

A Genetics-Based approach to inheritance modeling

By

Dareen Mousa Mohammad Hamoudeh

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

April 2012

i

 جامعة فيلادلفيا

تفويض نموذج

أو للمكتبات رسالتي من نسخ بتزويد فيلادلفيا جامعة أفوض ، دارين موسى محمد حمودة أنا

 .طلبها عند الأشخاص أو الهيئات أو المؤسسات

 :التوقيع

 :التاريخ

Philadelphia University

Authorization Form

I am, Dareen Mousa Mohammad Hamoudeh, authorize Philadelphia University to

supply copies of my thesis to libraries or establishments or individuals upon request.

Signature:

Date:

 ii

A Genetics-Based approach to inheritance modeling

By

Dareen Mousa Mohammad Hamoudeh

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

April 2012

 iii

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

 iv

Dedication

 To who helped me and supported me along my way to

success; my mother, my father, my sisters and brothers. I

humbly dedicate this work for them, with all my sincere

gratitude.

Dareen Hamoudeh

 v

Acknowledgment

I would like to extend my thanks and sincere gratitude for

who has guided me through my study and my thesis work; prof.

Saed Ghoul, and all my teachers.

Also, I am grateful for those who supported me and encouraged

me in any way; my family, my friends and my superiors and
colleagues at work

 Dareen Hamoudeh

 vi

Table of Content

Subject Page

Authorization Form i

Title ii

Examination Committee iii

Dedication iv

Acknowledgement v

Table of Contents vi

List of Tables viii

List of Figures ix

Abstract x

Chapter One: Introduction 1

1.1 Problem Statement 2

1.2 Motivation 6

1.3 Contribution 6

Chapter Two: Case Study 9

Chapter Three: Selective Inheritance Approaches 14

3.1 Selective Inheritance at Class Level 15

3.2 Selective Inheritance at Object Level 17

Non-genetic approaches 18

Genetic approaches 19

Chapter Four: A Genetics-Based Approach to Inheritance Modeling 24

4.1 Some New Definitions 25

 vii

4.2 Each Artificial Entity is a Phenotype Developed from a Genotype of a

Genome
29

Genome 29

Genotype 34

Phenotype 35

4.3 The Nature of a Genotype is completely operative 36

4.4 Applying into our Case Study 44

Chapter Five: "Is-a" Vs. "Composed by" Inheritance Model and Complexity 49

5.1. "Is-a" Vs. “Composed by” Inheritance Models 50

5.2 Complexity Measurements 52

Inheritance hierarchy 52

Nested classes 55

5.3. Combining between our Approach and the "is-a" Hierarchy Model 57

Chapter Six: Implementation Issues, Evaluation and Application Areas 59

6.1 Implementation Issues 60

6.2 Evaluation Criteria 61

6.3 Application Areas 63

Chapter Seven: Conclusion and Future Works 65

7.1 Conclusion 66

7.2 Future Works 66

References 67

Appendix 70

 viii

List of Tables

Table Number Table Title Page

Table (4-1)
Comparison between Some Conventional OO and

Genetics-Based Concepts.
26

Table (6-1)
comparison between our approach and the previous

approaches.
63

 ix

List of Figures

Figure Number Figure Title Page

Figure (1-1)
Dolphin inherits selectively from Fish and Mammals

classes
3

Figure (1-2) Natural Inheritance Process in Flowers 7

Figure (2-1) Shapes super-class and its sub-classes 11

Figure (2-2)
Using Specialization to Implement Methods in

Subclasses
12

Figure (2-3)
sample on shapes hierarchy that may be created for

Geometry
13

Figure (3-1)
The Use of Selective Inheritance in Martin Work,

Using its own Notations
16

Figure (3-2) Applying Dori Approach on our Case Study, Using

its own Notations.
17

Figure (3-3) Applying Al-Ahmad’s Approach on our Case Study 18

Figure (3-4) Applying Semantic Classification on our Case Study 20

Figure (4-1)
Inheritance Definition in Conventional OO and in

Genetics-Based Model
28

Figure (4-2) Genome Model, Versions of Characteristics. 29

Figure (4-3) Genome Structure. 33

Figure (4-4) Genome, Genotype and Phenotype 35

Figure (4-5) Genotype 36

Figure (4-6) Interpretation process of the Genotype Program. 41

Figure (4-7) Shapes inheriting using our approach. 46

Figure (5-1)
Inner Class Complexity from the Perspective of

Breadth and Depth
56

Figure (5-2)
Figure (5-2): Deducting a Portion from Figure (4-6)

that is Relevant to the Portion in the Case Study.
57

Figure (5-3)
Combining "is-a" Model with “Composed by”

Model.
58

 x

Abstract

 The conventional Inheritance concept which is adopted in the current Object

Oriented Programming (OOP), where it is acting on "is-a" hierarchy model, has some

defects. Where OOP is trying to be more close to the real life, it is still far from

genetics principles.

 Inheritance means that the child class can inherit, and get everything that is public in

the parent class automatically. This process has solved many problems, but it does not

simulate what is really happening in our life, where each object can gain just the

needed traits from the parent class. That means the conventional inheritance is not

selective and is generating identical objects.

 While conventional Inheritance acts on “is-a” hierarchy model, the works that

introduced the selective inheritance were also done on this model.

 The inspiration from genetics has led to a selective inheritance acting upon a

“Composed by” model rather than the “is-a” model; where in biology, the needed

traits are selected from the Genome which holds all the aspect traits. Those traits are

classified into several classes according to "Composed by" relation.

 After evaluation, it has shown that the selective inheritance that acts on "composed

by" model is better than the selective inheritance over “is-a” hierarchy model.

CHAPTER ONE

INTRODUCTION

 2

 Since Object Oriented Programming has been created, in which everything in a

program is an object, which tries to mimic real life, a lot of concepts have been

adopted, and one of the most important is the inheritance.

 Inheritance means that the child class can inherit, and get everything that is public in

the parent class automatically. This process minimizes the amount of duplicate code

in an application by putting common code in a parent class and sharing it amongst

several child classes. This process is applied on a “is-a” hierarchy model.

1.1 Problem Statement

 Although this concept solved many issues, there also were some defects. Existing

Inheritance (classical) obligates objects to have the same behavior as the parent class

(ancestor) because when they inherit from a super-class , they get all public attributes

and behaviors from that super-class (even if we do not want some of those

“things”)(A.Pillay,2007), and latter each object can add additional behavior to provide

special action for specific needs. By this way, we can have many identical objects in

the same class. But this does not happen in real life. Taking into consideration that we

want to be as close as possible to real life, where objects can inherit selectively

specific and needed traits (variables/methods) from one or more class as long as they

are compatible, so that we can have different objects for each class.

 Selective inheritance (S.Brinke, 2007, J.Bastian et al, 2005, S.Ghoul, 2011) offers

many of the benefits of multiple inheritance and avoids name overlapping and

repeated inheritance problems, and it limits the amount of information in each object,

so we can focus our attention on the features which are relevant to our interest.

Assume that we have two Classes: Fish class and Mammals class, where:

Class Fish

 {

Live-In-Water ();

Swim ();

Lay-Egg ();

Has-Fins ();

Breath-By-Gills ();

 }

Class Mammals

 {

Live-On-Land ();

Walk ();

Give-birth ();

Has-legs ();

Breath-by-lungs ();

Has-sound () ; }

 3

If we want to create a class Dolphin; which class should it inherit from?

 By applying current OOP inheritance concepts, if Dolphin inherits from Fish and

Mammals that means Dolphin will lay-egg () and give-birth () at the same time, or we

should create a new class called Dolphin to place the required traits, but, why can’t

Dolphin select and inherit just the needed traits (methods/ variables) from Fish and

Mammals as shown in Figure (1-1).

 By achieving this feature we can minimize the number of classes, by allowing the

class to select and inherit specific and required traits from existing classes instead of

building a new class that re-contains traits existing in other classes.

Figure (1-1): Dolphin inherits selectively from Fish and Mammals classes

 Several works have agreed on the importance of using selective inheritance concept

(T.Oplustil, 2002, S.Brinke, 2007), and others have proposed the selective inheritance

as a solution to use in their works (J.Bastian et al, 2005, N.Sakkinen, 2005,

S.Herrmann, 2005).

 To solve the overlapping properties in classical inheritance, semi-selective

inheritance mechanism was suggested, and a simple syntax for it was proposed where

the object can only select parts of what it inherits (T.Oplustil,2002),.

 In Intel IA-32 Specification (J.Bastian et al, 2005), the term conditional inheritance

 4

was used where a parent with the best fit is pre-determined to the object, not the

object who selects the best fit. This will not make the object to be flexible and free to

choose traits implicitly as we aspire.

 Reverse inheritance, which is not supported in the current OOPLs, was proposed in

(N.Sakkinen, 2005) as generalization inheritance. Author argues that it is preferable to

be selective, because not all common features need to be exherited (generalized from

subclasses to super-classes).

 Another case and different approach of using selective inheritance was introduced in

the dynamic view of methods in role class, a callout binding approach is used to bind

methods from a role class to its base (S.Herrmann, 2005). The idea of this binding is

to apply a selective inheritance, where mapping a feature in a callout means that it is

shared between the role and the base, otherwise, it is invisible at the role.

 Due to that importance, and that object oriented programming languages do not

support the selective inheritance feature (S.Brinke, 2007), several studies have been

done on Selective inheritance, the majority relied on the use of genetics concepts, but

two different approaches were adopted: Selective inheritance at class level and

selective inheritance at object level.

 Selective inheritance at class was proposed in (T.Martin, 2004), which means, it is

not the object which selects the desired traits, but the class restricts the traits which

are not desired to be inherited by specifying whether the trait is inheritable or not.

Here, the object will remains forced to inherit all the inheritable traits which mean

that the identical objects problem has not been solved and the object does not have the

permission to inherit only what it needs.

 Selective inheritance and genetics principle have been used also in the multiple

inheritance field (D.Dori, 1994), where instead of inheriting all features from all

ancestors, the object will dynamically select any ancestor subset to inherit from. This

approach is not working on feature selection, as the object will select its ancestors but

it will inherit all their features.

 5

 Selective inheritance at object level is the closest to the real life, where the object is

more flexible, able and allowed to select/ reject required but not contradictory traits

from the ancestor(s) inheritable traits. The explicit and coherent selection or rejection

of any property in the class hierarchy is done according to control rules (J.Meslati and

Ghoul, 1997, S.Ghoul. 2011).

 Non-genetic approach was adopted by (Al-ahmed et al, 1999). Al-ahmad has

addressed the issues related to instance variables and methods in specialization

inheritance, and proposed solutions to inherit with maximum code reuse and

minimum operation redefinition. The proposal has an efficiency problem and it needs

support from the compiler.

 Genetic approaches were adopted in several studies. (J.Meslati and Ghoul, 1997)

introduced the concept of semantic classification. The work proposed the alternation

concept and a genetic program associated with each class to constitute variants of

class. This work uses the concepts of conventional classes, and the object may inherit

from several classes.

 The work (S.Ghoul, 2010) has proposed a model that suggests a platform for

genome evolution and genotype definition process. Where the author has clarified the

fundamental principles of the integrated model for bio-inspired systems, he

demonstrated the relation between the genome and the genotype (Selected traits)

where the latter is a genome with Enabled/Disabled traits. These traits are defined

according to control rules.

 In (S.Ghoul, 2011), the work has introduced several concepts that were not

supported by current Aspect-Oriented paradigm. The author has also provided a

coherent software design methodology that combines the Bio-Inspired approach

together with the Object-Oriented, Aspect-Oriented, and Subject-Oriented

approaches. The work has suggested an implementation for the Genome configuration

(Coherent selected variations), but without modeling the relations between the genetic

concepts; genome, genotype and phenotype, and without studying the control genes/

rules that govern the classification inside the genome and those which control the

selection process.

 6

1.2 Motivation

From the previous studies, we state that several insufficiencies exist:

- Current OOPL inheritance is acting in “is-a” hierarchy, this leads to several

problems (exponentially increased ancestors, conflicts in attributes name

…etc.).

- Same objects of the same class ("whole" conventional inheritance or selective

inheritance on class level).

- Several classes exist to allow objects to collect their properties (Selective

inheritance on object level).

- Objects are complex and have unwanted properties that never used.

- The actual bio-inspired approaches are general and not really modeled.

 Recently, the importance of using bio-inspired (J.Blaylock, 2008, S.Ghoul, 2011,

W.Braynen et al, 2007 and T.Otter, 2005) concepts began to spread and has led all

works to be tended to it.

1.3 Contribution

 So, inspired from genetics, our work aims to deal with the previous problems by:

- Replacing the “is-a” inheritance hierarchy model used in current OOPL by the

“composed by” inheritance model induced by the Genome architecture; where

there will only be one class “composed by other classes” that holds all

properties associated to specific aspect instead of inheriting these properties

from several classes and their ancestors.

- Formally and deeply model the selective inheritance based on the “composed

by” class model.

- Studying the value of “composed by” selective inheritance model relative to

the “is-a” selective inheritance model and the composition of the two models.

- Use and develop the language extension proposed in (S.Ghoul, 2011) for the

current OOPL to be able to implement our approach.

This will lead to:

- Reducing the number of classes.

- Allowing different objects to be instantiated from the same class, which is a

genetic class: the Genome.

 7

- Discharging the object from not useful properties.

 In Figure (1-1) we illustrated a very simple example to explain the actual general

idea of selective inheritance. In Figure (1-2) we illustrate the selective inheritance

using our approach. The figure shows a natural implementation in the flowers which

are seen in many types and colors, where each flower inherits its traits from a

"Genome" class called Flowers. The Flowers Genome is composed of several

traits”Genes”: Colors, Petals, etc. Each trait in turn contains a set of alternatives

“Allele”. One or more alternatives are selected from each trait; selecting a specific

color from all colors alternatives, a specific petal shape from all petals alternatives,

etc., but the selection process depends on several rules and controls and may be

affected by other factors. But the "final gained traits" must be selected in a manner

that ensures their compatibility.

Figure (1-2): Natural Inheritance Process in Flowers

 Selective inheritance is one of the promising concepts in OOP. It can be represented

by several approaches, but in our work, we aim to extend the benefits by getting

closer to the real world and inspiring from the genetics concepts in modeling our

model.

So, our selective inheritance modeling is specified by:

 8

 Genotype Program, to define wanted traits or the most important ones to be

enabled.

 Genotype Program Interpretation process that is governed by several rules to

produce the genotype with wanted and coherent properties.

 Our approach is at a conceptual level, we present as formally as it is required for its

understanding. Its formalization is out of scope of our work. It may be developed

when the idea is largely accepted.

 In the following chapter, we will present the Geometric Shapes inheritance as a

case study for the whole work. In chapter three, we will give an overview on selective

inheritance approaches. In chapter four, we will present our genetic approach to

inheritance modeling. In chapter five, we will show its scientific value and

complexity. At last, in chapter six, we will present implementation issues, evaluation,

and future work. We would like to point out that, all the figures will be presented

using UML notation except those which we clarified their legends.

CHAPTER TWO

A CASE STUDY

 01

In this chapter, we will introduce a case study which will be used as a support to all

our work. Our case study is to illustrate the idea of our approach and not to compute

its value.

In Geometry, Shapes are mainly used. These shapes are classified into several

categories (polygonal shapes like square, curved shapes like circle, etc.); also shapes

can combine between two categories (such as semicircle, crescent, etc.). Any shape

category can also be either flat or solid (balls, cubes, cones, etc.).

Each shape has its own properties (sides, angles, center, etc.) and its special functions

(area, perimeter, etc.). The function for a particular shape has its own body that differs

from other shapes function although they may have the same name; e.g. the area of

the circle is different from the area of the square.

To define any of these shapes using OOP, we must choose the correct class to inherit

the appropriate properties and methods for that shape.

So, if we want a Rectangle, we assume that:

-We have a class called Polygons: -Then, a class Rectangle can inherit from

 the Polygons class, as follows:

After that, in the main class, we instantiate rectangle1, rectangle2 objects from the

Rectangle class, as follows:

As we notice, Rectangle class has inherited all public properties from Polygons class

and it can add new properties (such as Diagonal (), etc.).

Class Polygons

 {

Length, Width, X, Y; // X,Y for center.

Angle1, Angle2, Angle3, Angle4;

Area ();

Circumference ();

Center ();

 };

Class Rectangle: public Polygons

 {

Diagonal ();

….. ;

 }

Rectangle rectangle1, rectangle2;

 00

rectangle1 and rectangle2 will have all public properties that exist in Polygons class

and those which exist in Rectangle class. rectangle1 and rectangle2 are similar

objects in terms of that they have the same properties and methods.

Now, if we have been asked to create a circle Object, we will not be able to use the

Polygons class, so we will assume that:

- We have class called Curved: -And a class Circle that inherits from it:

As we notice, there are similar properties in Curved and Polygons classes. So, to

apply the reuse feature, we can merge repeated properties into one super-class, let it

be Shapes class, and then the two classes Curved and Polygons can be sub-classes

from it, as in the figure (2-1). After that, by using Extension concept each subclass can

add new properties and methods.

Figure (2-1): Shapes super-class and its sub-classes

Because area () and Circumference () for Circle class are different from area () and

Circumference () for Rectangle class; they are not implemented in Shapes class and

Class Curved

 {

Radius, X, Y; // X,Y for center.

Area ();

Circumference ();

Center ();

 }

Class Circle: public Curved

 {

Move ();

… ;

 }

 01

left for the child classes to implement them, this is known as specialization as shown

in figure (2-2).

Figure (2-2): Using Specialization to Implement Methods in Subclasses

Now, let’s create a Cone object. It needs different properties, it consists of a circle and

a pyramid, but as we see these properties exist in the two classes Curved and

Polygons. Cone class can inherit its properties from both classes, but it's still missing

an important one which is the height which makes it a stereophonic. So it will add this

new property. Also, if we want to create a Cube object, it will inherit from Polygons

class and will add the height property. From that we conclude that a new class called

Stereophonic must be created as a super class for Cube and Cone classes, But, what

about Balls and Cylinders classes?

With the growing need for new shapes and properties, new classes will be created,

which makes the hierarchy more complicated, and the objects more complex; for

example, what if circle1 object does not want the method MoveTo () which exists in

the Curved class?

Other types of shapes make the previous classification incomplete, where, Quinary is

a shape that consists of five sides, two of them are parallel, while the rest are not, and

it contains five angles. Assume that we have a class for each kind of polygons, how

many one will we create?

 01

Figure (2-3) shows one simple sample for the shapes hierarchy that may be created, if

we also take into account that there is Parallelogram, non- Parallelogram and Flat

shapes.

Figure (2-3): sample on shapes hierarchy that may be created for Geometry.

CHAPTER THREE

SELECTIVE INHERITANCE APPROACHES

51

Because of the importance and the growing need for selective inheritance, there are

a lot of studies in this area. Approaches are different and the topic has been analyzed

from different aspects. But they always worked on the current inheritance “is-a”

hierarchy model

As is known, inheritance is a process that a child class gains its properties from a

parent class. For that, some approaches have adopted the selection process at the class

level, where the others have done it at the object level. In the following we will

consider these two approaches.

3.1 Selective Inheritance at Class Level

(T.Martin, 2004) addressed some problems associated with computer languages,

and he concludes that there must exist a more useful set of semantic entities which is

capable of providing greater expressiveness and intuitiveness than is available from

conventional computer languages. He provided a program and a method of managing

entities in an Object Oriented environment in which parameters are selectively

inherited from the parent into child responsive to persistent indications of the

inheritability of these parameters stored in a non-volatile memory.

Selective inheritance feature adopted in this work is that it does not require changes

to an underlying database schema. Parameters in a parent entity, which is not desired

to be inherited by a child entity, may be selectively restricted from being inherited.

So, fields which are capable to be inherited are referred to as “gene” fields, while

others are referred to as “non-gene”. This approach requires that the class is who

determines which traits to be allowed\prevented to be inherited by a child. This will

make the object confined to set of traits to inherit them; this will still lead to identical

objects from the same class. Figure (3-1) shows how to use selective inheritance, in

our case study, using this approach.

By the approach, a Shapes, Polygons and Curved entities have been modeled. All

three entities are assigned different types of Areas () and Circumference () methods.

To avoid storing an empty or unused field on Curved or Polygons, the Shapes’ Area ()

and Circumference () fields may be defined as non-gene, while other fields X, Y and

Center () that are common to a Shapes, Curved and Polygons entities may be defined

as genes, and thus inherited into Curved and Polygons. Also, Curved and Polygons

may have an Area () and Circumference () fields that may be a gene or non-gene. And

51

Shape’s non-gene fields are kept from being inherited into the Curved and Polygons.

Through this selective inheritance concept, we avoid any programming errors or

confusion that may happen when an entity has two Area () or Circumference ().

 We conclude that, the parent (class) in this approach holds two types of parameters:

inheritable and non-inheritable, where all the inheritable parameters will be inherited

into child (object). Therefore the object does not have the ability to select only the

parameters that it needs.

Figure (3-1): The Use of Selective Inheritance in (T.Martin, 2004) Work, Using its

own Notations.

Another work (D.Dori et al, 1994) has adopted the selectivity at class level, but it

was in the multiple inheritance field. In conventional multiple inheritance, a subclass

(child) inherits from more than one super class (parent), and so, it will inherit from all

the super classes ancestors - of course will inherit all the features of the super-classes

and ancestor – and there is no option to select specific ancestors. When applying

conventional multiple inheritance many problems may occur, including inheriting a

feature that is a contradictory with other features, or inheriting repeated features.

In this work, an embryonic class notion was used to develop a generalized approach

that allows the class to dynamically select any ancestor subset. The embryonic class

contains a default attribute called ancestor-list, which is a list of ancestors from which

the class inherits its features. An implicit method "Formulate" accepts the ancestor-

list as a parameter and constructs the internal structure accordingly. With selective

multiple inheritance, a class may inherit features from any number m of a given set of

n ancestor classes. Many of this approach ideas were inspired from the inheritance in

51

biological systems where the observed features do not expose the entire genetic

information.

 This approach is convenient for multi- level multiple inheritance. So, by applying

this on the case study that we have, we will be forced to use the special case that the

author talked about, which is the “conventional multiple inheritance”; because all the

n ancestors are active, and no selective inheritance is enabled.

 So, To model Cone class using this approach, we see that, it must inherit from both

Stereophonic-Poly and Flat-Curved classes which they also must inherit from their

ancestors, as mentioned in Figure (2-3), the author said that we can use the model

shown in Figure (3-2/b) which is the same as conventional multiple inheritance,

instead of the model in Figure (3-2/a).

Figure (3-2): Applying (D.Dori, 1994) Approach on our Case Study, Using its own

Notations.

 We conclude that, this approach is dealing with selecting a set of desired classes not

with selecting desired features, beside that, the object is not the one who determines

whom to inherit from and even, the object will still forced to inherit all the features

from the ancestors' subset. Also, this approach is not convenient in all cases.

3.2 Selective Inheritance at Object Level

This approach is the most logical and preferable approach to selective inheritance,

where the object can easily select the needed features from any class(s) that holds that

51

features. Therefore, the approach took two trends: genetic and non-genetic

approaches.

Non-genetic approaches

 In (Al-Ahmed et al, 1999), the selective inheritance concept was used in a

different perspective, where, implementation solutions were proposed to derive a

subclass with reducing the redundancy in representation and reducing the number of

methods redefinition. These solutions were by using suitable names for the class

operations, using inherited names, based on pointer data members, or based on read

and write operations. But an adequate solution that was proposed requires the use of

new language construct to provide better support. So, the proposed solutions require

support from the compiler. Where a new section will be added to the class that lists

the data members to be suppressed followed by the relationships between the data

members to be used for the generation of correct code for the read and write

operations.

 Applying this approach on our case study, is to let square class be able to inherit

from Rectangle class, with maximum code reuse and minimum re-definition,

although they have a different constraint, where in square length = height, as shown

in figure (3-3).

Figure (3-3): Applying (Al-Ahmed et al, 1999) Approach on our Case Study

51

Class Rectangle

{ // Defineing class Rectangle

Public:

Rectangle (float len, float wid): length (len), width (wid) {}

Virtual void NewLength(float len) {}

Virtual void NewWidth(float wid) {}

…….

Rename: //an adequate mechanism to re-name the width & length into side.

Length Side, NewLength NewSide …

Private:

Virtual Length;

Virtual Width;

};

// Class Square that inherits from Class Rectangle.

Class Square: Protected Rectangle

{

Public:

Square (float side) Rectangle (side,side){}

Rectangle:: NewLength;

…

Protected:

Void NewDimensions (float len, float wid)

{

If (len== wid) WtLength(len); // using a proposed solution based on

//read & write operations.

Else // error message

}

Suppress:

Width< Side = Width, Side>

// new section added to list data members to be suppressed followed by

//the relationships between them to be used in correct code generation.

};

 The Rectangle and Square classes are defined as the following:

 In conclusion, this study did not meet the real objective of the selective inheritance

which is the explicit and coherent selection or rejection of any property in the class

hierarchy according to some rules.

Genetic approaches

These approaches are inspired from biological systems especially the genetic

process. Meslati and Ghoul (J.Meslati and S.Ghoul, 1997) have proposed a new

approach to classification which they call semantic classification. In conventional

classification, the class groups objects that have similar structural and behavioural

properties. The similarity between objects is based on their syntactic description as

02

well as on their underlying semantics, which include all abstract features beyond

physical considerations. This kind of classification is not always convenient where

objects that have slightly different profiles must belong to different classes.

By semantic classification, authors mean the possibility of making objects which

have different profiles (i.e. properties) but identical underlying semantics, instances

of the same class. The difference among objects will be achieved by choosing

appropriate properties before creating those objects.

 Since a semantic class contains all possible properties of all varieties belonging to,

a problem may arise if some of these properties are incompatible or exclusive. Thus,

selecting the properties for an object is necessary and must take into account those

incompatibilities. To deal with this situation, authors described the alternation of

properties or classes. Properties alternation is a concept that deals with variety of

properties, whereas classes’ alternation is an intermediate form of specialisation

between simple specialisation and multiple one.

Alternation of properties mainly consists of defining in the same class one or more

properties in multiple versions. Alternatives of the same property are exclusive. A

given object cannot possess more than one version. Thus a definition of properties

that are different for objects of the same class is possible. We distinguish alternation

of structures and alternation of behaviours.

Figure (3-4): Applying Semantic Classification on our Case Study

 Figure (3-4) shows how to apply this approach to our case study. With semantic

classification, the same hierarchy of classes in figure (2-3) may be reduced to only

05

Genetic Program Rectangle

{ // has selected the needed attributes:

X, Y; // to locate rectangle center on X and Y axis.

Width, Height;

Angles;

Area () {Width* Height ;} // has selected one alternative from the area function's alternatives list

Fill-Color () {Red ;} // has selected one alternative from the Fill-color function’s alternatives list

Circumference () {2*(Width+ Height)}; // has selected one alternative from the Circumference

//function’s alternatives list

}

Shapes Rectangle R

// Where R is developed from Shapes Genome by the Rectangle Genetic Program.

one class: Shapes which holds all possible properties for varieties of objects. Here an

alternation appears in the properties red,.., and Blue. Fill-Color is the name of the

alternation. Thus the class Shapes contains objects that have slightly different

structures but the same underlying semantic.

 To derive a Rectangle class from the model in Figure (3-4), it may be as the

following:

And,

The determination of properties that an object of the class holds is based on the

interpretation of a program associated with that object. This program is called

genetic program. It is composed of a set of rules that reject or select properties from

different classes of the Is-A hierarchy resolve conflicts at the same time.

 In conclusion, (J.Meslati and S.Ghoul, 1997) work had reduced the number of

classes where objects that are semantically equivalent but have different syntax are

belonging to same class. It also proposed a resolution to solve names conflict

situations by using alternation concept. But this approach did not propose a full bio-

inspired model. The semantic classification was done on “is-a” hierarchy model

where we aim to work on “Composed by” model. Also, the genetic relations

between genes (features) are not modeled.

The closest works to our approaches are (S.Ghoul, 2010) and (S.Ghoul, 2011).

Where, in the first work, several general principles to model the genetic selective

inheritance were proposed, our work is mainly a development and formalization of

00

Set: (Aspect Class= Implementation, Order=first,

state =experimental)
{// shared methods

 Set () = (scope=shared) {// create set source code};

 ~ Set () = (scope=shared) {// destroy set source

code};

//Multi-defined methods: static (st) & Dynamic (Dy)

//behavior (Bh)
Void initialize ():(Bh=st){ rear = 0};

Void initialize ():(Bh=Dy){ rear = null};

Bool Empty (): (Bh=st){return (rear = 0)};
Bool Empty (): (Bh=Dy){return (head= null)};

…

} // End Set: Implementation

Set: (Aspect Class= Implementation, Order=last,

state =correct)
{// shared methods

 Set () = (scope=shared) {// create a set};

 ~ Set () = (scope=shared) {// destroy a set};

//Multi-defined methods: static (st) & Dynamic (Dy)

//behavior (Bh)

Void initialize ():(Bh=st){ rear = -1};
Void initialize ():(Bh=Dy){ rear = null ; head=null};

Bool Empty (): (Bh=st){return (rear = = -1)};

Bool Empty (): (Bh=Dy){return (head = = null)};

…

} // End Implementation

some of these general guidelines. This work is a general platform for the genome

modeling principles, where the genotype (class variants) is a genome with

Enabled/Disabled traits. After that, objects are instantiations of those variants.

 In our work we will concern and develop only two of the principles introduced in

(S.Ghoul, 2010) work:

o Each artificial entity is a Phenotype developed from a Genotype of a Genome.

o The nature of a Genotype is completely operative.

The work (S.Ghoul, 2011) proposed a bio-inspired approach to support Aspect-

Oriented paradigm. The author has used several genetics concepts including Genome,

Genotype, and Phenotype to support the Aspect-Oriented design. According to that,

the author proposed an extension to OOPL. This extension allows the definition of:

- Different versions of data and methods in the same class.

- Versions compatibility rules, and

- Selective inheritance (definition of configurations).

The following examples (S.Ghoul, 2011) illustrate these extensions.

- Aspect Class Implementation (Several versions support method multiple

definitions).

Each aspect class interface may be implemented by several aspect class

implementations (versions). Each implementation (as seen below) supports method

multiple definitions (source code).

- Aspect Class Control

An aspect class control is composed of logical assertions ensuring the coherence of

aspects inside an aspect class interface, and in the whole

02

Queue: (Aspect Class= Configurations)

{
 Config: (Name=Default){};

 Config: (Name=CL_Aspect)
 {

 Require {(View=CL)};

 Imply {(DataStr=Persistent)};

}// End CL_Aspect

 Config: (Name=LL_Aspect)

 {
 Require {(View=LL)};

 Reject {Size, Full()}

}// End LL_Aspect

}// End Queue: Definition

aspect class interfaces hierarchy (the whole design)

- Aspect Configurations

An aspect class configuration includes different configurations of object by

composing aspects. Each configuration ensures the generation of objects with the

aspect it encompasses.

 So, this work uses the precedent extensions in its implementation. In our work we

will develop these extensions

Set: (Aspect Class= Control)

{
Type

 {

Aspect Class = <{interface, implementation, control, configuration, global, client}, 1>}

 Scope = <{shared, sparated},1> ;
 Bh = <{st,Dy},1> ; // Defining behavior alternatives.

 Datastr = <{st,Dy,Temp,pers},2> ; // Defining Datastr alternatives.

 Order = <{first, last, experimental },1> ; // Defining Order alternatives.
 State = <{correct, experimental },1>; // Defining State alternatives.

 }

Exclude // Defining the Exclude relations
 {

 (Bh=Dy) <¬> (Bh=st);

 (Datastr=st) <¬> (Datastr= Dy)

 (Datastr=Temp) <¬> (Datastr= Pers);
}

Imply // Defining the Imply relations

 {
 (Bh=Dy)  (Datastr = Dy);

 (Bh=st)  (Datastr = st);

}

Default // Defining the Default relations
 {

 (Bh=st), (Datastr = st, Temp), (state=correct), (order= last)

}
}// End Set: Control

CHAPTER FOUR

A GENETICS-BASED APPROACH TO

INHERITANCE MODELING

 52

As we mentioned, in our approach to inheritance modeling we aim to be as close as

possible to the real world. For that, we inspired from the genetics processes which are

the basis of living organisms. This was to solve many problems that object oriented

languages did not solve, or to modify some concepts to be more efficient in use.

Selective inheritance, which is one of the inheritance properties, that is not

supported by any of object oriented languages, is offset by the genetic genotyping

process which is the main process in producing organisms with different

characteristics in our real life. Both, selective inheritance and genotyping are the

processes of selecting desired traits and functions from a set of all possible

characteristics.

 In our work, we will develop and formalize in depth the genetic concepts introduced

in (S.Ghoul, 2010).Our study is limited mainly to the two following principles:

o Each artificial entity is a Phenotype developed from a Genotype of a Genome.

o The nature of a Genotype is completely operative.

4.1 Some New Definitions

 In the following Table (4-1), we will present some basic conventional OO concepts

and their new redefinitions in our work: Class, attribute, method, composition,

inheritance, and instance.

 52

Genetics-Based Concepts Conventional OO Concepts

We use the semantic class definition introduced

in (J.Meslati and S.Ghoul, 1997), where the

semantic class groups objects which may have

different structural and behavioural properties.

But each object owned properties are subset of its

class properties. So, a semantic class groups

together objects holding subsets of its properties

Figure. The following definition shows its

syntactic structure.

Class class-name

{

 // attributes alternative definition

 // methods alternative definition

}

In addition, we have added some new concepts as

is it follows:

Class class-name

{

 // attributes alternative definition

 // methods alternative definition

 Control Rules

//definition of rules that govern the classification.

// definition of rules that control the coherent

selection of object properties from the

alternatives.

}

A class is a set of objects that share

common attributes. In other words, the

class groups objects that have similar

structural and behavioural properties.

Objects that have slightly different

profiles must belong to different classes.

The following definition shows its

syntactic structure.

Class class-name

{

 // attributes definition

 // methods definition

}
Class

Each attribute has a set of alternative definitions.

An object may hold coherent alternatives from

each “needed” attribute. It is defined as it follows:

 Class class-name

{

// Attributes:

Atti= alternatives {alt1,alt2… altn};

//Methods

}

It is a specification that defines a data

structure of an object. Values of attributes

form an object state. Each attribute is

defined by a single data structure as it

follows:

Class class-name

{

// Attributes:

Date-Typei atti;

..

// Methods: }

Attribute

 52

Each method (function) has a set of alternative

definitions. An object may hold coherent

alternatives from each “needed” attribute. It is

defined as it follows:

Class class-name

{

// Attributes:

…

//Methods:

 Methi()= alternatives {met1,met2… metn};

}

Subroutine (or function) associated with a

class. In other words, it is an action which

an object is able to perform. It is defined

by a single way as the following:

Class class-name

{

// Attributes:

// Methods:

Date-Typei methi(){ // method body}

}

Method

A semantic class definition may be composed of

other semantic classes’ definitions. An instance of

this class may hold only selected attributes and

methods from selected "composed by classes".

So, It may not include a "composed by" class

components at all, include some part of it, or

include it completely (with one selected

alternative for each component).

The following example illustrates this definition.

class transportation

{

class aerial { };

class maritime { };

class ground { }

…

}

The class Transportation definition is composed

by the classes: aerial, maritime, and ground

definition; which is different from the attribute

composition concept in the conventional object

oriented paradigm.

Each instance may hold its properties selected

from any one of these classes, i.e. the object Ti

defined as it follows:

Composed class uses instance variables

that refer to other objects (simple or

composed). Each class instances holds

these "referred to" objects. The following

example illustrate a “has a” relationship

in pseudo code:

Class brick { .. }

class wall

{

 // Attributes:

 Brick brick1, brick2;

 // Methods:

 wall() // Constructor

 {

 this.brick1 = new brick();

 this.brick2 = new brick();

 }

}

As we can see, “wall” contains a number

of brick attributes. We want each of these

attributes to be a “brick” object. To do

this, we simply instantiate them within the

constructor of the “wall” class. Each of

these brick classes will function as a

normal class but also as an attribute of

“wall.”

Composition

 52

Transportation selectioni Ti

Holds properties defined by the selection

Selectioni

It is based on a selective inheritance program that

selects only needed attributes/methods from a

specific class and its "composed by" classes. This

selection program replace the "Is a" relation,

which define implicitly a total inheritance,

whereas this program defines an explicit and

restrictive inheritance, Figure (4-1/b).

It is based on the “Is-a” relation where a

subclass inherits all the attributes and

methods of its parent class(s) Figure (4-

1/a). Inheritance

An object (O) may be created from a semantic

class (C), according to an explicit program (P)

that selects its needed attributes and methods

alternatives from (C). According to that, objects

created from the same class may differ from each

other. Example:

Transportation selection1 T1 // aerial

Transportation selection2 T2 // maritime &

aerial.

An object is a value of a class, called an

instance of the class and has the

behaviours of its class. According to that,

all objects instantiated from a class are

similar; where they all will have the same

structure (attributes /methods).
Instance

Table (4-1): Comparison between Some Conventional OO and Genetics-Based

Concepts.

Figure (4-1): Inheritance Definition in Conventional OO and in Genetics-Based

Model.

 52

4.2 Each Artificial Entity is a Phenotype Developed from a Genotype

of a Genome
 In the following we will develop a Genome and a Genotyping models from the

selective inheritance point of view.

Genome

The genetic patrimony, genome, of a species includes the definition of all its

possible characteristics (organic, functional, and behavioral) along with the

information controlling their coherence (S.Ghoul, 2010).

Figure (4-2): Genome Model, Versions of Characteristics.

Each characteristic might be developed in alternative ways. Each way constitutes a

version of this characteristic Figure (4-2). So, a characteristic is defined by an allele of

genes; each one is responsible for the development of a version. The physical

development and phenotype of organisms can be thought of as a product of genes

interacting with each other and with the environment.

We detail the above general Genome model Figure (4-2), by the following

“composed by” inheritance Modeled specification.

 03

Genome= {Speciesi, Species -Control-Genes}, i=1 to n.

 // Genome ”Semantic Class” is Composed of a set of Species “Semantic Classes”

controlled by Species Control Genes.

Speciesi = {Specie-Architecturej}, j=1 to n.

 // Specific Species is composed of a set of Specie Architectures.

Species-Control-Genesj = {AreDominantSpecie}.

 // To specify the dominant Specie inside the Genome.

Specie-Architecturej= {Specie-Architecture-Genesk, Architecture-Control-Genes}, k=1

to n.

 // Each Specie-Architecture composed of a set of Specie-Architecture-Genes that are

……controlled by Architecture Control Genes.

Specie-Architecture-Genesk= {Organy, Organ-Control-Genes}, y=1 to n.

 // Each Specie-Architecture-Genes is composed of a set of Organs that are controlled

…..by Organ Control Genes.

Architecture-Control-Genes= {AreImpliedInArchitecture, AreDefaultInArchitecture,

AreExcludedFromArchitecture}.

 // The set of genes that ensure the compatibility inside a Specie-Architecture.

Organy= {Phylogenies-Genes, Ontogenesis-Genes, Epigenesis-Genes, POE-Control-

Genes}.

 // Each Organ “Attribute” is composed of a set of POE Genes that are controlled by

POE--Control Genes.

Organ-Control-Genes= {PerformSameFunctionOrgans, AreImpliedOrgans,

AreExcludedOrgans}

 //The set of Control genes that ensure the compatibility between Organs.

Ontogenesis-Genes = {Organ-Definition-Genes, Organ-Functions-Genes, Organ-

Behavior-Genes, Ontogenesis-Control-Genes}.

 // The set of genes that specify the definition, function and behavior of an organ.

POE-Control-Genes= {AreRelatedToEvolution, AreRelatedToConstruction,

………………………..AreRelatedToLearning}.

 // The set of control genes that classify the genes according to POE axis.

Organ-Definition-Genes= {Coding-Genes, None-Coding-Genes}.

 // Definition genes is composed of two sets: Coding and None coding. We concern

……about the Coding genes.

Coding-Genes= {D-Genem}, m=1 to n.

 // The set of genes that construct the Organ.

Organ-Functions-Genes= {F-Geneq}, q = 1 to n.

 // The set of genes that construct the Organ Functions.

Organ-Behavior-Genes= {B-Gener}, r = 1 to n.

 // The set of genes that construct the Organ Behavior.

 03

Ontogenesis-Control-Genes= {AreRelatedToAspect, AreExclusive, AreImplied,

AreDominant, AreGenotype}.

 //The set of Control genes that ensure the compatibility between definitions, functions

…..and behaviors of an Organ.

D-Genem= {D-Alternatives}.

 //Each Organ Definition Gene has a set of alternatives to be chosen.

F-Geneq= {F-Major-Alternatives, F-Sub-Alternatives}.

 //Each Organ Function Gene has two sets of alternatives: Major set to choose the

.......main alternative from it and a Sub set to choose from it if needed.

B-Gener= {B-Major-Alternatives, B-Sub-Alternatives}.

 //Each Organ Behavior Gene has two sets of alternatives: Major set to choose the

.......main alternative from it and a Sub set to choose from it if needed.

AreRelatedToAspect= {(D-gene, F-gene, B-gene); O1: Organ | D-gene, F-gene, B-

gene O1}

 // AreRelatedToAspect genes: link together the characteristics that are related to a

same aspect. For example, the characteristics related to male sex aspect, the

characteristics related to female sex aspect, etc.

Are Exclusive= {gene1: AreRelatedToAspect; gene2, gene3: Specie-Architecture-

Genes1; alt1, alt2: ALTERNATIVES | alt1 <> alt2 if alt1, alt2 gene1  gene2 <> gene3

if gene3 contradict gene2}, where <> means: exclude, ALTERNATIVES: is any of the

gene alternatives sets.

 // These genes identify the characteristics that are exclusive. A characteristic

excludes another if they are alternatives (elements of the same alternation) or they are

incompatible. For example, the color blue excludes the color green when they concern

eyes (elements of the same alternation) and the beard excludes the female sex

(incompatible).

AreImplied= {gene1, gene2: AreRelatedToAspect; ph: PHENOTYPE | gene1  gene2

if gene1 ph  gene2  ph}, where PHENOTYPE is the physical instance of the

Genotype, and  means: Imply.

 // A characteristic implies another if its presence in a phenotype implies the presence

......of the other. For example, human male sex implies beard and the gruff voice etc.

AreDominant= { f1 :N ALTERNATIVES 

f 2: X Coding-Genes,

f 3: Y Organ-Functions-Genes,

f 4: Z Organ-Behavior-Genes

| altn  ALTERNATIVES; genex  Coding-Genes;

geney  Organ-Functions-Genes; geney  Organ- Behavior-Genes

Dom f1=1..n, Dom f 2=1..X, Dom f 3=1..Y, Dom f 4=1.. Z }

// AreDominant. This relation exists between exclusive characteristics. Dominate orders

them according to their importance and the most dominant must be selected for a

phenotype. If, for any reason, this is not possible, the next (in dominance) is

chosen. For example, the dominance relation between the colors of eyes may be

specified as {black, brown, blue, etc.}.

 05

To simplify this model, Figure (4-3) introduces a tree which explains the genome

structure.

From this model Figure (4-3) and the formalization, we suppose that the Genome is a

Class that consists of all existing species (Humans, Animals, Plants, Microscopic…

etc), beside the species-Control-genes to ensure that one species will be selected.

Each species has its own architecture (construction genes, control genes…) and

architecture-Control-Genes that classify each architecture with its correct related

genes. Each Specie-architecture-Gene contains a list of all organs that are related to

that Specie-architecture and organ-control-genes that control this organs

classification. In each organ, there are lists of its Phylogenies, Ontogenesis and

Epigenesis genes beside the POE-Control-Genes that ensure the correct classification

so that Phylogenies-genes will contain genes responsible about evolution,

Ontogenesis-genes will contain genes responsible about construction and finally,

AreGenotype= {gene1… genen: AreRelatedToAspect; g: GENOTYPE | gene1 … 

genen  g}, where GENOTYPE is the set of enabled coherent genes.

 // This relation links together genome characteristics that define a genotype.

Where:

Gene = {Gene-Non-Coding-Information, Gene-Coding-Information}

 // Each Gene Consists of two information sets.

Gene-Non-Coding-Information = {priority, selection state, activation state}.

 // the set of information that specify the gene state.

Priority = pri, pri Integer

 // Priority identifies the gene order in execution or selection, where dominant gens

……have the first priority.

Selection state = (E) enabled | (D) disable|() not applicable.

 // To specify the gene state during selection process.

Activation state = (A) active | (S) silent.

 // To specify whether to Activate the Gene or to keep it Silent.

Gene-Coding-Information = {organic instructions, functional instructions, control

instructions}.

 // specifying the instructions that determine whether the Gene is for control or

……construction.

 00

Figure (4-3): Genome Structure.

 03

Epigenesis-genes list will contain genes responsible about learning and immune. The

part that concerns us is the Ontogenesis-genes. It contains all genes that construct the

organ which are: Organ-Definition-Genes, Organ-Function-Genes and Organ-

Behavior-Genes. Each gene consists of alternatives to select one from them, but the

overall chosen alternatives must be coherent and compatible.

Genotype

 Genotype is the genetic makeup, as distinguished from the physical appearance

(phenotypes), of an organism or a group of organisms. This makeup is a combination

of alleles of genes that determines a specific characteristics or traits. The chosen

characteristics must be coherent. So, to ensure and control this coherence, the controls

genes in the genome establish and manage dependencies relations between

characteristics.

 In the following we will introduce the dependencies relations for the most common

identified control genes:

o AreExclusivegenes: These genes ensure the exclusion between Enabled and

Disabled genes. The genotype, being coherent by construction, holds normally non

exclusive organs and functions. However, some specific evolution states may

necessitate exclusion between organs and between functions. This is defined by the

following rules:

 Enable organ/definition/function/behavior genes <>

Enable organ/definition/ function/behavior genes

 Disable organ/definition/function/ behavior genes <>

 Disable organ/ definition/function/ behavior genes

Enabling/Disabling an organ/definition gene may exclude enabling/disabling other

organs/definition genes which are, for the evolution semantic, needed to be excluded.

Enabling/Disabling a function/behavior gene may exclude enabling/disabling other

functions/ behavior which are for the evolution semantic, needed to be exclusive

(replacement, incompatibility . . .).

 02

o AreImpliedgenes. These genes ensure the implication between Enabled and

Disabled genes. This is supported by the following rules:

 Enable organ/definition/function/behavior genes 

Enable organ/definition/ function/behavior genes

 Disable organ/definition/function/ behavior genes 

 Disable organ/ definition/function/ behavior genes

Enabling/Disabling an organ/definition gene may imply enabling/disabling others

organs/definition genes (which are related) and their functions genes.

Enabling/Disabling a function/behavior gene may imply enabling/disabling others

functions/behavior genes (with which it collaborates) and their organs definition

genes.

Phenotype

A phenotype is an instance of a given genotype Figure (4-4). In the artificial world,

several phenotypes may be instances of the same genotype. The source code of

Windows Vista and that of Windows XP are two genotypes of Windows Species. All

the executable codes produced from the source code of Window Vista are phenotypes

of this genotype, and all the executable codes produced from the source code of

Window XP are phenotypes of this genotype.

Figure (4-4): Genome, Genotype and Phenotype

 02

4.3 The Nature of a Genotype is completely operative

In this section we present the genes' relations model of the Genotype as shown in

Figure (4-5), see (S. Ghoul, 2010).

Figure (4-5): Genotype

The genotype Figure (4-5) consists of:

- Organic genes offering only one way (allele) for developing each organ, and

generating a phenotype,

- Functional genes offering only one way for each organ function and behavior, and

- Control operators, as those of a species but without the genes controlling the

species evolution and genotype definition. All the genotype genes are silent, except

those controlling the phenotype initialization (Phenotype Init process).

In our work, we explicitly defined a genotype as it follows:

We must specify the name of the wanted Specie, the wanted Architecture and we

Genotype Def genotype-name

{

 Specie-Name;

 // we specify a Specie.

 Specie-Architecture;

 // we specify the Architecture.

 Enable <Organs definition genes, functions definition genes>

 // we specify what to be enabled.

 Disable <Organs definition genes, functions definition genes>

 // we specify what to be disabled.

}

 02

select required organs characteristics and reject undesirable organ characteristics from

a genome, Where:

Enable: Allows a phenotype of this genotype to hold a set of explicitly enumerated

organs and functions definition genes. This set is implicitly augmented by the

genetically implied genes.

Disable: Allows a phenotype to lose a set of explicitly enumerated organs and

functions definition genes. This set is implicitly augmented by the genetically implied

genes. The disabled properties are inactive for that phenotype.

The interpretation of a genotype definition is mainly supported by the control genes

which ensure the coherence of the definition process.

 The interpretation of the genotype definition enforces the following rules:

 Initial state: Elements and coherence

R1. The Genome holds the set of all Specie-Architectures. Each Specie-Architecture

holds an initial set of all its organs with their definitions, functions, and

behaviors genes generated genetically at Specie selection.

R2. Let EnabOrg, EnabDef, EnabFun and EnabBeh be, respectively, the lists of the

organs, organs-definitions genes, functions genes, and behaviors genes to be

enabled.

EnabOrg ← Organs (imposed in Enable clause);

EnabDef ← Organs-definitions (imposed in Enable clause);

EnabFun ← Functions (imposed in Enable clause);

EnabBeh ← behaviors (imposed in Enable clause);

The coherence of EnabOrg, EnabDef, EnabFun, and EnabBeh is checked

separately because there is no Exclude relation between Enabling Organs,

Enabling Organs-definitions, enabling functions and enabling behaviors. This

coherence deals especially with:

(1) The existence of the Organs, Organs-definitions, functions and behaviors in

the associated Specie-Architecture, and,

(2) The verification that the elements of each list do not exclude elements of

the same list.

 02

R3. Let DisabOrg, DisabDef, DisabFun and DisabBeh be, respectively, the lists of

Organs, Organs-definitions, functions and behaviors genes to be Disabled.

DisabOrg ← Organs (discarded in Disable clause);

DisabDef ← Organs-definitions (discarded in Disable clause);

DisabFun ← Functions (discarded in Disable clause);

DisabBeh ← behaviors (discarded in Disable clause);

 The coherence of DisabOrg, DisabDef, DisabFun and DisabBeh is checked

separately because there is no Exclude relation between Disabling Organs. Disabling

Organs-definitions, disabling functions and disabling behaviors. This coherence deals

especially with:

(1) The existence of the Organs, Organs-definitions, functions and behaviors in

the associated Specie-Architecture.

(2) The verification that the elements of each list do not exclude elements of

the same list.

R4. The coherence of EnabOrg with DisabOrg is checked: EnabOrg∩DisabOrg = Ø,

each element of EnabOrg doesn't imply directly or indirectly an element of

DisabOrg, and each element of DisabOrg doesn't imply directly or indirectly an

element of EnabOrg

 The coherence of EnabDef with DisabDef is checked:EnabDef∩DisabDef =Ø,

each element of EnabDef doesn't imply directly or indirectly an element of

DisabDef, and each element of DisabDef doesn't imply directly or indirectly an

element of EnabDef.

The coherence of EnabFun with DisabFun is checked: EnabFun∩DisabFun = Ø,

each element of EnabFun doesn't imply directly or indirectly an element of

DisabFun, and each element of DisabFun doesn't imply directly or indirectly an

element of EnabFun.

The coherence of EnabBeh with DisabBeh is checked: EnabBeh ∩ DisabBeh=

Ø, each element of EnabBeh doesn't imply directly or indirectly an element of

DisabBeh, and each element of DisabBeh doesn't imply directly or indirectly an

element of EnabBeh.

 Enable list processing by scanning genetic relations

 02

R5. The processing of Enable list is obtained, by scanning the Imply relation

according to the dominate order, as it follows:

1. For each element in the EnabOrg, not yet processed, find the Enabled Organs

and put them in EnabOrg.

2. For each element in the EnabOrg, not yet processed, find the Excluded

Organs and put them in DisabOrg.

3. For each element in the EnabDef, not yet processed, find the Enabled (1)

definitions and put them in EnabDef, (2) functions and put them in EnabFun

and (3) behaviors and put them in EnabBeh.

4. For each element in the EnabDef, not yet processed, find the Excluded

definitions and put them in DisabDef.

5. For each element in the EnabFun, not yet processed, find the Enabled (1)

definitions and put them in EnabDef, (2) functions and put them in EnabFun

and (3) behaviors and put them in EnabBeh.

6. For each element in the EnabFun, not yet processed, find the Excluded

functions and put them in DisabFun.

7. For each element in the EnabBeh, not yet processed, find the Enabled (1)

definitions and put them in EnabDef, (2) functions and put them in EnabFun

and (3) behaviors and put them in EnabBeh.

8. For each element in the EnabBeh, not yet processed, find the Excluded

behaviors and put them in DisabBeh.

 We remind that these imply relations have the following form:

Enable organ/organ-definition /function/behavior genes  Enable organ

/organ-definition/function/ behavior genes

Enable organ/organ-definition /function/behavior genes <> Enable organ

/organ-definition/function/ behavior genes

 Disable List processing by scanning genetic relations

R6. The processing of Disable lists is obtained, by scanning the genetic relations

according to the dominate order, as it follows:

1. For each element in the DisabOrg, not yet processed, find the Excluded

organs and remove them from EnabOrg.

 33

2. For each element in the DisabOrg, not yet processed, find the Disabled

organs and put them in DisabOrg.

3. For each element in the DisabDef, not yet processed, find the Excluded

definitions and remove them from EnabDef.

4. For each element in the DisabDef, not yet processed, find the Disabled (1)

definitions and put them in DisabDef, (2) functions and put them in DisabFun

and (3) behaviors and put them in DisabBeh.

5. For each element in the DisabFun, not yet processed, find the Excluded

functions and remove them from EnabFun.

6. For each element in the DisabFun, not yet processed, find the Disabled (1)

definitions and put them in DisabDef, (2) functions and put them in DisabFun

and (3) behaviors and put them in DisabBeh.

7. For each element in the DisabBeh, not yet processed, find the Excluded

behaviors and remove them from EnabBeh.

8. For each element in the DisabBeh, not yet processed, find the Disabled (1)

definition sand put them in DisabDef, (2) functions and put them in DisabFun

and (3) behaviors and put them in DisabBeh.

 We remind that these imply relations have the following form:

Disable organ/organ-definition /function/behavior genes  Disable organ

/organ-definition/function/behavior genes

Disable organ/organ-definition /function/behavior genes <> Disable organ

/organ-definition/function/ behavior genes

 Loop on Enable list and Disable list processing

 R7. Repeat R5 and R6 until all their elements are processed.

 Final state

R8. The result of this interpretation may be one of the following:

- A Failure if coherence errors were found.

- A genome copy if the interpretation successes. This copy contains the

obtained genotype defined by:

o The Enabled genes of Organs, Organs-Definitions, Functions and

Behaviors.

o The Disabled Organs, Organs- Definitions, Functions and Behaviors.

 33

This Interpretation process of the Genotype Program is shown in Figure (4-6).

Figure (4-6): Interpretation process of the Genotype Program.

 When specific specie is needed, its name is sent from a Genotyping-Program,

beside the genome class through an Interpretation Process to select the related specie-

architecture. To solve the problem of not selecting any specie, and to ensure that only

one specific specie-architecture was selected, the parameter is tested with the species-

Control-genes which provide the Dominant Specie, which is a pre-defined value. So,

when two parameter values of two different species have been sent to the object

Genome, the dominant pre-defined specie is selected, and when a null parameter

value has been sent to the object Genome, the dominant pre-defined specie is selected

as default specie. This step prevents the rapid suspension of genotyping process, and

helps in continuing the process to produce a final result that may satisfy the user.

In Genotyping-Program, the architecture, organs, definitions, functions and

behavior must also be specified. And after the interpretation which is governed by the

rules mentioned before, a genotype is created with wanted and coherent

characteristics.

 The following algorithm is the translation of the rules above.

 35

At first, a Genome definition introduced as the following: Genome Class:

 Second, a set of wanted attributes is defined to be enabled, or a set of unwanted

attributes is defined to be disabled. This is achieved by: Genotype Program:

 Then, both the Genome class and the Genotype Program are set as inputs for the

interpretation process to produce the desired Genotype.

Class Genome

{

 Structure

Species= {…

Species-architecture= {…

Organs= {…}

 }

}

Control Rules

Specie-control-genes ();

Architecture-Control-Genes ();

Organ-Control-Genes ();

POE-Control-Genes ();

Ontogenesis-Control-Genes (){…};

}

Genotype genotype-name (output specie-name, specie-arch, enabled,

disabled)

{

Get specie-name;

 Get specie-arch;

Enable < Organs || organ-definition || functions || behavior>;

Disable< Organs || organ-definition || functions || behavior>;

}

 30

Process Interpretation-process (input Genome, specie-name, specie-

arch, enabled, disabled)

{

If specie-name is set to null || more than specie was selected then

 Test-In- Specie-Control-Genes ();

if organ <> null then

 if to-enable then add organ to Enaborg

 if to-disable then add organ to Disaborg

if organ-definition <> null then

 if to-enable then add definition to Enabdef

 if to-disable then add definition to Disabdef

if function <> null then

 if to-enable then add function to Enabfun

 if to-disable then add function to Disabfun

if behavior <> null then

 if to-enable then add behavior to Enabbeh

 if to-disable then add behavior to Disabbeh

// if organ & organ-definition &function & behavior = Null

// then set the dominant ();

 Visit- species-Architecture (specie-arch; species- architecture);

// will select the architecture for required Specie

Test-In-Architecture-Control-Genes (specie-arch, species-Architecture;

arc-genes);

// Will output the architecture genes for required Specie.

Select-coherent-organs (arc-genes, EnabOrg, Disaborg);

// will select and output the compatible organs with enabled ones.

 Select-ontogenesis (Genome, EnabOrg, Enabdef, Enabfun, Enabbeh,

Disaborg, Disabdef, Disabfun, Disabbeh; genotype);

// will select compatible definition, functions and behaviors alternatives

with enabled ones, and produce acopy of Genome with enabled

properties which form the genotype.

 }

To see a full possible algorithm, read (Appendix).

 It is worth to mention that the previous interpretation process will be applied on the

Genome which contains the full set of attributes that are classified into several classes

according to “composed by” relations and there will not be any inheritance relations

between the inner classes. This classification model provides an easy, flexible and

more logical selection of properties. Instead of inheriting from several super-classes

 33

and several ancestors according to the “is-a” hierarchy, in our approach, an object will

select its needed properties from a class that may be an inner class.

 From the algorithm, we notice that the selection process is acting in breadth; while

searching for the appropriate and compatible category class, and in depth while

deepen inside specific category to search for wanted and compatible traits.

4.4 Applying into our Case Study

 The case study in chapter two, Figure (2-3), shows a conventional inheritance case,

as explained before.

 By applying our approach, the hierarchy will be replaced by the model shown in

Figure (4-7) through the following steps:

 We tend to have a "Genome" class Geometric-Shapes that can produce all

shapes exist in geometry including circles, squares, triangles, rectangles and

others.

 Any shape in geometry may be consists of sides or it may consists of curves or

it may be a three-dimensional. So, our Geometric-Shapes will be composed by

the following “Species”: Curved, Polygons and Solids classes, beside the

Species-Control-Genes that defines the Dominant Species, for instance, the

dominant = Curved.

 As each “Species” is composed by several “Architectures”, the Curved class

in turn can be composed by the following “Architectures”: Regular shapes

(circle, ellipse, etc.) and Irregular shapes (Crescent, etc.), Polygons also can be

composed by several “Architectures” classes which are Quadrant that contains

all shapes that have four sides (square, rectangle, etc.), More-Quadrant that

contains all shapes that consist of more than four sides (quintuple, hexagonal,

etc.) and Less- Quadrant that contains shapes that have less than four sides

(triangle, etc.), and Solids class is composed by Surface class that contains all

three-dimensional shapes that consists of surfaces (cube, Pyramid, etc.) and

Non-Surface class that contains all three-dimensional shapes that don’t consists

of surfaces (cone, dome, cylinder, etc.).

 32

 Each Architecture is composed by several Species-Architecture-Genes, for

instance, Regular Architecture will be classified into circle and ellipse,

Irregular Architecture will be classified into crescent, cycloid, etc. Beside that

there are the Architectures-Control-Genes that specify the shapes according to

their specific architecture.

 Each Species-Architecture-Genes is composed by a number of “Organs” beside

the Organs-Control-Genes that group all the relative organs. For instance, the

square will be composed by sides, angles, center, etc. the circle will be

composed by radius, center, etc. and so on.

 Each Organ contains its Organ-definition-genes, Organ-function-genes, and

Organ-behavior-genes along with their “Genes” alternatives. For instance, the

square has four sides, each side has a color that may take one of alternatives’

list {blue, black, etc.}, a style {liner, dashed, etc.}, etc. also, square has an

area() that may take one of alternatives’ list {(height *width), side
2
 , etc}, and

Ontogenesis-Control-Genes that links the organs with the following relations:

AreExclusiveGenes, AreImpliedGenes, etc.

 Producing desired shape can be done by just specifying Species, Specie-

architecture along with the required shape characteristics; for example if we want to

instantiate a Rectangle object, we must specify:

- Specie-Name: Polygons.

- Specie-Architecture: Quadrant.

Then we need to enable needed Organs “Parts”: sides with needed characteristics

length ≠ width, color, style…etc.

After that an interpretation process will produce a complete Rectangle with the

defined properties with all other compatible properties.

As we notice, several different rectangles can be instantiated according to the

Genotyping program.

 32

 Figure (4-7): Shapes Inheriting Using our “Composed by” Approach.

To implement this, we will use an Object Oriented Languages with some extension.

By applying our algorithm, we gain the following:

- Shapes Class modeling:

 32

- Defining requests:

Class Geometric-Shapes

{

 Dominant Curved; // Defines the dominant Species;

Structure: // to define each Species;

 Curved = { // Defining Species 1 };

 Polygons = // Defining Species 2;

{

 Quadrant= // Defining Species2- Architecture1

{ // Defining organs and functions

Sides, height…

Color= alt {red, blue…} end alt;

Line-style= alt {none dashed…};

Area () =alt {area1, area2…}

};

// defining all Species-Architectures for Species 2

};

 Solids= { // Defining Species 3 };

Control-Rules: //Defining the rules that controls the relations

Specie-control-genes ();

Architecture-Control-Genes ();

Organ-Control-Genes ();

POE-Control-Genes ();

Ontogenesis-Control-Genes ()

 {

Enable height  Enable width

Disable curved  Disable radius

Enable area (h*w) <> Enable area (2*r)

 ….

 }

}

 32

- Interpretation process (selective inheritance algorithm) will produce the

following genotype:

Genotyping Rectangle1 ()

{

Polygons; // specifying wanted Species.

Quadrant; // specifying wanted Species-Architecture.

Enable < Length: 4, height: 2, color: blue, area ()>;

// specifying wanted properties.

Disable < angels: rounded, line-style: Straight >;

// specifying unwanted properties.

}

Rectangle1 <Polygon>

{

Enabled < EnabOrg = height: 4, height: 4, width=2, width=2,

 EnabDef= color: blue, line= dashed...

EnabFun= area= h* w, circumference= 2(w+h)...>

// list of the Enabled properties.

Disabled <…………………> // list of the Disabled properties.

}

CHAPTER FIVE

“IS-A” VS. “COMPOSED BY” INHERITANCE

MODEL AND COMPLEXITY

 50

 There is no known algorithm for “Is-a” based selective inheritance. So, it is useless to

compute the complexity of our “Composed by” based selective inheritance. But, we can

compare the complexity of “Is-a” hierarchy model with that of “Composed by” modeled

by our approach.

 In the following, we start by evaluating our “Composed by” inheritance model

relatively to the” Is-a” one. We present the evaluation of the two models based on some

standard complexity metrics. We end by concluding in the possibility of combining the

two approaches “Is-a” and “composed by” in a single one.

5.1. "Is-a" Vs. “Composed by” Inheritance Models

 As we know, current Inheritance concepts used in OOP and all current selective

inheritance approaches are working under the "is-a" hierarchy model.

 This hierarchal model has solved many issues, but on the other hand, led to the

emergence of problems that needed solutions. Some of these problems were resolved in a

holistic, but some others were resolved partially or have been resolved to reach the

nearest satisfactory result.

 For reducing some of the hierarchal model problems, several approaches proposed the

selective inheritance. Some of these approaches helped in solving certain issues. But all

the current selective inheritance approaches have been only applied on the inheritance

"is-a" hierarchy model.

 None of current approaches have worked on the nested class's model, although it

supports inheritance, but is better in organization and protection than the inheritance

hierarchy model. Where, (B.Eckel, 2006) says that with inner classes we have these

additional features:

 Defining inner classes in an outer class may reduce the total number of outer

classes in a software application.

 The inner class can have multiple instances, each with its own state information

that is independent of the information in the outer-class object.

 51

 In a single outer class you can have several inner classes, each of which

implement the same interface or inherit from the same class in a different way.

 The point of creation of the inner-class object is not tied to the creation of the

outer-class object.

 There is no potentially confusing “is-a” relationship with the inner class; it’s a

separate entity.

 So, our work has led us to take advantage(s) of the selective inheritance and the nested

classes. As mentioned, our approach aims to enhance the inheritance hierarchy to the

Genome model by merging all classes associated with the same aspect into one class. As

known, nested classes concept is not new, but the new in our proposal suggests that after

merging those classes, all their features will be classified according to control rules that

ensures a correct classification where each class attribute contains all its possible

alternatives. So, an object can select one or more alternatives from each wanted attribute,

this selection process is also governed by interpretation rules that ensure a coherent

selection. It is important to remind that classified classes inside the Genome have no

inheritance relationships between each other. By this proposal, all concepts used in “Is-a”

hierarchy model can be eliminated.

- The object will be able to inherit more than once from a specific class.

- Polymorphism, Method-Overriding and Method-Overloading concepts can be

eliminated and replaced by Alternatives concept.

- Circle-Ellipse problem will be solved, because both the circle and ellipse objects

will explicitly inherit from the same class, Shapes.

- The object will inherit selectively, which means, it will only have needed

attributes / methods from only needed classes. This will solve the exponentially

increased ancestors’ problem.

 Besides that, this will make the designing easier, where the designer will not be forced

to be aware of each class implementation; he just must identify the needed properties and

the correct Genome (through the Genotyping Program), and the process of producing a

coherent object will be finished by itself (through the Interpretation Process).

 52

5.2 Complexity Measurements

 The higher level of complexity requires more efforts in maintaining the software. In our

work we will concern in classes, where, in software estimation and maintenance, the

normal class complexity was claimed to be measured in term of the number of lines in

code (LOC) which means the size of class, but there is no consensus on the idea that high

class size is necessarily resulting in class complexity. Other metrics for complexity of

classes is the structural and functional relationship among class elements (S.Tee, 2009):

 It should be noted that the degree of functional complexity is higher in the event

that more class element interaction is found in a class.

 Structural complexity is done by using the UML representation.

Inheritance hierarchy

 Inheritance is claimed to reduce the amount of software maintenance and to ease

testing. But some researches indicated that a system not using inheritance is better for

understandability and maintainability than a system with inheritance (F.Sheldon et al,

2002). Because the inheritance is a hierarchy model, many metrics were investigated to

measure the complexity. Some of these metrics are:

 The depth of inheritance tree (DIT), which in other words means, the number of

ancestors that can affect a class. By this metric, it was agreed that the deeper the

hierarchy, the better reusability of classes, but the higher the coupling between

classes making it harder to maintain the system. For that, designers tend to keep

the inheritance hierarchy shallow.

 The number of subclasses that inherit methods from super-class (NOC). Where,

the greater number of subclasses, the greater ability to reuse, but the potential for

improper abstraction for the super-class.

 The number of ancestor classes (NAC) from which a class inherits in the

hierarchy. This metric was a developed to the DIT metric.

 Weighted methods per class (WMC), coupling between object classes, response

for class, lack of cohesion in methods, and metrics for maintainability and

understandability are also different metrics used to in complexity measurements.

 53

DIT (Shapes) = 0,

DIT (Curved) = DIT (Polygons) = 1,

DIT (Stereophonic-Curved) = DIT (Flat-Curved) = (Flat-Polygon) = DIT (Stereophonic-

Polygon) = 2,

DIT (Parallelogram) = DIT (Non- Parallelogram) = DIT (Cone) = DIT (Cylinder) =3,

DIT (Dome) = DIT (Square) = DIT (Rectangle) = DIT (Hexagonal) = 4.

NOC (Shapes) = 2,

NOC (Curved) = NOC (Polygons) = NOC (Flat-Polygon) = NOC (Stereophonic-Polygon) =

NOC (Flat-Curved) = NOC (Parallelogram) = 2,

NOC (Stereophonic-Curved) = NOC (Non- Parallelogram) = 1,

NOC (Dome) = NOC (Square) = NOC (Rectangle) = NOC (Hexagonal) = NOC (Cone) =

NOC (Cylinder) = 0.

NAC (Shapes) = 0,

NAC (Curved) = NAC (Polygons) = 1,

NAC (Stereophonic-Curved) = NAC (Flat-Curved) = NAC (Flat-Polygon) = NAC

(Stereophonic-Polygon) = 2,

 Also, the more super classes your subclass inherits from, the more maintenance you are

likely to perform. If one of the superclasses happens to change, the sub class may have to

change as well.

 So, while there is no single metric to measure the quality for a program that is using

inheritance hierarchy, (F.Sheldon et al, 2002) has developed two simple metrics that

measure the understandability and modifiability for class inheritance hierarchy.

 If we applied the conventional metrics on the case study that we have in chapter two,

see Figure (2-3), taking into account that this case study is a simplified example of what

the Shapes tree can be in fact, we deduce the following:

- By applying DIT metric:

- By applying NOC metric:

- By applying NAC metric:

 54

NAC (Parallelogram) = NAC (Non- Parallelogram) = 3,

NAC (Square) = NAC (Rectangle) = NAC (Hexagonal) = 4

NAC (Cone) = NAC (Cylinder) = 5,

NAC (Dome) = 6.

U (Shapes) = 1,

U (Curved) = U (Polygons) = 2,

U (Flat-Polygon) = U (Stereophonic-Polygon) = U (Flat-Curved) = 3,

U (Stereophonic-Curved) = 3,

U (Parallelogram) = U (Non- Parallelogram) = 4,

U (Dome) = 7,

U (Square) = U (Rectangle) = U (Hexagonal) = 5,

U (Cone) = U (Cylinder) =6.

AU= (1+2+2+3+3+3+3+4+4+7+5+5+5+6+6) /15 = 59/15 = 3.93

 These metrics do not compute the total complexity for the hierarchy tree; they compute

the complexity for each class separately. So, as mentioned, (F.Sheldon et al, 2002)

extended new two metrics for maintainability (understandability and modifiability) of

inheritance “directed acyclic graph” (DAG), where two functions are mainly used:

 PRED (i): the total number of predecessors of node (class) i,

 SUCC (j): the total number of successors of node (class) j.

Now, by applying the average degree of understandability (AU) which is defined by:

Understandability (U) of class (Ci) = PRED (Ci) +1

AU= (



t

i

CiPRED
1

)1)(() / t

 Where, t is the total number of classes in the class inheritance DAG.

 And by applying the average degree of modifiability (AM) which is defined by:

Modifiability (M) of class (Ci) = U (Ci) + SUCC (Ci) /2

AM = AU + (


t

i

CiSUCC
1

)2/)(() / t

 55

SUCC (Shapes)/2 = 14/2 = 7

SUCC (Curved)/2 = 3/2 =1.5

SUCC (Polygons)/2 = 9/2 = 4.5

SUCC (Flat-Polygon)/2 = 5/2 =2.5

SUCC (Stereophonic-Polygon)/2=2/2=1

SUCC (Flat-Curved) /2=2/2 =1

SUCC (Stereophonic-Curved)/2 = ½ = 0.5

SUCC (Parallelogram)/2 = 3/2 =1.5

SUCC (Non- Parallelogram)/2 = ½ =0.5

SUCC (Dome)/2 = 0/2 =0

SUCC (Square)/2 =0/2 =0

SUCC (Rectangle)/2 =0/2 =0

SUCC (Hexagonal)/2 = 0/2 =0

SUCC (Cone)/2 =0/2 =0

SUCC (Cylinder)/2=.0/2 =0

AM= (3.93) + (7+1.5+4.5+2.5+1+1+0.5+1.5+0.5) /15

 = (3.93) + (20/15) = 5.26

Nested classes

 Several metrics were used to find the complexity for inner classes. One of them is the

metric which was developed in (S.Tee et al, 2009) that measures the complexity from the

perspective of breadth and depth of inner classes. The complexity (C) value for inner

classes is derived from the sum of breadth (b) to depth (d) ratio of the classes, where:

bi: is the number of classes at level i.

di: is the level i.

Complexity (C) =


n

i di

bi

1

, where n is the number of levels.

 Figure (5-1) explains the meaning of breadth and depth of inner classes. In Figure (5-1/

a) we see that the outer class “Class 1” contains three inner classes “inner A, inner B and

inner C” at the same breadth. These inner classes are defined at the same level of depth.

But Figure(5-1/b) shows an outer class “Class 2” that contains immediate inner class

“Inner D” that contains immediate inner class “Inner E” that also contains immediate

inner class “Inner F”. We notice that the inner classes are defined at different level of

depth.

 56

Class class1

{

Class innerA {};

Class innerB {};

Class innerC {};

}

Class class2

{

Class innerD

{

Class innerE

 {

Class innerF {};

};

 };

}

Figure (5-1): Inner Class Complexity from the Perspective of Breadth and Depth.

The structures of Class1 and Class2 may be as follows:

We want to clarify that in our case study we have taken a small portion of the Geometry

shapes’ full tree, and we have calculated the complexity for this portion that only

produced the following six classes Dome, Square, Rectangle, Hexagonal, Cone and

Cylinder. So, to be fair in our calculation, we will only consider the same portion after

applying our approach on the case study as in Figure (5-2) which was deducted from

Figure (4-7), we notice that we have an outer class " Geometric-Shapes " that contains

two inner classes: Polygons and Solids. Each inner class does not inherit from any other

inner class, and contains several inner classes; for our example Polygons class will

contain Quadrant and more-Quadrant, Solids class will contain No-Surfaces. So, all

inner classes we gain are defined at multiple breadth and depth. Now, we will try to apply

this metric on our approach:

 57

Breadth (b1) at level (1): 1,

Depth (d1) at level (1): 1,

Breadth (b2) at level (2): 2,

Depth (d2) at level (2): 2,

Breadth (b3) at level (3): 3,

Depth (d3) at level (3): 3,

Then:

Complexity (C) =
2

2

1

1

d

b

d

b
 +

3

3

d

b
 =

2

2

1

1
 +

3

3
 = 3

Figure (5-2): Deducting a Portion from Figure (4-7) that is Relevant to the Portion in the

Case Study

When comparing between the two approaches complexity, we can see the big difference

in calculations results for the benefit of our approach.

5.3. Combining between our Approach and the "is-a" Hierarchy Model

 Some may ask why we have omitted the inheritance relations between inner classes, or

in other words, why we can not combine the inheritance hierarchy inside our approach as

shown in figure (5-3).

 58

Figure (5-3): Combining "is-a" Model with “Composed by” Model.

 In our work, doing that combination is not useful and not logical; where we classify the

classes according to control rules, so that each class will contain its related inner classes

and all its related properties, and each property has a set of alternatives, for that there will

not be any necessary for using the “is-a” hierarchy. An aim of our work was to eliminate

several problems that have been resulted from using the hierarchy such that conflict

names, huge number of ancestors and super-classes and many other issues that are well

known.

 If we look at the case study implementation illustrated in figure (4-6) we see that the

Geometric-Shapes contains Curved, Polygons and Solids where each one has its own

inner classes, which makes the inheritance relation between them not logical because ,for

instance, there is nothing to inherit from Curved into Polygons and vise versa. Also, if we

took a close look inside the Polygons we will see several classifications: Quadrant,

More-Quadrant and less-Quadrant classes, each class contains the associated properties,

functions and behaviors that differ from the other classes. For instance, the Square has a

different properties and functions from the Triangle, so it will gain its needed properties

from the class Quadrant, wherefore; Quadrant does not inherit from any other class, and

so on.

CHAPTER SIX

IMPLEMENTATION ISSUES,

 EVALUATION AND APPLICATION AREAS

06

Genome_Aspect_Name :(Genome Class= Configuration)

{

 Config: (Name=Dominant) {};

 Config: (Name= Specie-Namej)

 {

 Archi:(Specie-Architecture-Namei)

 {

 Require {

structure (st1=<al1,al2…>, st2< al1,al2…>,…);

function (st1-fun=<al1,al2…>, st2-fun< al1, al2…>,…);

behavior (st1-fun-be=<al1,al2…>, st2-fun-be < al1,al2…>,…);

 }; //End Require

 Imply{

structure (…);

function (…);

behavior (…);

 }; // End Imply

 Exclude{

 structure (…);

function (…);

behavior (…);

 }; // End Exclude

}// End Archi: Architecture-Namei

 }// End Config: Specie-Namej

 Config: (Controls)

{

Cont:(Specie-Control){};

Cont:(Architecture-Control){};

Cont:(Structure-Control){};

}; // End Config: Controls

}// End Genome Configuration

In this chapter, we will present an implementation of our work using a language

extension that produced in (S.Ghoul, 2011) work, we will evaluate our work

according to several criteria, we will suggest several extensions to our work as a

future work, and finally we will present some of the areas where our work may be

applicable in.

6.1 Implementation Issues

Our approach helps in reducing the number of classes, instantiating different objects

from a class without the need of adding any methods/ attributes after creating these

objects to distinguish them from each other.

In the following, we will propose how a Genome and Genotype Program may be

implemented in an object oriented language depending on the work (S.Ghoul, 2011).

Genome Implementation

06

Function Genotype genotype-name ()

{

Specie-Name=…;

Specie-Architecture=…;

Enable set={structure (st1=<alj>, st2< ali>,…);

function (st1-fun=<alk,…>, st2-fun< alm, …>,…);

behavior (st1-fun-be=<alk,…>, st2-fun-be < alm,…>,…);

 }

Disable set={structure (st1=<alj>, st2< ali>,…);

function (st1-fun=<alk,…>, st2-fun< alm, …>,…);

behavior (st1-fun-be=<alk,…>, st2-fun-be < alm,…>,…);

 }

} // End Genotype

Where,

o Dominant: if no Specie-Name were selected in the genotype program, then the

dominant Specie is assigned where it holds all its coherent attributes.

o Require: defines all the structures, functions, and behaviors with all their

possible alternatives that must be imposed in the selected Specie/ Architecture.

o Imply: defines all the structures, functions, and behaviors with their possible

alternatives, which may be implied by the imposed attributes.

o Exclude: Imply: defines all the structures, functions, and behaviors with their

possible alternatives, which may be eliminated from the Specie/ Architecture

by the imposed attributes.

Genotype Implementation

Where,

o Enable set: to define the attributes (structure, functions, and behavior) that

wanted to be enabled.

o Disable set: to define the attributes (structure, functions, and behavior) that

wanted to be disabled.

6.2 Evaluation Criteria

Since there are several approaches for selective inheritance concept, each approach, as

we mentioned, has adopted it from a different point of view, and also, each approach

has its defects. In our approach we tried to overcome these defects.

The comparison between these approaches, must take the following evaluation criteria

into account:

06

 Genetic class: The approach possibility of grouping classes into one class, in

order to reduce the number of classes.

 Selection at class level (non-inheritable traits): the approach possibility to

allow the class to make some properties unable to be inherited.

 Properties classification: the approach possibility of grouping alternatives of

the same property.

 Conflict situation resolution: the approach possibility of controlling selection

process to prevent the selection of contradictory properties.

 Selection at object level: the approach possibility of allowing object to

dynamically select wanted but coherent traits.

 Selection rules / control rules: does the approach provide rules that govern and

control the selection process.

 Fully Bio-inspired: has the approach fully modeled the Genetics concepts

which are the Genome, Genotype, and Phenotype and their control Genes.

Where, several different Genotypes can be generated from the Genome, and

several different Phenotypes can be instantiated from each Genotype. In

computing world, the Genome offsets a “Software Database”, the Genotypes

offsets the “Views” that can be generated from the Software Database, and the

Phenotype offsets the “Instances” from each View.

Table (6-1) shows a comparison (based on the above criteria) between our proposed

approach and the previous studied ones.

As we can see, our approach achieves the previous criteria where:

 Genetic class: inspiring from Genome, our approach used a “Composed by”

class that contains all classes related to specific aspect.

 Selection at class level (non-inheritable traits): each class has its control genes

which are unable to be inherited.

 Properties classification: each property, function, and behavior has been

classified, so that each one has a list of alternatives to select from it.

 Conflict situation resolution: control’s genes at each class, control the

selection process to prevent the selection of contradictory properties.

06

Table (6-1): Comparison between our Approach and the Previous Approaches

 Selection at object level: inspired from Genotype, our approach allows the

object to dynamically select wanted but coherent properties through the

“Genotyping Program”.

 Selection rules / Control rules: inspiring from the control’s genes, our

approach provides rules that govern and control the selection process through

the “Interpretation Process”.

 Fully Bio-inspired: to be a full genetics-based approach, our approach has

fully modeled the genetics concepts which are the Genome “a Composed by

class”, Genotype “object with needed properties” and their control Genes,

beside an Interpretation Rules “Selective Inheritance”.

6.3 Application Areas

Our concepts are closer to real life than the concepts adopted in current OOP, the

number of classes is reduced, the variation in the same class is supported, and the

inheritance is more powerful and practical than it is now in the Conventional OOP.

This approach is needed in any application that significantly uses the inheritance, so,

it can be applied to select the best object parameters in any object-oriented computer

environment. As an example, in hardware field, (the micro-architecture is usually

designed and tested with the aid of a software simulator) where designing, testing, and

producing a new computer processor is complex, (J.Bastian et al, 2005) has proposed

 Criteria

Approach

Genetic

class

Selection

at class

level

Properties

classification

Conflict

situation

resolution

Selection

at object

level

Selection

rules /

control rules

Fully

Bio-

inspired

S.I at Class

Level
× × × × × ×

S.I at

Object

Level

Non-

Genetic
× × × × × ×

Genetic
 × × ×

Our Approach

06

a specification of INTEL IA-32 using an architecture description language that

selectively pre-determined the parent with the best fit to the object.

Also our approach may be applied in several works: Software Process Modeling,

Software Reengineering, Software Reuse and relational databases. The results may be

original and promising.

CHAPTER SEVEN

CONCLUSION AND FUTURE WORKS

 66

7.1 Conclusion

 Through the studying of the inheritance used in current OO, we found that it does

not mimic the natural (real life) inheritance process as was claimed. In our approach,

to eliminate all current OO inheritance’s problems, we used the Genetics concepts to

model a selective inheritance that is closer to our natural life. In our model, an object

can be created holding only desired and necessary properties and methods. This

approach is young and new, it will be formalized and evaluated when it is largely

accepted.

7.2 Future Works

Our work can be extended and developed in future to:

o Accidents study (error handling).

o To model the other type of genotyping; which is a genetic interaction with the

environment. It is based on merging a given genome with another introduced

from the environment.

o Mutation and genotype.

o Work in depth inside the gene where there are silent and active genes that may

work an essential role in the genotype evolution process.

o Evaluating our model according to the memory requirements, time needed to

initialize an instance, and tightly coupled feature.

REFERENCE

 86

Al-Ahmed,W and Steegmans, E, (1999). Improving Support for Specialization

Inheritance. In Journal of Object-Oriented Programming, January 1999, pp.29-36.

Anban Pillay, (2007). Object Oriented Programming using Java . Adapted from

Introduction to Programming Using Java. School of Computer Science,University

of KwaZulu-Natal, February, 2007.

Bruce Eckel, (2006). Thinking in Java (4th Edition) book.

Dov Dori, Erez Tatcher, (1994). Selective multiple inheritance. IEEE software, 1994.

F.Sheldon, Kshamta Jerath and Hong Chung, (2002). Metrics for Maintainability of

Class Inheritance Hierarchies. Journal of Software Maintenance and Evolution:

Research and Practice, Ref:SMR249/24343ae, 2002.

Joe Blaylock, (2008). Luis Rocha's Agent-Based Model of Genotype Editing.

January, 2008.

J. Bastian and S. Õnder, (2005). Specification of Intel IA-32 using an Architecture

Description Language, IFIP International Federation for Information Processing,

2005, Volume 176, Architecture Description Languages, Pages 151-166.

J. Meslati, Said Ghoul, (1997). Semantic Classification:A Genetic Approach To

Classification In Object-Oriented Models. 1997.

NeedMarkku Sakkinen, (2005). Wishes for object-oriented languages. Invited paper at

LMO 2005, Bern, 9 March 2005.

S. Ghoul, (2010). Bio-inspired Systems-An Integrated Model. Misc2010-Constantine,

30-31 May, 2010.

S.Ghoul, (2011). Supporting Aspect-Oriented Paradigm by Bio-Inspired Concepts.

Fourth International Symposium on Information & Communication Technology,

IEEE, 2011.

 86

Sim Hui Tee, (2009). Developing a Complexity Metric for Inner Classes. Journal of

Theoretical and Applied Information Technology, 2005 - 2009 JATIT.

Stephan Herrmann, (2005). Programming with Roles in ObjectTeams/Java. American

Association for Artificial Intelligence, 2005.

Steven te Brinke, (2007). First-order function Dispatch in a Java-like programming

language. Master of Science dissertation, University of Twente, January, 2011.

Tim Otter, (2005). Genotype, Phenotype and ontogeny. GECCO'05,june 25-29,2005,

Washington, DC, USA.

Timm Owen Martin, (2004). Selective inheritance of object parameters in object-

oriented computer environment. U.S patent, march, 2004.

Tomas Oplustil, (2002). Inheritance of SOFA Components. Master Thesis, Masaryk

University, 2002.

Will Braynen, Simon Angus, Paul Dwyer, Mollie Poynton, Alejandro Balbin, and

Risi Kondor, (2007) . Genotype or Phenotype? The conflation of two concepts in

evolutionary agent-based modeling. supported by the Santa Fe Institute through

NSF Grant No. 0200500 entitled "A Broad Research Program in the Sciences of

Complexity.”, 2007.

Wikipedia.org/wiki/Circle-ellipse_problem, (2012).

APPENDIX

17

The following is a full algorithm for each function:

Void Test-In- Specie-Control-Genes (input specie-name; output specie-architecture);

{

 If specie-name = null

 Specie-name= AreDdominant specie ();

 Choose specie-architecture (specie-name);

}

 Void Visit- species-Architecture (input specie-arch; output species- architecture)

 {

Species- architecture is object;

Read specie-arch;

Choose the correct species- architecture;

 }

Void Test-In-Architecture-Control-Genes (input specie-arch, species-Architecture;

output arc-genes);

{

While species-Architecture not empty ()

{

AreImplidInArchitecture(specie-arch);

 Put in arc-genes;

AreExcludedFromArchitecture(specie-arch);

 Remove from arc-genes;

if organ & organ-definition &function & behavior = null

 AreDefaultInArchitecture(specie-arch);

 Put in arc-genes;

}

Output arc-genes;

}

Void Select-coherent-organs(input arc-gennes,EnabOrg, Disaborg)

{

 while Enaborg & Disaborg not empty()

{

read organ

Visit Species-Architecture-Genes (arc-genes,Enaborg, Disaorg)

 }

Test-In-Organs-Control-Genes (Enaborg, Disaorg; coh-org);

Add coh-org to Enaborg;

}

Void select-ontogenesis(input Genome, EnabOrg, Enabdef, Enabfun, Enabbeh,

Disaborg, Disabdef, Disabfun, Disabbeh; output genotype)

{

While Enaborg not empty()

{

Read organ

17

 While Enabdef & Enabdef & Enabbeh not empty()

{

Read organ-definition, function,behavior;

Visit Organi (Enabdef, Enabfun, Enabbeh);

If Test-In-POE-Control-Genes (Enabdef, Enabfun, Enabbeh) is true ;

 Visit-ontogenesis-Genes (Enabdef, Enabfun, Enabbeh);

}

 Test-In-Ontogenesis-Control-Genes (Enabdef, Enabfun, Enabbeh;coh-alt);

 While coh-alt not empty()

 {

Visit-Organ-Definition-Genes (organ-definitions; d-alternatives);

Visit-Organ-Function-Genes (functions, f-m-alternatives, f-s-

alternatives);

Visit-Organ-Behavior-Genes (behaviors, b-m-alternatives, b-s-

alternatives);

}

}

AreGenotypeGenes();

}

void Visit Species-Architecture-Genes (input arc-genes, Enaborg, Disaorg)

{

 Read arc-genes, Enaborg, Disaorg;

}

void Test-In-Organs-Control-Genes (input arc-genes, Enaborg, Disaorg; output coh-

org)

{

 while arc-genes not empty()

 {

PerformSameFunctionsOrgans(Enaborg)

AreImpliedOrgans(Enaborg)

 Put in Enaborg;

AreImpliedOrgans(Disaborg)

 Remove from Enaborg;

 AreExcludeOrgan(Enaborg);

 Remove from Enaborg

AreExcludeOrgan(Disaborg);

 Remove from Enaborg

}

Coh-org= Enaborg;

}

Void Visit Organi (Enabdef, Enabfun, Enabbeh)

{

 read Enabdef, Enabfun, Enabbeh;

}

17

Test-In-POE-Control-Genes (Enabdef, Enabfun, Enabbeh)

{

 if AreRelatedToConstruction (Enabdef, Enabfun, Enabbeh)

 Then true;

}

Visit-ontogenesis-Genes (input Enabdef, Enabfun, Enabbeh; output ontogenesis-gens)

{

 read Enabdef, Enabfun, Enabbeh;

}

Test-In-Ontogenesis-Control-Genes (input ontogenesis-gens, Enabdef, Enabfun,

Enabbeh, Disabdef, Disabfun, Disabbeh;coh-alt)

{

 while ontogenesis-gens not empty()

 {

 While Enabdef& Enabfun & Enabbeh not empty()

Applying Rules:

AreRelatedToAspect();

AreImplyed()

{

 definition in Enabdef  enable definition in ontogenesis-gens;

 function in Enabfun  enable function in ontogenesis-gens;

 behavior in Enabbeh  enable behavior in ontogenesis-gens;

 put in coh-alt;

 definition in Disabdef  Disable definition in ontogenesis-gens;

 function in Disabfun  Disable function in ontogenesis-gens;

behavior in Disabbeh  Disable behavior in ontogenesis-gens;

 remove from coh-alt;

}

AreExclusive()

{

definition in Enabdef <> enable definition in ontogenesis-gens;

 function in Enabfun <> enable function in ontogenesis-gens;

 behavior in Enabbeh <> enable behavior in ontogenesis-gens;

 remove from coh-alt;

 definition in Disabdef <> Disable definition in ontogenesis-gens;

 function in Disabfun <> Disable function in ontogenesis-gens;

behavior in Disabbeh <> Disable behavior in ontogenesis-gens;

 remove from coh-alt;

}

if two or more contradictory definitions then AreDominant();

if two or more contradictory functions then AreDominant();

if two or more contradictory behaviors then AreDominant();

AreGenotypeGenes()

17

{

 Genotype= Set of { specie-arch; arc-genes; Enaborg (Enabdef (d-alternative);

 Enabfun(f-m-alternatives, f-s-alternatives);

 Enbbeh(b-m-alternatives, b-s-alternatives))

}

}

Visit-Organ-Definition-Genes (input coh-alt; output d-alternatives)

{

 while coh-alt not empty()

 If definition-gene then select on alternative from definition alternative;

 Put in d-alternative;

}

Visit-Organ-Function-Genes (input coh-alt; output f-m-alternatives, f-s-alternatives)

{

while coh-alt not empty()

 If function-gene then

{

select on alternative from Major-function-alternative;

 Put in F-m-alternative;

select on alternative from Sub-function-alternative;

 Put in F-s-alternative;

}

}

Visit-Organ-Behavior-Genes (input coh-alt; output b-m-alternatives, b-s-alternatives)

{

while coh-alt not empty()

If behavior-gene then

 {

select on alternative from Major- behavior -alternative;

 Put in b-m-alternative;

 select one alternative from Sub- behavior -alternative;

 Put in b-s-alternative;

}

}

 مــلــخــص

التسلسل الهرمي نموذج على تعمل والتي (OOP) البرمجة الموجهة الحالية في المعتمد التقليدي الميراث مفهوم

"is-a" ، وحيث . العيوب لديه بعض (OOP) بعيود ، فإنهوا تولالواقو الحيوا قربوا مو أكثور تحاول أن تكوون

 .علم الوراثة مبادئ كل البعد ع

 الفئوة اصلول فوي عوام كول موا وو حصول علوىوت يمكو أن تورث (child class)الفرعيوة فئوةال ي أنتعنو وراثوةال

parent class)) فوي حياتنوا حقوا موا يحودث تحواكي لكنهوا ،العديد مو الماواكلقامت بحل العملية ذه .تلقائيا،

مفهووم وذا يعنوي أن .ة اصلولالفئ المطلوبة م الصفات على فقط الحصول يستطي (object) كل كائ أن حيث

 .متطابقة كائنات يولدانتقائي و ليس التقليدي الوراثة

فوي قودمت اصعموال التويفوإن ، "is-a" التسلسول الهرموي نمووذج يعمول علوى أن مفهووم الوراثوة التقليودي وبسوب

 .الهرمي على ذا النموذج أيضا تمت ا نتقائي مفهوم الميراث

بود مو ”Composed by“ ي مبنوي علوى نمووذج انتقوائ وراثوة مفهووم إلى ت في عملناالجينا م ا ستيحاء أدى

ت سوماالكول يحمول الوذي "الجينووم "المطلوبوة مو الصوفات يوتم اتتيوار ،فوي علوم اصحيواء حيوث. "is-a" نمووذج

 .”Composed by“ علاقةوفقا ل عد إلى طبقات تلك الصفات وتصنف معي ، لجان المخصصة

 الوراثوة وي أفضول مو ”Composed by“ النمووذج علوى التوي تعمول ا نتقائيوة الوراثوة تبوي أن يم،التقيو بعود

 ."is-a"التسلسل الهرمي ا نتقائية المبنية على نموذج

 منهجية مبنية على علم الجينات لنمذجة الوراثة

 بواســطة

 د حمودةدارين موسى محم

 بإشــراف

 سـعـيد الغول. د.أ

 قدمت هذه الرسالة استكمالاً لـمـتطلبات الحصول على درجة

 الــمـاجـسـتير في عـلـم الـحـاسـوب

 عـمـادة البحث العلمي والدراسات العليا

 جامعة فيلادلفيا

 2102آذار

