancestors - of course will inherit all the features of the super-classes 

and ancestor – and there is no option to select specific ancestors. When applying 

conventional multiple inheritance many problems may occur, including inheriting a 

feature that is a contradictory with other features, or inheriting repeated features. 

In this work, an embryonic class notion was used to develop a generalized approach 

that allows the class to dynamically select any ancestor subset. The embryonic class 

contains a default attribute called ancestor-list, which is a list of ancestors from which 

the class inherits its features. An implicit method "Formulate" accepts the ancestor-

list as a parameter and constructs the internal structure accordingly. With selective 

multiple inheritance, a class may inherit features from any number m of a given set of 

n ancestor classes. Many of this approach ideas were inspired from the inheritance in 
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biological systems where the observed features do not expose the entire genetic 

information. 

   This approach is convenient for multi- level multiple inheritance. So, by applying 

this on the case study that we have, we will be forced to use the special case that the 

author talked about, which is the “conventional multiple inheritance”; because all the 

n ancestors are active, and no selective inheritance is enabled. 

   So, To model Cone class using this approach, we see that, it must inherit from both 

Stereophonic-Poly and Flat-Curved classes which they also must inherit from their 

ancestors, as mentioned in Figure (2-3), the author said that we can use the model 

shown in Figure (3-2/b) which is the same as conventional multiple inheritance, 

instead of the model in Figure (3-2/a). 

 

Figure (3-2): Applying (D.Dori, 1994) Approach on our Case Study, Using its own 

Notations. 

 

   We conclude that, this approach is dealing with selecting a set of desired classes not 

with selecting desired features, beside that, the object is not the one who determines 

whom to inherit from and even, the object will still forced to inherit all the features 

from the ancestors' subset. Also, this approach is not convenient in all cases. 

 

 

3.2 Selective Inheritance at Object Level 

This approach is the most logical and preferable approach to selective inheritance, 

where the object can easily select the needed features from any class(s) that holds that 
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features. Therefore, the approach took two trends: genetic and non-genetic 

approaches. 

 

Non-genetic approaches 

 

 In (Al-Ahmed et al, 1999), the selective inheritance concept was used in a 

different perspective, where, implementation solutions were proposed to derive a 

subclass with reducing the redundancy in representation and reducing the number of 

methods redefinition. These solutions were by using suitable names for the class 

operations, using inherited names, based on pointer data members, or based on read 

and write operations. But an adequate solution that was proposed requires the use of 

new language construct to provide better support. So, the proposed solutions require 

support from the compiler. Where a new section will be added to the class that lists 

the data members to be suppressed followed by the relationships between the data 

members to be used for the generation of correct code for the read and write 

operations. 

   Applying this approach on our case study, is to let square class be able to inherit 

from Rectangle class, with maximum code reuse and minimum re-definition, 

although they have a different constraint, where in square length = height, as shown 

in figure (3-3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3-3): Applying (Al-Ahmed et al, 1999) Approach on our Case Study 
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Class Rectangle 

{ // Defineing class Rectangle 

Public:  

Rectangle (float len, float wid): length (len), width (wid) {} 

Virtual void NewLength(float len) {} 

Virtual void NewWidth(float wid) {} 

……. 

Rename: //an adequate mechanism to re-name the width & length into side.  

Length Side, NewLength NewSide … 

 

Private: 

Virtual Length; 

Virtual Width; 

}; 

// Class Square that inherits from Class Rectangle. 

Class Square: Protected Rectangle 

{ 

Public: 

Square (float side) Rectangle (side,side){} 

Rectangle:: NewLength; 

… 

Protected: 

Void NewDimensions (float len, float wid)  

{ 

If (len== wid) WtLength(len); // using a proposed solution based on 

//read & write operations. 

Else // error message 

} 

Suppress: 

Width< Side = Width, Side> 

// new section added to list data members to be suppressed followed by 

//the relationships between them to be used in correct code generation. 

}; 

 

 

 

   The Rectangle and Square classes are defined as the following: 

   In conclusion, this study did not meet the real objective of the selective inheritance 

which is the explicit and coherent selection or rejection of any property in the class 

hierarchy according to some rules.  

 

Genetic approaches 

 

These approaches are inspired from biological systems especially the genetic 

process. Meslati and Ghoul (J.Meslati and S.Ghoul, 1997) have proposed a new 

approach to classification which they call semantic classification. In conventional 

classification, the class groups objects that have similar structural and behavioural 

properties. The similarity between objects is based on their syntactic description as 
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well as on their underlying semantics, which include all abstract features beyond 

physical considerations. This kind of classification is not always convenient where 

objects that have slightly different profiles must belong to different classes. 

By semantic classification, authors mean the possibility of making objects which 

have different profiles (i.e. properties) but identical underlying semantics, instances 

of the same class. The difference among objects will be achieved by choosing 

appropriate properties before creating those objects.  

 

   Since a semantic class contains all possible properties of all varieties belonging to, 

a problem may arise if some of these properties are incompatible or exclusive. Thus, 

selecting the properties for an object is necessary and must take into account those 

incompatibilities. To deal with this situation, authors described the alternation of 

properties or classes. Properties alternation is a concept that deals with variety of 

properties, whereas classes’ alternation is an intermediate form of specialisation 

between simple specialisation and multiple one. 

 

Alternation of properties mainly consists of defining in the same class one or more 

properties in multiple versions. Alternatives of the same property are exclusive. A 

given object cannot possess more than one version. Thus a definition of properties 

that are different for objects of the same class is possible. We distinguish alternation 

of structures and alternation of behaviours. 

Figure (3-4): Applying Semantic Classification on our Case Study 

 

   Figure (3-4) shows how to apply this approach to our case study. With semantic 

classification, the same hierarchy of classes in figure (2-3) may be reduced to only 
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Genetic Program Rectangle 

{   // has selected the needed attributes: 

X, Y; // to locate rectangle center on X and Y axis. 

Width, Height;  

Angles; 

Area () {Width* Height ;} // has selected one alternative from the area function's alternatives list 

Fill-Color () {Red ;} // has selected one alternative from the Fill-color function’s alternatives list 

Circumference () {2*(Width+ Height)}; // has selected one alternative from the Circumference        

//function’s alternatives list 

} 

 

Shapes Rectangle R    

// Where R is developed from Shapes Genome by the Rectangle Genetic Program. 

one class: Shapes which holds all possible properties for varieties of objects. Here an 

alternation appears in the properties red,.., and Blue. Fill-Color is the name of the 

alternation. Thus the class Shapes contains objects that have slightly different 

structures but the same underlying semantic. 

       To derive a Rectangle class from the model in Figure (3-4), it may be as the 

following: 

And, 

   

The determination of properties that an object of the class holds is based on the 

interpretation of a program associated with that object. This program is called 

genetic program. It is composed of a set of rules that reject or select properties from 

different classes of the Is-A hierarchy resolve conflicts at the same time. 

 

   In conclusion, (J.Meslati and S.Ghoul, 1997) work had reduced the number of 

classes where objects that are semantically equivalent but have different syntax are 

belonging to same class. It also proposed a resolution to solve names conflict 

situations by using alternation concept. But this approach did not propose a full bio-

inspired model. The semantic classification was done on “is-a” hierarchy model 

where we aim to work on “Composed by” model. Also, the genetic relations 

between genes (features) are not modeled. 

The closest works to our approaches are (S.Ghoul, 2010) and (S.Ghoul, 2011). 

Where, in the first work, several general principles to model the genetic selective 

inheritance were proposed, our work is mainly a development and formalization of 
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Set: (Aspect Class= Implementation, Order=first, 

state =experimental) 
{// shared methods 

  Set () = (scope=shared) {// create set source code}; 

  ~ Set () = (scope=shared) {// destroy set source 

code}; 
 

//Multi-defined methods: static (st) & Dynamic (Dy) 

//behavior (Bh) 
Void initialize ():(Bh=st){ rear = 0}; 

Void initialize ():(Bh=Dy){ rear = null}; 

 

Bool Empty (): (Bh=st){return (rear = 0)}; 
Bool Empty (): (Bh=Dy){return (head= null)}; 

… 

} // End Set: Implementation 

Set: (Aspect Class= Implementation, Order=last, 

state =correct) 
{// shared methods 

  Set () = (scope=shared) {// create a set}; 

  ~ Set () = (scope=shared) {// destroy a set}; 

 
//Multi-defined methods: static (st) & Dynamic (Dy) 

//behavior (Bh) 

Void initialize ():(Bh=st){ rear = -1}; 
Void initialize ():(Bh=Dy){ rear = null ; head=null}; 

 

Bool Empty (): (Bh=st){return (rear = = -1)}; 

Bool Empty (): (Bh=Dy){return (head = = null)}; 
 

… 

} // End Implementation 

some of these general guidelines. This work is a general platform for the genome 

modeling principles, where the genotype (class variants) is a genome with 

Enabled/Disabled traits. After that, objects are instantiations of those variants. 

 In our work we will concern and develop only two of the principles introduced in 

(S.Ghoul, 2010) work: 

o Each artificial entity is a Phenotype developed from a Genotype of a Genome. 

o The nature of a Genotype is completely operative. 

 

The work (S.Ghoul, 2011) proposed a bio-inspired approach to support Aspect-

Oriented paradigm. The author has used several genetics concepts including Genome, 

Genotype, and Phenotype to support the Aspect-Oriented design. According to that, 

the author proposed an extension to OOPL. This extension allows the definition of: 

- Different versions of data and methods in the same class. 

- Versions compatibility rules, and  

- Selective inheritance (definition of configurations). 

The following examples (S.Ghoul, 2011) illustrate these extensions. 

- Aspect Class Implementation (Several versions support method multiple 

definitions). 

Each aspect class interface may be implemented by several aspect class 

implementations (versions). Each implementation (as seen below) supports method 

multiple definitions (source code).  

 

 

 

 

 

 

 

 

 

 

 

- Aspect Class Control  

An aspect class control is composed of logical assertions ensuring the coherence of 

aspects inside an aspect class interface, and in the whole  
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Queue: (Aspect Class= Configurations) 

{ 
 Config: (Name=Default){}; 

 

 Config: (Name=CL_Aspect) 
  { 

    Require {(View=CL)}; 

  Imply {(DataStr=Persistent)}; 

}// End CL_Aspect 
 

 Config: (Name=LL_Aspect) 

  { 
    Require {(View=LL)}; 

  Reject {Size, Full()} 

}// End LL_Aspect 

}// End Queue: Definition 

aspect class interfaces hierarchy (the whole design) 

 
 

- Aspect Configurations 

An aspect class configuration includes different configurations of object by 

composing aspects. Each configuration ensures the generation of objects with the 

aspect it encompasses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  So, this work uses the precedent extensions in its implementation. In our work we 

will develop these extensions 

Set: (Aspect Class= Control) 

{ 
Type 

 { 

Aspect Class = <{interface, implementation, control, configuration, global, client}, 1>}  

 Scope  = <{shared, sparated},1> ; 
 Bh = <{st,Dy},1> ;  // Defining behavior alternatives. 

 Datastr  = <{st,Dy,Temp,pers},2> ;  // Defining Datastr alternatives. 

 Order  = <{first, last, experimental },1> ; // Defining Order alternatives. 
 State  = <{correct, experimental },1>; // Defining State alternatives. 

 } 

Exclude // Defining the Exclude relations 
 { 

 (Bh=Dy) <¬>  (Bh=st); 

 (Datastr=st) <¬> ( Datastr= Dy) 

 (Datastr=Temp) <¬> ( Datastr= Pers); 
} 

Imply // Defining the Imply relations 

 { 
 (Bh=Dy)  (Datastr = Dy); 

 (Bh=st)  (Datastr = st); 

} 

Default  // Defining the Default relations 
 { 

 (Bh=st), (Datastr = st, Temp), (state=correct), (order= last) 

} 
}// End Set: Control 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FOUR 

 

A GENETICS-BASED APPROACH TO 

INHERITANCE MODELING  
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As we mentioned, in our approach to inheritance modeling we aim to be as close as 

possible to the real world. For that, we inspired from the genetics processes which are 

the basis of living organisms. This was to solve many problems that object oriented 

languages did not solve, or to modify some concepts to be more efficient in use. 

 

Selective inheritance, which is one of the inheritance properties, that is not 

supported by any of object oriented languages, is offset by the genetic genotyping 

process which is the main process in producing organisms with different 

characteristics in our real life. Both, selective inheritance and genotyping are the 

processes of selecting desired traits and functions from a set of all possible 

characteristics. 

   In our work, we will develop and formalize in depth the genetic concepts introduced 

in (S.Ghoul, 2010).Our study is limited mainly to the two following principles:  

o Each artificial entity is a Phenotype developed from a Genotype of a Genome. 

o The nature of a Genotype is completely operative. 

 

4.1 Some New Definitions 

   In the following Table (4-1), we will present some basic conventional OO concepts 

and their new redefinitions in our work: Class, attribute, method, composition, 

inheritance, and instance. 
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Genetics-Based Concepts Conventional OO Concepts 

 

 

 

We use the semantic class definition introduced 

in (J.Meslati and S.Ghoul, 1997), where the 

semantic class groups objects which may have 

different structural and behavioural properties. 

But each object owned properties are subset of its 

class properties.  So, a semantic class groups 

together objects holding subsets of its properties 

Figure. The following definition shows its 

syntactic structure. 

 

Class class-name 

{ 

   // attributes alternative definition 

 

   // methods alternative definition 

} 
 

In addition, we have added some new concepts as 

is it follows: 

 
Class class-name 

{  

   // attributes alternative definition 

   // methods alternative definition 
 

   Control Rules 

//definition of rules that govern the classification. 

 
// definition of rules that control the coherent 

selection of object properties from the 

alternatives.          

}  

A class is a set of objects that share 

common attributes. In other words, the 

class groups objects that have similar 

structural and behavioural properties. 

Objects that have slightly different 

profiles must belong to different classes. 

The following definition shows its 

syntactic structure. 

 

Class class-name 

{ 

   // attributes definition 

 

   // methods definition 

} 
Class 

Each attribute has a set of alternative definitions. 

An object may hold coherent alternatives from 

each “needed” attribute. It is defined as it follows: 

 

 Class class-name 

{ 

// Attributes: 

Atti= alternatives {alt1,alt2… altn}; 

//Methods  

} 

It is a specification that defines a data 

structure of an object. Values of attributes 

form an object state. Each attribute is 

defined by a single data structure as it 

follows: 

Class class-name 

{ 

// Attributes: 

Date-Typei  atti; 

.. 

// Methods: } 

Attribute 
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Each method (function) has a set of alternative 

definitions.  An object may hold coherent 

alternatives from each “needed” attribute. It is 

defined as it follows: 

 

Class class-name 

{ 

// Attributes: 

… 

//Methods: 

 Methi()= alternatives {met1,met2… metn}; 

} 

Subroutine (or function) associated with a 

class. In other words, it is an action which 

an object is able to perform. It is defined 

by a single way as the following: 

Class class-name 

{ 

// Attributes: 

 

// Methods: 

Date-Typei  methi(){ // method body} 

} 

Method 

A semantic class definition may be composed of 

other semantic classes’ definitions. An instance of 

this class may hold only selected attributes and 

methods from selected "composed by classes". 

So, It may not include a "composed by" class 

components at all, include some part of it, or 

include it completely (with one selected 

alternative for each component). 

The following example illustrates this definition.  

 

class transportation 

{ 

class aerial   {   }; 

class maritime  { }; 

class ground  {  } 

… 

} 

 

The class Transportation definition is composed 

by the classes: aerial, maritime, and ground 

definition; which is different from the attribute 

composition concept in the conventional object 

oriented paradigm.  

Each instance may hold its properties selected 

from any one of these classes, i.e. the object Ti 

defined as it follows: 

 

Composed class uses instance variables 

that refer to other objects (simple or 

composed). Each class instances holds 

these "referred to" objects. The following 

example illustrate a “has a” relationship 

in pseudo code: 

Class brick { .. } 

class wall 

{ 

 // Attributes: 

    Brick brick1, brick2; 

  // Methods: 

    wall() // Constructor 

    { 

      this.brick1 = new brick(); 

      this.brick2 = new brick(); 

      } 

} 

 

As we can see, “wall” contains a number 

of brick attributes. We want each of these 

attributes to be a “brick” object. To do 

this, we simply instantiate them within the 

constructor of the “wall” class. Each of 

these brick classes will function as a 

normal class but also as an attribute of 

“wall.”  

Composition 
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Transportation  selectioni Ti  

 

Holds properties defined by the selection 

Selectioni 

It is based on a selective inheritance program that 

selects only needed attributes/methods from a 

specific class and its "composed by" classes. This 

selection program replace the "Is a" relation, 

which define implicitly a total inheritance, 

whereas this program defines an explicit and 

restrictive inheritance, Figure (4-1/b). 

It is based on the “Is-a” relation where a 

subclass inherits all the attributes and 

methods of its parent class(s) Figure (4-

1/a). Inheritance 

An object (O) may be created from a semantic 

class (C), according to an explicit program (P) 

that selects its needed attributes and methods 

alternatives from (C).  According to that, objects 

created from the same class may differ from each 

other. Example:  

 

Transportation  selection1 T1 // aerial 

Transportation  selection2 T2 // maritime & 

aerial. 

An object is a value of a class, called an 

instance of the class and has the 

behaviours of its class. According to that, 

all objects instantiated from a class are 

similar; where they all will have the same 

structure (attributes /methods). 
Instance 

Table (4-1): Comparison between Some Conventional OO and Genetics-Based 

Concepts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4-1): Inheritance Definition in Conventional OO and in Genetics-Based 

Model. 
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4.2 Each Artificial Entity is a Phenotype Developed from a Genotype 

of a Genome 
   In the following we will develop a Genome and a Genotyping models from the 

selective inheritance point of view. 

Genome 

The genetic patrimony, genome, of a species includes the definition of all its 

possible characteristics (organic, functional, and behavioral) along with the 

information controlling their coherence (S.Ghoul, 2010).  

 

 

 

 

 

 

 

 

Figure (4-2): Genome Model, Versions of Characteristics. 

 

Each characteristic might be developed in alternative ways. Each way constitutes a 

version of this characteristic Figure (4-2). So, a characteristic is defined by an allele of 

genes; each one is responsible for the development of a version. The physical 

development and phenotype of organisms can be thought of as a product of genes 

interacting with each other and with the environment. 

We detail the above general Genome model Figure (4-2), by the following 

“composed by” inheritance Modeled specification. 
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Genome= {Speciesi, Species -Control-Genes}, i=1 to n. 

    // Genome ”Semantic Class” is Composed of a set of Species “Semantic Classes” 

controlled by Species Control Genes. 

 

Speciesi = {Specie-Architecturej}, j=1 to n. 

    // Specific Species is composed of a set of Specie Architectures. 

 

Species-Control-Genesj = {AreDominantSpecie}. 

    // To specify the dominant Specie inside the Genome. 

 

Specie-Architecturej= {Specie-Architecture-Genesk, Architecture-Control-Genes}, k=1 

to n. 

    // Each Specie-Architecture composed of a set of Specie-Architecture-Genes that are 

……controlled by Architecture Control Genes. 

 

Specie-Architecture-Genesk= {Organy, Organ-Control-Genes}, y=1 to n. 

    // Each Specie-Architecture-Genes is composed of a set of Organs that are controlled 

…..by Organ Control Genes. 

 

Architecture-Control-Genes= {AreImpliedInArchitecture, AreDefaultInArchitecture,   

AreExcludedFromArchitecture}. 

    // The set of genes that ensure the compatibility inside a Specie-Architecture. 

 

Organy= {Phylogenies-Genes, Ontogenesis-Genes, Epigenesis-Genes, POE-Control-

Genes}. 

    // Each Organ “Attribute” is composed of a set of POE Genes that are controlled by 

POE--Control Genes. 

 

Organ-Control-Genes= {PerformSameFunctionOrgans, AreImpliedOrgans, 

AreExcludedOrgans} 

    //The set of Control genes that ensure the compatibility between Organs. 

 

Ontogenesis-Genes = {Organ-Definition-Genes, Organ-Functions-Genes, Organ-

Behavior-Genes, Ontogenesis-Control-Genes}. 

    // The set of genes that specify the definition, function and behavior of an organ. 

 

POE-Control-Genes= {AreRelatedToEvolution, AreRelatedToConstruction, 

………………………..AreRelatedToLearning}. 

    // The set of control genes that classify the genes according to POE axis. 

 

Organ-Definition-Genes= {Coding-Genes, None-Coding-Genes}. 

     // Definition genes is composed of two sets: Coding and None coding. We concern 

……about the Coding genes. 

 

Coding-Genes= {D-Genem}, m=1 to n. 

     // The set of genes that construct the Organ. 

 

Organ-Functions-Genes= {F-Geneq}, q = 1 to n. 

    // The set of genes that construct the Organ Functions. 

 

Organ-Behavior-Genes= {B-Gener}, r = 1 to n. 

    // The set of genes that construct the Organ Behavior. 
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Ontogenesis-Control-Genes= {AreRelatedToAspect, AreExclusive, AreImplied, 

AreDominant, AreGenotype}. 

    //The set of Control genes that ensure the compatibility between definitions, functions 

…..and behaviors of an Organ. 

 

D-Genem= {D-Alternatives}. 

    //Each Organ Definition Gene has a set of alternatives to be chosen. 

 

F-Geneq= {F-Major-Alternatives, F-Sub-Alternatives}. 

    //Each Organ Function Gene has two sets of alternatives: Major set to choose the 

.......main alternative from it and a Sub set to choose from it if needed. 

 

B-Gener= {B-Major-Alternatives, B-Sub-Alternatives}. 

    //Each Organ Behavior Gene has two sets of alternatives: Major set to choose the 

.......main alternative from it and a Sub set to choose from it if needed. 

 

AreRelatedToAspect= {(D-gene, F-gene, B-gene); O1: Organ |  D-gene, F-gene, B-

gene O1} 

    // AreRelatedToAspect genes: link together the characteristics that are related to a 

same aspect. For example, the characteristics related to male sex aspect, the 

characteristics related to female sex aspect, etc. 

 

Are Exclusive= {gene1: AreRelatedToAspect; gene2, gene3: Specie-Architecture-

Genes1; alt1, alt2: ALTERNATIVES | alt1 <> alt2 if alt1, alt2  gene1   gene2 <> gene3 

if gene3 contradict gene2}, where <> means: exclude, ALTERNATIVES: is any of the 

gene alternatives sets. 

    // These genes identify the characteristics that are exclusive. A characteristic 

excludes another if they are alternatives (elements of the same alternation) or they are 

incompatible. For example, the color blue excludes the color green when they concern 

eyes (elements of the same alternation) and the beard excludes the female sex 

(incompatible). 

 

AreImplied= {gene1, gene2: AreRelatedToAspect; ph: PHENOTYPE | gene1   gene2 

if gene1 ph   gene2  ph}, where PHENOTYPE is the physical instance of the 

Genotype, and   means: Imply. 

    // A characteristic implies another if its presence in a phenotype implies the presence 

......of the other. For example, human male sex implies beard and the gruff voice etc. 

 

AreDominant= { f1 :N  ALTERNATIVES    

f 2: X  Coding-Genes, 

f 3: Y  Organ-Functions-Genes,  

f 4: Z   Organ-Behavior-Genes 

| altn  ALTERNATIVES; genex   Coding-Genes;  

geney   Organ-Functions-Genes; geney   Organ- Behavior-Genes 

Dom f1=1..n, Dom f 2=1..X, Dom f 3=1..Y, Dom f 4=1.. Z } 

// AreDominant. This relation exists between exclusive characteristics. Dominate orders 

them according to their importance and the most dominant must be selected for a 

phenotype. If, for any reason, this is not possible, the next (in dominance) is 

chosen. For example, the dominance relation between the colors of eyes may be 

specified as {black, brown, blue, etc.}.  
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To simplify this model, Figure (4-3) introduces a tree which explains the genome 

structure. 

From this model Figure (4-3) and the formalization, we suppose that the Genome is a 

Class that consists of all existing species (Humans, Animals, Plants, Microscopic… 

etc), beside the species-Control-genes to ensure that one species will be selected. 

Each species has its own architecture (construction genes, control genes…) and 

architecture-Control-Genes that classify each architecture with its correct related 

genes. Each Specie-architecture-Gene contains a list of all organs that are related to 

that Specie-architecture and organ-control-genes that control this organs 

classification. In each organ, there are lists of its Phylogenies, Ontogenesis and 

Epigenesis genes beside the POE-Control-Genes that ensure the correct classification 

so that Phylogenies-genes will contain genes responsible about evolution, 

Ontogenesis-genes will contain genes responsible about construction and finally, 

AreGenotype= {gene1… genen: AreRelatedToAspect; g: GENOTYPE | gene1  …   

genen    g}, where GENOTYPE is the set of enabled coherent genes. 

    // This relation links together genome characteristics that define a genotype.  

 

Where: 

 

Gene = {Gene-Non-Coding-Information, Gene-Coding-Information} 

    // Each Gene Consists of two information sets. 

 

Gene-Non-Coding-Information = {priority, selection state, activation state}. 

    // the set of information that specify the gene state. 

 

Priority = pri, pri Integer 

    // Priority identifies the gene order in execution or selection, where dominant gens 

……have the first priority. 

 

Selection state = (E) enabled | (D) disable|() not applicable. 

    // To specify the gene state during selection process. 

 

 

Activation state = (A) active | (S) silent. 

    // To specify whether to Activate the Gene or to keep it Silent. 

 

Gene-Coding-Information = {organic instructions, functional instructions, control 

instructions}. 

    // specifying the instructions that determine whether the Gene is for control or 

……construction. 
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Figure (4-3): Genome Structure. 
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Epigenesis-genes list will contain genes responsible about learning and immune. The 

part that concerns us is the Ontogenesis-genes. It contains all genes that construct the 

organ which are: Organ-Definition-Genes, Organ-Function-Genes and Organ-

Behavior-Genes. Each gene consists of alternatives to select one from them, but the 

overall chosen alternatives must be coherent and compatible.  

 

Genotype 

   Genotype is the genetic makeup, as distinguished from the physical appearance 

(phenotypes), of an organism or a group of organisms. This makeup is a combination 

of alleles of genes that determines a specific characteristics or traits. The chosen 

characteristics must be coherent. So, to ensure and control this coherence, the controls 

genes in the genome establish and manage dependencies relations between 

characteristics. 

 

   In the following we will introduce the dependencies relations for the most common 

identified control genes: 

o AreExclusivegenes: These genes ensure the exclusion between Enabled and 

Disabled genes. The genotype, being coherent by construction, holds normally non 

exclusive organs and functions. However, some specific evolution states may 

necessitate exclusion between organs and between functions. This is defined by the 

following rules: 

  

 Enable  organ/definition/function/behavior genes <>  

Enable organ/definition/ function/behavior genes 

 Disable  organ/definition/function/ behavior genes <> 

 Disable organ/ definition/function/ behavior genes 

 

Enabling/Disabling an organ/definition gene may exclude enabling/disabling other 

organs/definition genes which are, for the evolution semantic, needed to be excluded. 

Enabling/Disabling a function/behavior gene may exclude enabling/disabling other 

functions/ behavior which are for the evolution semantic, needed to be exclusive 

(replacement, incompatibility . . .). 
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o AreImpliedgenes. These genes ensure the implication between Enabled and 

Disabled genes. This is supported by the following rules: 

  

 Enable  organ/definition/function/behavior genes   

Enable organ/definition/ function/behavior genes 

 Disable  organ/definition/function/ behavior genes  

 Disable organ/ definition/function/ behavior genes 

       

Enabling/Disabling an organ/definition gene may imply enabling/disabling others 

organs/definition genes (which are related)   and their functions genes. 

Enabling/Disabling a function/behavior gene may imply enabling/disabling others 

functions/behavior genes (with which it collaborates) and their organs definition 

genes. 

 

Phenotype 

A phenotype is an instance of a given genotype Figure (4-4). In the artificial world, 

several phenotypes may be instances of the same genotype. The source code of 

Windows Vista and that of Windows XP are two genotypes of Windows Species. All 

the executable codes produced from the source code of Window Vista are phenotypes 

of this genotype, and all the executable codes produced from the source code of 

Window XP are phenotypes of this genotype.  

 

 

 

 

 

 

 

 

 

 

 

Figure (4-4): Genome, Genotype and Phenotype 
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4.3 The Nature of a Genotype is completely operative 

In this section we present the genes' relations model of the Genotype as shown in 

Figure (4-5), see (S. Ghoul, 2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure (4-5): Genotype 

The genotype Figure (4-5) consists of:  

- Organic genes offering only one way (allele) for developing each organ, and 

generating a phenotype, 

- Functional genes offering only one way for each organ function and behavior, and  

- Control operators, as those of a species but without the genes controlling the 

species evolution and genotype definition. All the genotype genes are silent, except 

those controlling the phenotype initialization (Phenotype Init process). 

In our work, we explicitly defined a genotype as it follows: 

 

 

 

 

 

 

 

 

 

We must specify the name of the wanted Specie, the wanted Architecture and we 

Genotype Def genotype-name  

{  

   Specie-Name; 

 // we specify a Specie. 

   Specie-Architecture; 

 // we specify the Architecture. 

   Enable <Organs definition genes, functions definition genes> 

 // we specify what to be enabled. 

   Disable <Organs definition genes, functions definition genes> 

 // we specify what to be disabled. 

} 
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select required organs characteristics and reject undesirable organ characteristics from 

a genome, Where: 

Enable: Allows a phenotype of this genotype to hold a set of explicitly enumerated 

organs and functions definition genes. This set is implicitly augmented by the 

genetically implied genes. 

Disable: Allows a phenotype to lose a set of explicitly enumerated organs and 

functions definition genes. This set is implicitly augmented by the genetically implied 

genes. The disabled properties are inactive for that phenotype. 

 

The interpretation of a genotype definition is mainly supported by the control genes 

which ensure the coherence of the definition process.  

   The interpretation of the genotype definition enforces the following rules: 

 

 Initial state: Elements and coherence  

    

R1. The Genome holds the set of all Specie-Architectures. Each Specie-Architecture 

holds an initial set of all its organs with their definitions, functions, and 

behaviors genes generated genetically at Specie selection. 

 

R2. Let EnabOrg, EnabDef, EnabFun and EnabBeh be, respectively, the lists of the 

organs, organs-definitions genes, functions genes, and behaviors genes to be 

enabled.  

EnabOrg   ← Organs (imposed in Enable clause); 

EnabDef   ← Organs-definitions (imposed in Enable clause); 

EnabFun  ← Functions (imposed  in Enable clause); 

EnabBeh  ← behaviors (imposed  in Enable clause); 

 

The coherence of EnabOrg, EnabDef, EnabFun, and EnabBeh is checked 

separately because there is no Exclude relation between Enabling Organs, 

Enabling Organs-definitions, enabling functions and enabling behaviors. This 

coherence deals especially with: 

(1) The existence of the Organs, Organs-definitions, functions and behaviors in 

the associated Specie-Architecture, and, 

(2) The verification that the elements of each list do not exclude elements of 

the same list. 
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R3. Let DisabOrg, DisabDef, DisabFun and DisabBeh be, respectively, the lists of 

Organs, Organs-definitions, functions and behaviors genes to be Disabled. 

DisabOrg   ← Organs (discarded in Disable clause); 

DisabDef   ← Organs-definitions (discarded in Disable clause); 

DisabFun ← Functions (discarded in Disable clause); 

DisabBeh  ← behaviors (discarded in Disable clause); 

 

 The coherence of DisabOrg, DisabDef, DisabFun and DisabBeh is checked 

separately because there is no Exclude relation between Disabling Organs. Disabling 

Organs-definitions, disabling functions and disabling behaviors. This coherence deals 

especially with: 

(1) The existence of the Organs, Organs-definitions, functions and behaviors in 

the associated Specie-Architecture. 

(2) The verification that the elements of each list do not exclude elements of 

the same list. 

 

R4. The coherence of EnabOrg with DisabOrg is checked: EnabOrg∩DisabOrg = Ø, 

each element of EnabOrg doesn't imply directly or indirectly an element of 

DisabOrg, and each element of DisabOrg doesn't imply directly or indirectly an 

element of EnabOrg 

 The coherence of EnabDef with DisabDef is checked:EnabDef∩DisabDef =Ø, 

each element of EnabDef doesn't imply directly or indirectly an element of 

DisabDef, and each element of DisabDef   doesn't imply directly or indirectly an 

element of EnabDef. 

 

The coherence of EnabFun with DisabFun is checked: EnabFun∩DisabFun = Ø, 

each element of EnabFun doesn't imply directly or indirectly an element of 

DisabFun, and each element of DisabFun doesn't imply directly or indirectly an 

element of EnabFun. 

 

The coherence of EnabBeh with DisabBeh is checked: EnabBeh ∩ DisabBeh= 

Ø, each element of EnabBeh doesn't imply directly or indirectly an element of 

DisabBeh, and each element of DisabBeh doesn't imply directly or indirectly an 

element of EnabBeh. 

 

 Enable list processing by scanning genetic relations  
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R5. The processing of Enable list is obtained, by scanning the Imply relation 

according to the dominate order, as it follows:  

 

1. For each element in the EnabOrg, not yet processed, find the Enabled Organs 

and put them in EnabOrg. 

2. For each element in the EnabOrg, not yet processed, find the Excluded 

Organs and put them in DisabOrg. 

3. For each element in the EnabDef, not yet processed, find the Enabled (1) 

definitions and put them in EnabDef, (2) functions and put them in EnabFun 

and (3) behaviors and put them in EnabBeh. 

4. For each element in the EnabDef, not yet processed, find the Excluded 

definitions and put them in DisabDef. 

5. For each element in the EnabFun, not yet processed, find the Enabled (1) 

definitions and put them in EnabDef, (2) functions and put them in EnabFun 

and (3) behaviors and put them in EnabBeh. 

6. For each element in the EnabFun, not yet processed, find the Excluded 

functions and put them in DisabFun. 

7. For each element in the EnabBeh, not yet processed, find the Enabled (1) 

definitions and put them in EnabDef, (2) functions and put them in EnabFun 

and (3) behaviors and put them in EnabBeh. 

8. For each element in the EnabBeh, not yet processed, find the Excluded 

behaviors and put them in DisabBeh. 

 We remind that these imply relations have the following form: 

 

Enable organ/organ-definition /function/behavior genes  Enable organ 

/organ-definition/function/ behavior genes 

 

Enable organ/organ-definition /function/behavior genes <> Enable organ 

/organ-definition/function/ behavior genes 

 

 Disable List processing by scanning genetic relations 

 

R6. The processing of Disable lists is obtained, by scanning the genetic relations 

according to the dominate order, as it follows:  

 

1. For each element in the DisabOrg, not yet processed, find the Excluded 

organs and remove them from EnabOrg. 
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2. For each element in the DisabOrg, not yet processed, find the Disabled 

organs and put them in DisabOrg. 

3. For each element in the DisabDef, not yet processed, find the Excluded 

definitions and remove them from EnabDef. 

4. For each element in the DisabDef, not yet processed, find the Disabled (1) 

definitions and put them in DisabDef, (2) functions and put them in DisabFun 

and (3) behaviors and put them in DisabBeh. 

5. For each element in the DisabFun, not yet processed, find the Excluded 

functions and remove them from EnabFun. 

6. For each element in the DisabFun, not yet processed, find the Disabled (1) 

definitions and put them in DisabDef, (2) functions and put them in DisabFun 

and (3) behaviors and put them in DisabBeh. 

7. For each element in the DisabBeh, not yet processed, find the Excluded 

behaviors and remove them from EnabBeh. 

8. For each element in the DisabBeh, not yet processed, find the Disabled (1) 

definition sand put them in DisabDef, (2) functions and put them in DisabFun 

and (3) behaviors and put them in DisabBeh. 

   We remind that these imply relations have the following form: 

 

Disable organ/organ-definition /function/behavior  genes  Disable organ 

/organ-definition/function/behavior  genes 

 

Disable organ/organ-definition /function/behavior  genes <> Disable organ 

/organ-definition/function/ behavior  genes 

 

 Loop on Enable list and Disable list processing 

 

   R7. Repeat R5 and R6 until all their elements are processed. 

 

 Final state 

 

R8. The result of this interpretation may be one of the following: 

- A Failure if coherence errors were found.  

- A genome copy if the interpretation successes. This copy contains the 

obtained genotype defined by: 

o The Enabled genes of Organs, Organs-Definitions, Functions and 

Behaviors. 

o The Disabled Organs, Organs- Definitions, Functions and Behaviors.  
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This Interpretation process of the Genotype Program is shown in Figure (4-6).  

Figure (4-6): Interpretation process of the Genotype Program. 

 

   When specific specie is needed, its name is sent from a Genotyping-Program, 

beside the genome class through an Interpretation Process to select the related specie-

architecture. To solve the problem of not selecting any specie, and to ensure that only 

one specific specie-architecture was selected, the parameter is tested with the species-

Control-genes which provide the Dominant Specie, which is a pre-defined value. So, 

when two parameter values of two different species have been sent to the object 

Genome, the dominant pre-defined specie is selected, and when a null parameter 

value has been sent to the object Genome, the dominant pre-defined specie is selected 

as default specie. This step prevents the rapid suspension of genotyping process, and 

helps in continuing the process to produce a final result that may satisfy the user. 

In Genotyping-Program, the architecture, organs, definitions, functions and 

behavior must also be specified. And after the interpretation which is governed by the 

rules mentioned before, a genotype is created with wanted and coherent 

characteristics. 

 

   The following algorithm is the translation of the rules above. 
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At first, a Genome definition introduced as the following: Genome Class: 

 

   Second, a set of wanted attributes is defined to be enabled, or a set of unwanted 

attributes is defined to be disabled. This is achieved by: Genotype Program: 

 

 

 

 

 

 

 

 

 

 

 

  

 

   Then, both the Genome class and the Genotype Program are set as inputs for the 

interpretation process to produce the desired Genotype. 

 

Class Genome  

{ 

           Structure 

Species= {… 

Species-architecture= {… 

Organs= {…} 

  } 

} 

Control Rules 

Specie-control-genes (); 

Architecture-Control-Genes (); 

Organ-Control-Genes (); 

POE-Control-Genes (); 

Ontogenesis-Control-Genes (){…}; 

} 

 

Genotype genotype-name (output specie-name, specie-arch, enabled, 

disabled) 

 

{ 

Get specie-name; 

            Get specie-arch; 

Enable < Organs || organ-definition || functions || behavior>; 

Disable< Organs || organ-definition || functions || behavior>; 

} 

 



 30 

Process  Interpretation-process (input Genome, specie-name, specie-

arch, enabled, disabled) 

{ 

If specie-name is set to null || more than specie was selected then 

 Test-In- Specie-Control-Genes ();  

if organ <> null then 

 if to-enable then add organ to Enaborg 

 if to-disable then add organ to Disaborg 

if organ-definition <> null then 

 if to-enable then add definition to Enabdef 

 if to-disable then add definition to Disabdef 

if function <> null then 

 if to-enable then add function to Enabfun 

 if to-disable then add function to Disabfun 

if behavior <> null then 

 if to-enable then add behavior to Enabbeh 

 if to-disable then add behavior to Disabbeh 

// if organ & organ-definition &function & behavior = Null  

// then set the dominant (); 

 

    Visit- species-Architecture (specie-arch; species- architecture ); 

// will select the architecture for required Specie 

 

Test-In-Architecture-Control-Genes (specie-arch, species-Architecture; 

arc-genes); 

// Will output the architecture genes for required Specie. 

 

Select-coherent-organs (arc-genes, EnabOrg, Disaborg); 

// will select and output the compatible organs with enabled ones. 

 

   Select-ontogenesis (Genome, EnabOrg, Enabdef, Enabfun, Enabbeh, 

Disaborg, Disabdef, Disabfun, Disabbeh; genotype);  

// will select compatible definition, functions and behaviors alternatives 

with enabled ones, and produce acopy of Genome with enabled 

properties which form the genotype. 

  } 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To see a full possible algorithm, read (Appendix). 

 

   It is worth to mention that the previous interpretation process will be applied on the 

Genome which contains the full set of attributes that are classified into several classes 

according to “composed by” relations and there will not be any inheritance relations 

between the inner classes. This classification model provides an easy, flexible and 

more logical selection of properties. Instead of inheriting from several super-classes 
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and several ancestors according to the “is-a” hierarchy, in our approach, an object will 

select its needed properties from a class that may be an inner class.  

 

   From the algorithm, we notice that the selection process is acting in breadth; while 

searching for the appropriate and compatible category class, and in depth while 

deepen inside specific category to search for wanted and compatible traits.  

 

4.4 Applying into our Case Study 

   The case study in chapter two, Figure (2-3), shows a conventional inheritance case, 

as explained before.  

 

   By applying our approach, the hierarchy will be replaced by the model shown in 

Figure (4-7) through the following steps:  

 We tend to have a "Genome" class Geometric-Shapes that can produce all 

shapes exist in geometry including circles, squares, triangles, rectangles and 

others. 

 Any shape in geometry may be consists of sides or it may consists of curves or 

it may be a three-dimensional. So, our Geometric-Shapes will be composed by 

the following “Species”:  Curved, Polygons and Solids classes, beside the 

Species-Control-Genes that defines the Dominant Species, for instance, the 

dominant = Curved. 

 As each “Species” is composed by several “Architectures”, the  Curved class 

in turn can be composed by the following “Architectures”: Regular shapes 

(circle, ellipse, etc.) and Irregular shapes (Crescent, etc.), Polygons also can be 

composed by several “Architectures” classes which are Quadrant that contains 

all shapes that have four sides (square, rectangle, etc.), More-Quadrant that 

contains all shapes that consist of more than four sides (quintuple, hexagonal, 

etc.) and Less- Quadrant that contains shapes that have less than four sides 

(triangle, etc.), and Solids class is composed by Surface class that contains all 

three-dimensional shapes that consists of surfaces (cube, Pyramid, etc.) and 

Non-Surface class that contains all three-dimensional shapes that don’t consists 

of surfaces (cone, dome, cylinder, etc.).  
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 Each Architecture is composed by several Species-Architecture-Genes, for 

instance, Regular Architecture will be classified into circle and ellipse, 

Irregular Architecture will be classified into crescent, cycloid, etc.  Beside that 

there are the Architectures-Control-Genes that specify the shapes according to 

their specific architecture.  

 Each Species-Architecture-Genes is composed by a number of “Organs” beside 

the Organs-Control-Genes that group all the relative organs. For instance, the 

square will be composed by sides, angles, center, etc. the circle will be 

composed by radius, center, etc. and so on. 

 Each Organ contains its Organ-definition-genes, Organ-function-genes, and 

Organ-behavior-genes along with their “Genes” alternatives. For instance, the 

square has four sides, each side has a color that may take one of alternatives’ 

list {blue, black, etc.}, a style {liner, dashed, etc.}, etc. also, square has an 

area() that may take one of alternatives’ list {(height *width), side
2
 , etc}, and 

Ontogenesis-Control-Genes that links the organs with the following relations: 

AreExclusiveGenes, AreImpliedGenes, etc. 

 Producing desired shape can be done by just specifying Species, Specie-

architecture along with the required shape characteristics; for example if we want to 

instantiate a Rectangle object, we must specify: 

- Specie-Name: Polygons. 

- Specie-Architecture: Quadrant. 

Then we need to enable needed Organs “Parts”: sides with needed characteristics 

length ≠ width, color, style…etc. 

After that an interpretation process will produce a complete Rectangle with the 

defined properties with all other compatible properties. 

As we notice, several different rectangles can be instantiated according to the 

Genotyping program. 
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 Figure (4-7): Shapes Inheriting Using our “Composed by” Approach. 

 

To implement this, we will use an Object Oriented Languages with some extension. 

By applying our algorithm, we gain the following: 

- Shapes Class modeling: 
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- Defining requests: 

 

 

Class Geometric-Shapes 

{ 

   Dominant Curved; // Defines the dominant Species; 

Structure: // to define each Species;  

    Curved = { // Defining Species 1 }; 

    Polygons =      // Defining Species 2; 

{ 

       Quadrant= // Defining Species2- Architecture1 

{ // Defining organs and functions 

Sides, height… 

Color= alt {red, blue…} end alt; 

Line-style= alt {none dashed…}; 

Area () =alt {area1, area2…} 

}; 

// defining all Species-Architectures for Species 2 

}; 

    Solids= { // Defining Species 3 }; 

Control-Rules: //Defining the rules that controls the relations 

Specie-control-genes (); 

Architecture-Control-Genes (); 

Organ-Control-Genes (); 

POE-Control-Genes (); 

Ontogenesis-Control-Genes () 

  { 

Enable height  Enable width 

Disable curved  Disable radius 

Enable area (h*w) <> Enable area (2*r) 

       …. 

  } 

} 
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- Interpretation process (selective inheritance algorithm) will produce the 

following genotype: 

 

 

 

 

 

 

 

 

Genotyping Rectangle1 ( ) 

{ 

Polygons; // specifying wanted Species. 

Quadrant; // specifying wanted Species-Architecture. 

Enable < Length: 4, height: 2, color: blue, area ()>; 

// specifying wanted properties. 

Disable < angels: rounded, line-style: Straight >; 

// specifying unwanted properties. 

} 

 

Rectangle1 <Polygon> 

{ 

Enabled < EnabOrg = height: 4, height: 4, width=2, width=2,  

      EnabDef= color: blue, line= dashed...  

EnabFun= area= h* w, circumference= 2(w+h)...> 

// list of the Enabled properties. 

Disabled <…………………> // list of the Disabled properties. 

} 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER FIVE 

 

“IS-A” VS. “COMPOSED BY” INHERITANCE 

MODEL AND COMPLEXITY
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   There is no known algorithm for “Is-a” based selective inheritance. So, it is useless to 

compute the complexity of our “Composed by” based selective inheritance. But, we can 

compare the complexity of “Is-a” hierarchy model with that of “Composed by” modeled 

by our approach. 

   In the following, we start by evaluating our “Composed by” inheritance model 

relatively to the” Is-a” one. We present the evaluation of the two models based on some 

standard complexity metrics. We end by concluding in the possibility of combining the 

two approaches “Is-a” and “composed by” in a single one. 

 

5.1. "Is-a" Vs. “Composed by” Inheritance Models 

   As we know, current Inheritance concepts used in OOP and all current selective 

inheritance approaches are working under the "is-a" hierarchy model. 

   This hierarchal model has solved many issues, but on the other hand, led to the 

emergence of problems that needed solutions. Some of these problems were resolved in a 

holistic, but some others were resolved partially or have been resolved to reach the 

nearest satisfactory result.  

 

   For reducing some of the hierarchal model problems, several approaches proposed the 

selective inheritance. Some of these approaches helped in solving certain issues. But all 

the current selective inheritance approaches have been only applied on the inheritance 

"is-a" hierarchy model. 

   None of current approaches have worked on the nested class's model, although it 

supports inheritance, but is better in organization and protection than the inheritance 

hierarchy model. Where, (B.Eckel, 2006) says that with inner classes we have these 

additional features: 

 Defining inner classes in an outer class may reduce the total number of outer 

classes in a software application.  

 The inner class can have multiple instances, each with its own state information      

that is independent of the information in the outer-class object. 
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 In a single outer class you can have several inner classes, each of which 

implement the same interface or inherit from the same class in a different way. 

 The point of creation of the inner-class object is not tied to the creation of the 

outer-class object. 

 There is no potentially confusing “is-a” relationship with the inner class; it’s a 

separate entity. 

   So, our work has led us to take advantage(s) of the selective inheritance and the nested 

classes. As mentioned, our approach aims to enhance the inheritance hierarchy to the 

Genome model by merging all classes associated with the same aspect into one class. As 

known, nested classes concept is not new, but the new in our proposal suggests that after 

merging those classes, all their features will be classified according to control rules that 

ensures a correct classification where each class attribute contains all its possible 

alternatives. So, an object can select one or more alternatives from each wanted attribute, 

this selection process is also governed by interpretation rules that ensure a coherent 

selection. It is important to remind that classified classes inside the Genome have no 

inheritance relationships between each other. By this proposal, all concepts used in “Is-a” 

hierarchy model can be eliminated. 

- The object will be able to inherit more than once from a specific class. 

- Polymorphism, Method-Overriding and Method-Overloading concepts can be 

eliminated and replaced by Alternatives concept. 

- Circle-Ellipse problem will be solved, because both the circle and ellipse objects 

will explicitly inherit from the same class, Shapes. 

- The object will inherit selectively, which means, it will only have needed 

attributes / methods from only needed classes. This will solve the exponentially 

increased ancestors’ problem. 

   Besides that, this will make the designing easier, where the designer will not be forced 

to be aware of each class implementation; he just must identify the needed properties and 

the correct Genome (through the Genotyping Program), and the process of producing a 

coherent object will be finished by itself (through the Interpretation Process). 
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5.2 Complexity Measurements 

   The higher level of complexity requires more efforts in maintaining the software. In our 

work we will concern in classes, where, in software estimation and maintenance, the 

normal class complexity was claimed to be measured in term of the number of lines in 

code (LOC) which means the size of class, but there is no consensus on the idea that high 

class size is necessarily resulting in class complexity. Other metrics for complexity of 

classes is the structural and functional relationship among class elements (S.Tee, 2009): 

 It should be noted that the degree of functional complexity is higher in the event 

that more class element interaction is found in a class. 

 Structural complexity is done by using the UML representation. 

 

Inheritance hierarchy 

   Inheritance is claimed to reduce the amount of software maintenance and to ease 

testing. But some researches indicated that a system not using inheritance is better for 

understandability and maintainability than a system with inheritance (F.Sheldon et al, 

2002). Because the inheritance is a hierarchy model, many metrics were investigated to 

measure the complexity. Some of these metrics are: 

 The depth of inheritance tree (DIT), which in other words means, the number of 

ancestors that can affect a class. By this metric, it was agreed that the deeper the 

hierarchy, the better reusability of classes, but the higher the coupling between 

classes making it harder to maintain the system. For that, designers tend to keep 

the inheritance hierarchy shallow.  

 The number of subclasses that inherit methods from super-class (NOC). Where, 

the greater number of subclasses, the greater ability to reuse, but the potential for 

improper abstraction for the super-class. 

 The number of ancestor classes (NAC) from which a class inherits in the 

hierarchy. This metric was a developed to the DIT metric.  

 Weighted methods per class (WMC), coupling between object classes, response 

for class, lack of cohesion in methods, and metrics for maintainability and 

understandability are also different metrics used to in complexity measurements. 
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DIT (Shapes) = 0, 

DIT (Curved) = DIT (Polygons) = 1, 

DIT (Stereophonic-Curved) = DIT (Flat-Curved) = (Flat-Polygon) = DIT (Stereophonic-

Polygon) = 2, 

DIT (Parallelogram) = DIT (Non- Parallelogram) = DIT (Cone) = DIT (Cylinder) =3, 

DIT (Dome) = DIT (Square) = DIT (Rectangle) = DIT (Hexagonal) = 4. 

NOC (Shapes) = 2, 

NOC (Curved) = NOC (Polygons) = NOC (Flat-Polygon) = NOC (Stereophonic-Polygon) = 

NOC (Flat-Curved) = NOC (Parallelogram) = 2, 

NOC (Stereophonic-Curved) = NOC (Non- Parallelogram) = 1, 

NOC (Dome) = NOC (Square) = NOC (Rectangle) = NOC (Hexagonal) = NOC (Cone) = 

NOC (Cylinder) = 0. 

NAC (Shapes) = 0, 

NAC (Curved) = NAC (Polygons) = 1, 

NAC (Stereophonic-Curved) = NAC (Flat-Curved) = NAC (Flat-Polygon) = NAC 

(Stereophonic-Polygon) = 2, 

 

   Also, the more super classes your subclass inherits from, the more maintenance you are 

likely to perform. If one of the superclasses happens to change, the sub class may have to 

change as well. 

    

   So, while there is no single metric to measure the quality for a program that is using 

inheritance hierarchy, (F.Sheldon et al, 2002) has developed two simple metrics that 

measure the understandability and modifiability for class inheritance hierarchy. 

 

   If we applied the conventional metrics on the case study that we have in chapter two, 

see Figure (2-3), taking into account that this case study is a simplified example of what 

the Shapes tree can be in fact, we deduce the following: 

- By applying DIT metric: 

- By applying NOC metric: 

- By applying NAC metric: 
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NAC (Parallelogram) = NAC (Non- Parallelogram) = 3, 

NAC (Square) = NAC (Rectangle) = NAC (Hexagonal) = 4 

NAC (Cone) = NAC (Cylinder) = 5, 

NAC (Dome) = 6. 

 

U (Shapes) = 1, 

U (Curved) = U (Polygons) = 2, 

U (Flat-Polygon) = U (Stereophonic-Polygon) = U (Flat-Curved) = 3, 

U (Stereophonic-Curved) = 3, 

U (Parallelogram) = U (Non- Parallelogram) = 4, 

U (Dome) = 7, 

U (Square) = U (Rectangle) = U (Hexagonal) = 5, 

U (Cone) = U (Cylinder) =6. 

AU= (1+2+2+3+3+3+3+4+4+7+5+5+5+6+6) /15 = 59/15 = 3.93 

    These metrics do not compute the total complexity for the hierarchy tree; they compute 

the complexity for each class separately. So, as mentioned, (F.Sheldon et al, 2002) 

extended new two metrics for maintainability (understandability and modifiability) of 

inheritance “directed acyclic graph” (DAG), where two functions are mainly used: 

 PRED (i): the total number of predecessors of node (class) i, 

 SUCC (j): the total number of successors of node (class) j. 

Now, by applying the average degree of understandability (AU) which is defined by: 

Understandability (U) of class (Ci) = PRED (Ci) +1 

AU= (



t

i

CiPRED
1

)1)(( ) / t 

   Where, t is the total number of classes in the class inheritance DAG. 

   And by applying the average degree of modifiability (AM) which is defined by: 

Modifiability (M) of class (Ci) = U (Ci) + SUCC (Ci) /2 

AM = AU + (


t

i

CiSUCC
1

)2/)(( ) / t
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SUCC (Shapes)/2 = 14/2   = 7 

SUCC (Curved)/2 = 3/2   =1.5 

SUCC (Polygons)/2 = 9/2   = 4.5 

SUCC (Flat-Polygon)/2 = 5/2  =2.5 

SUCC (Stereophonic-Polygon)/2=2/2=1 

SUCC (Flat-Curved) /2=2/2  =1 

SUCC (Stereophonic-Curved)/2 = ½ = 0.5  

SUCC (Parallelogram)/2 = 3/2  =1.5 

SUCC (Non- Parallelogram)/2 = ½ =0.5 

SUCC (Dome)/2 = 0/2   =0 

SUCC (Square)/2 =0/2  =0 

SUCC (Rectangle)/2 =0/2  =0 

SUCC (Hexagonal)/2 = 0/2  =0 

SUCC (Cone)/2 =0/2   =0 

SUCC (Cylinder)/2=.0/2  =0 

AM= (3.93) + (7+1.5+4.5+2.5+1+1+0.5+1.5+0.5) /15  

      = (3.93) + (20/15) = 5.26 

 

Nested classes 

   Several metrics were used to find the complexity for inner classes. One of them is the 

metric which was developed in (S.Tee et al, 2009) that measures the complexity from the 

perspective of breadth and depth of inner classes. The complexity (C) value for inner 

classes is derived from the sum of breadth (b) to depth (d) ratio of the classes, where: 

bi: is the number of classes at level i. 

di: is the level i. 

Complexity (C) =


n

i di

bi

1

, where n is the number of levels. 

   Figure (5-1) explains the meaning of breadth and depth of inner classes. In Figure (5-1/ 

a) we see that the outer class “Class 1” contains three inner classes “inner A, inner B and 

inner C” at the same breadth. These inner classes are defined at the same level of depth. 

But Figure(5-1/b) shows an outer class “Class 2” that contains immediate inner class 

“Inner D” that contains immediate inner class “Inner E” that also contains immediate 

inner class “Inner F”. We notice that the inner classes are defined at different level of 

depth. 

 

 



 56 

Class class1 

{ 

Class innerA {}; 

 

Class innerB {}; 

 

Class innerC {}; 

} 

Class class2 

{ 

Class innerD 

{ 

Class innerE 

  { 

Class innerF {}; 

}; 

  }; 

} 

 

 

 

 

 

 

 

 

Figure (5-1): Inner Class Complexity from the Perspective of Breadth and Depth. 

 

The structures of Class1 and Class2 may be as follows: 

We want to clarify that in our case study we have taken a small portion of the Geometry 

shapes’ full tree, and we have calculated the complexity for this portion that only 

produced the following six classes Dome, Square, Rectangle, Hexagonal, Cone and 

Cylinder. So, to be fair in our calculation, we will only consider the same portion after 

applying our approach on the case study as in Figure (5-2) which was deducted from 

Figure (4-7), we notice that we have an outer class " Geometric-Shapes " that contains 

two inner classes: Polygons and  Solids. Each inner class does not inherit from any other 

inner class, and contains several inner classes; for our example Polygons class will 

contain Quadrant and more-Quadrant, Solids class will contain No-Surfaces. So, all 

inner classes we gain are defined at multiple breadth and depth. Now, we will try to apply 

this metric on our approach: 
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Breadth (b1) at level (1): 1, 

Depth    (d1) at level (1): 1, 

Breadth (b2) at level (2): 2, 

Depth    (d2) at level (2): 2, 

Breadth (b3) at level (3): 3, 

Depth    (d3) at level (3): 3, 

Then: 

Complexity (C) = 
2

2

1

1

d

b

d

b
 +

3

3

d

b
 = 

2

2

1

1
 +

3

3
 = 3 

 

Figure (5-2): Deducting a Portion from Figure (4-7) that is Relevant to the Portion in the 

Case Study 

 

When comparing between the two approaches complexity, we can see the big difference 

in calculations results for the benefit of our approach. 

 

5.3. Combining between our Approach and the "is-a" Hierarchy Model 

    Some may ask why we have omitted the inheritance relations between inner classes, or 

in other words, why we can not combine the inheritance hierarchy inside our approach as 

shown in figure (5-3). 
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Figure (5-3): Combining "is-a" Model with “Composed by” Model. 

   In our work, doing that combination is not useful and not logical; where we classify the 

classes according to control rules, so that each class will contain its related inner classes 

and all its related properties, and each property has a set of alternatives, for that there will 

not be any necessary for using the “is-a” hierarchy. An aim of our work was to eliminate 

several problems that have been resulted from using the hierarchy such that conflict 

names, huge number of ancestors and super-classes and many other issues that are well 

known. 

   If we look at the case study implementation illustrated in figure (4-6) we see that the 

Geometric-Shapes contains Curved, Polygons and Solids where each one has its own 

inner classes, which makes the inheritance relation between them not logical because ,for 

instance, there is nothing to inherit from Curved into Polygons and vise versa. Also, if we 

took a close look inside the Polygons we will see several classifications: Quadrant, 

More-Quadrant and less-Quadrant classes, each class contains the associated properties, 

functions and behaviors that differ from the other classes. For instance, the Square has a 

different properties and functions from the Triangle, so it will gain its needed properties 

from the class Quadrant, wherefore; Quadrant does not inherit from any other class, and 

so on. 
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Genome_Aspect_Name :( Genome Class= Configuration) 

{ 

     Config: (Name=Dominant) {}; 

 

     Config: (Name= Specie-Namej) 

 { 

 Archi:( Specie-Architecture-Namei) 

      { 

     Require { 

structure (st1=<al1,al2…>, st2< al1,al2…>,…); 

function (st1-fun=<al1,al2…>, st2-fun< al1,  al2…>,…); 

behavior (st1-fun-be=<al1,al2…>, st2-fun-be < al1,al2…>,…); 

       }; //End Require 

       Imply{ 

structure (…); 

function (…); 

behavior (…); 

        }; // End Imply 

       Exclude{ 

   structure (…); 

function (…); 

behavior (…); 

          }; // End Exclude 

}// End Archi: Architecture-Namei 

  }// End Config: Specie-Namej 

 

     Config: (Controls)  

{ 

Cont:(Specie-Control){}; 

Cont:(Architecture-Control){}; 

Cont:(Structure-Control){}; 

}; // End Config: Controls 

 

}// End Genome Configuration 

 

In this chapter, we will present an implementation of our work using a language 

extension that produced in (S.Ghoul, 2011) work, we will evaluate our work 

according to several criteria, we will suggest several extensions to our work as a 

future work, and finally we will present some of the areas where our work may be 

applicable in. 

6.1 Implementation Issues  

Our approach helps in reducing the number of classes, instantiating different objects 

from a class without the need of adding any methods/ attributes after creating these 

objects to distinguish them from each other. 

In the following, we will propose how a Genome and Genotype Program may be 

implemented in an object oriented language depending on the work (S.Ghoul, 2011). 

Genome Implementation 
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Function Genotype genotype-name () 

{ 

Specie-Name=…; 

Specie-Architecture=…; 

Enable set={structure (st1=<alj>, st2< ali>,…); 

function (st1-fun=<alk,…>, st2-fun< alm, …>,…); 

behavior (st1-fun-be=<alk,…>, st2-fun-be < alm,…>,…); 

        } 

Disable set={structure (st1=<alj>, st2< ali>,…); 

function (st1-fun=<alk,…>, st2-fun< alm, …>,…); 

behavior (st1-fun-be=<alk,…>, st2-fun-be < alm,…>,…); 

        } 

 

} // End Genotype 

Where,  

o Dominant: if no Specie-Name were selected in the genotype program, then the 

dominant Specie is assigned where it holds all its coherent attributes. 

o Require: defines all the structures, functions, and behaviors with all their 

possible alternatives that must be imposed in the selected Specie/ Architecture. 

o Imply: defines all the structures, functions, and behaviors with their possible 

alternatives, which may be implied by the imposed attributes. 

o Exclude: Imply: defines all the structures, functions, and behaviors with their 

possible alternatives, which may be eliminated from the Specie/ Architecture 

by the imposed attributes. 

 

Genotype Implementation 

Where, 

o Enable set: to define the attributes (structure, functions, and behavior) that 

wanted to be enabled. 

o Disable set: to define the attributes (structure, functions, and behavior) that 

wanted to be disabled. 

 

6.2 Evaluation Criteria 

Since there are several approaches for selective inheritance concept, each approach, as 

we mentioned, has adopted it from a different point of view, and also, each approach 

has its defects. In our approach we tried to overcome these defects. 

The comparison between these approaches, must take the following evaluation criteria 

into account: 
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 Genetic class: The approach possibility of grouping classes into one class, in 

order to reduce the number of classes.  

 Selection at class level (non-inheritable traits): the approach possibility to 

allow the class to make some properties unable to be inherited. 

 Properties classification: the approach possibility of grouping alternatives of 

the same property. 

 Conflict situation resolution: the approach possibility of controlling selection 

process to prevent the selection of contradictory properties. 

 Selection at object level: the approach possibility of allowing object to 

dynamically select wanted but coherent traits. 

 Selection rules / control rules: does the approach provide rules that govern and 

control the selection process. 

 Fully Bio-inspired: has the approach fully modeled the Genetics concepts 

which are the Genome, Genotype, and Phenotype and their control Genes. 

Where, several different Genotypes can be generated from the Genome, and 

several different Phenotypes can be instantiated from each Genotype. In 

computing world, the Genome offsets a “Software Database”, the Genotypes 

offsets the “Views” that can be generated from the Software Database, and the 

Phenotype offsets the “Instances” from each View. 

 

Table (6-1) shows a comparison (based on the above criteria) between our proposed 

approach and the previous studied ones. 

 

As we can see, our approach achieves the previous criteria where: 

 Genetic class: inspiring from Genome, our approach used a “Composed by” 

class that contains all classes related to specific aspect. 

 Selection at class level (non-inheritable traits): each class has its control genes 

which are unable to be inherited. 

 Properties classification: each property, function, and behavior has been 

classified, so that each one has a list of alternatives to select from it. 

 Conflict situation resolution: control’s genes at each class, control the 

selection process to prevent the selection of contradictory properties. 
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Table (6-1): Comparison between our Approach and the Previous Approaches 

 

 Selection at object level: inspired from Genotype, our approach allows the 

object to dynamically select wanted but coherent properties through the 

“Genotyping Program”. 

 Selection rules / Control rules: inspiring from the control’s genes, our 

approach provides rules that govern and control the selection process through 

the “Interpretation Process”. 

 Fully Bio-inspired: to be a full genetics-based approach, our approach has 

fully modeled the genetics concepts which are the Genome “a Composed by 

class”, Genotype “object with needed properties” and their control Genes, 

beside an Interpretation Rules “Selective Inheritance”. 

 

6.3 Application Areas  

Our concepts are closer to real life than the concepts adopted in current OOP, the 

number of classes is reduced, the variation in the same class is supported, and the 

inheritance is more powerful and practical than it is now in the Conventional OOP. 

This approach is needed in any application that significantly uses the inheritance, so, 

it can be applied to select the best object parameters in any object-oriented computer 

environment. As an example, in hardware field, (the micro-architecture is usually 

designed and tested with the aid of a software simulator) where designing, testing, and 

producing a new computer processor is complex, (J.Bastian et al, 2005) has proposed 

 

               Criteria  

 

Approach             

Genetic 

class 

Selection 

at class 

level 

Properties 

classification 

Conflict 

situation 

resolution 

Selection 

at object 

level 

Selection 

rules / 

control rules 

Fully 

Bio-

inspired 

S.I at Class 

Level 
×  × × × × × 

S.I at 

Object 

Level 

Non-

Genetic 
× × × ×  × × 

Genetic 
 ×    × × 

Our Approach 
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a specification of INTEL IA-32 using an architecture description language that 

selectively pre-determined the parent with the best fit to the object.  

Also our approach may be applied in several works: Software Process Modeling, 

Software Reengineering, Software Reuse and relational databases. The results may be 

original and promising. 
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7.1 Conclusion 

   Through the studying of the inheritance used in current OO, we found that it does 

not mimic the natural (real life) inheritance process as was claimed. In our approach, 

to eliminate all current OO inheritance’s problems, we used the Genetics concepts to 

model a selective inheritance that is closer to our natural life. In our model, an object 

can be created holding only desired and necessary properties and methods. This 

approach is young and new, it will be formalized and evaluated when it is largely 

accepted. 

 

 

7.2 Future Works 

Our work can be extended and developed in future to: 

o Accidents study (error handling). 

o To model the other type of genotyping; which is a genetic interaction with the 

environment. It is based on merging a given genome with another introduced 

from the environment. 

o Mutation and genotype. 

o Work in depth inside the gene where there are silent and active genes that may 

work an essential role in the genotype evolution process. 

o Evaluating our model according to the memory requirements, time needed to 

initialize an instance, and tightly coupled feature. 
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The following is a full algorithm for each function: 

 

 

Void Test-In- Specie-Control-Genes (input specie-name; output specie-architecture); 

{ 

   If specie-name = null 

         Specie-name= AreDdominant specie (); 

   Choose specie-architecture (specie-name); 

} 

 

 Void Visit- species-Architecture (input specie-arch; output species- architecture) 

  { 

Species- architecture is object; 

Read specie-arch; 

Choose the correct species- architecture; 

   } 

 
Void Test-In-Architecture-Control-Genes (input  specie-arch, species-Architecture; 

output arc-genes); 

{ 

While species-Architecture not empty () 

{ 

AreImplidInArchitecture(specie-arch);  

   Put in arc-genes; 

AreExcludedFromArchitecture(specie-arch); 

   Remove from arc-genes; 

if  organ & organ-definition &function & behavior = null 

   AreDefaultInArchitecture(specie-arch); 

   Put in arc-genes; 

} 

Output arc-genes; 

} 

 

Void Select-coherent-organs(input arc-gennes,EnabOrg, Disaborg) 

{ 

 while Enaborg & Disaborg  not empty() 

{ 

read organ 

Visit Species-Architecture-Genes (arc-genes,Enaborg, Disaorg) 

    } 

Test-In-Organs-Control-Genes (Enaborg, Disaorg; coh-org); 

Add coh-org to Enaborg;  

} 

 

Void select-ontogenesis(input Genome, EnabOrg, Enabdef, Enabfun, Enabbeh, 

Disaborg, Disabdef, Disabfun, Disabbeh; output genotype) 

{  

While Enaborg not empty()  

{ 

Read organ 
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    While Enabdef & Enabdef & Enabbeh not empty() 

{ 

Read organ-definition, function,behavior; 

Visit Organi (Enabdef, Enabfun, Enabbeh); 

If Test-In-POE-Control-Genes (Enabdef, Enabfun, Enabbeh) is true ; 

   Visit-ontogenesis-Genes (Enabdef, Enabfun, Enabbeh); 

} 

 

    Test-In-Ontogenesis-Control-Genes (Enabdef, Enabfun, Enabbeh;coh-alt); 

    While coh-alt not empty() 

  {  

Visit-Organ-Definition-Genes (organ-definitions; d-alternatives); 

Visit-Organ-Function-Genes (functions, f-m-alternatives, f-s-

alternatives); 

Visit-Organ-Behavior-Genes (behaviors, b-m-alternatives, b-s-

alternatives); 

} 

} 

AreGenotypeGenes(); 

} 

 

void Visit Species-Architecture-Genes (input arc-genes, Enaborg, Disaorg ) 

{ 

   Read arc-genes, Enaborg, Disaorg; 

} 

 

void Test-In-Organs-Control-Genes (input arc-genes, Enaborg, Disaorg; output coh-

org) 

{  

  while arc-genes not empty() 

  { 

PerformSameFunctionsOrgans(Enaborg) 

AreImpliedOrgans(Enaborg) 

   Put in Enaborg; 

AreImpliedOrgans(Disaborg) 

   Remove from Enaborg; 

 AreExcludeOrgan(Enaborg); 

        Remove from Enaborg 

AreExcludeOrgan(Disaborg); 

   Remove from Enaborg 

} 

Coh-org= Enaborg; 

} 

 

 

Void Visit Organi (Enabdef, Enabfun, Enabbeh) 

{ 

    read Enabdef, Enabfun, Enabbeh; 

} 
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Test-In-POE-Control-Genes (Enabdef, Enabfun, Enabbeh) 

{ 

   if AreRelatedToConstruction (Enabdef, Enabfun, Enabbeh) 

       Then true; 

} 

 

Visit-ontogenesis-Genes (input Enabdef, Enabfun, Enabbeh; output ontogenesis-gens) 

{  

   read Enabdef, Enabfun, Enabbeh; 

} 

 

Test-In-Ontogenesis-Control-Genes (input ontogenesis-gens, Enabdef, Enabfun, 

Enabbeh, Disabdef, Disabfun, Disabbeh;coh-alt) 

{  

   while ontogenesis-gens not empty() 

     { 

       While Enabdef& Enabfun & Enabbeh not empty() 

 

Applying Rules: 

AreRelatedToAspect(); 

AreImplyed() 

{ 

 definition in Enabdef  enable definition in ontogenesis-gens; 

 function in Enabfun  enable function in ontogenesis-gens; 

 behavior in Enabbeh  enable behavior in ontogenesis-gens; 

        put in coh-alt; 

 definition in Disabdef  Disable definition in ontogenesis-gens; 

 function in Disabfun  Disable function in ontogenesis-gens; 

behavior in Disabbeh  Disable behavior in ontogenesis-gens; 

     remove from coh-alt; 

} 

 

AreExclusive() 

{ 

definition in Enabdef <> enable definition in ontogenesis-gens; 

 function in Enabfun <> enable function in ontogenesis-gens; 

 behavior in Enabbeh <> enable behavior in ontogenesis-gens; 

      remove from coh-alt; 

 definition in Disabdef <> Disable definition in ontogenesis-gens; 

 function in Disabfun  <> Disable function in ontogenesis-gens; 

behavior in Disabbeh  <> Disable behavior in ontogenesis-gens; 

     remove from coh-alt; 

} 

 

 

if two or more contradictory definitions  then AreDominant(); 

if two or more contradictory functions  then AreDominant(); 

if two or more contradictory behaviors  then AreDominant(); 

 

AreGenotypeGenes() 
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{ 

   Genotype= Set of { specie-arch; arc-genes; Enaborg (Enabdef (d-alternative); 

        Enabfun(f-m-alternatives, f-s-alternatives); 

       Enbbeh(b-m-alternatives, b-s-alternatives)) 

} 

} 

 

Visit-Organ-Definition-Genes (input coh-alt; output  d-alternatives) 

{ 

   while coh-alt not empty() 

     If definition-gene then select on alternative from definition alternative; 

       Put in d-alternative; 

} 

 

Visit-Organ-Function-Genes (input coh-alt; output  f-m-alternatives, f-s-alternatives) 

{ 

while coh-alt not empty() 

     If function-gene then  

{ 

select on alternative from Major-function-alternative; 

    Put in F-m-alternative; 

select on alternative from Sub-function-alternative; 

    Put in F-s-alternative; 

} 

} 

 

Visit-Organ-Behavior-Genes (input coh-alt; output b-m-alternatives, b-s-alternatives) 

{ 

while coh-alt not empty() 

If behavior-gene then  

     { 

select on alternative from Major- behavior -alternative; 

     Put in b-m-alternative; 

 select one alternative from Sub- behavior -alternative; 

     Put in b-s-alternative; 

} 

} 

 

 

 

 



 مــلــخــص

 

التسلسل الهرمي  نموذج  على تعمل والتي (OOP) البرمجة الموجهة الحالية  في المعتمد التقليدي الميراث مفهوم

"is-a"  ، وحيث . العيوب لديه بعض (OOP) بعيود   ، فإنهوا   تولالواقو  الحيوا  قربوا  مو  أكثور تحاول أن تكوون

 .علم الوراثة مبادئ كل البعد ع 

  الفئوة اصلول فوي عوام كول موا  وو حصول علوىوت يمكو  أن تورث (child class)الفرعيوة  فئوةال ي أنتعنو وراثوةال

parent class) ) فوي حياتنوا حقوا موا يحودث تحواكي لكنهوا   ،العديد مو  الماواكلقامت بحل  العملية  ذه .تلقائيا، 

مفهووم   وذا يعنوي أن .ة اصلولالفئ المطلوبة م  الصفات على فقط الحصول يستطي  (object) كل كائ  أن حيث

 .متطابقة كائنات يولدانتقائي و ليس التقليدي الوراثة

فوي  قودمت اصعموال التويفوإن ، "is-a" التسلسول الهرموي  نمووذج يعمول علوى أن مفهووم الوراثوة التقليودي وبسوب  

 .الهرمي على  ذا النموذج أيضا  تمت ا نتقائي مفهوم الميراث

بود  مو   ”Composed by“ ي مبنوي علوى نمووذج انتقوائ وراثوة مفهووم إلى ت في عملناالجينا م  ا ستيحاء أدى

ت سوماالكول  يحمول الوذي "الجينووم "المطلوبوة مو  الصوفات يوتم اتتيوار ،فوي علوم اصحيواء حيوث.  "is-a" نمووذج

 .”Composed by“ علاقةوفقا ل عد  إلى طبقات تلك الصفات وتصنف معي  ، لجان  المخصصة

 الوراثوة  وي أفضول مو  ”Composed by“ النمووذج علوى التوي تعمول ا نتقائيوة الوراثوة تبوي  أن يم،التقيو بعود

 ."is-a"التسلسل الهرمي  ا نتقائية المبنية على نموذج
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