

A Textual Software Product Lines Design Model By

Mixing Class and Feature Concepts

By

Ola Abdel Raoof Younis

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

2013

II

فيلادلفيا جامعة

 نموذج تفويض

أو للمكتبات رسالتي من نسخ بتزويد فيلادلفيا جامعة أفوض ، علا عبد الرؤوف سليمان يونسأنا

 .طلبها عند الأشخاص أو الهيئات أو المؤسسات

 :التوقيع

 :التاريخ

Philadelphia University

Authorization Form

I am, Ola Abdel Raoof Suliman Younis, authorize Philadelphia University to supply

copies of my thesis to libraries or establishments or individuals upon request.

Signature:

Date:

III

A Textual Software Product Lines Design Model Mixing

Class and Feature Concepts

By

Ola Abdel Raoof Younis

Supervisor

Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the

Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

2013

IV

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

V

Dedication

I dedicate this work to my husband Dr. Mohammad Alomari,

Who encouraged me all the way to reach this point, with his personal support, great

patience at all times, and his endless love and support….

 Ola A. Younis

VI

Acknowledgment

It would not have been possible to write this master thesis without the help and support

of the kind people around me, to only some of whom it is possible to give particular

mention here.

Above all, I would like to express my thanks and sincere gratitude for who has guided

me through my study and my thesis work; my supervisor prof. Said Ghoul, for giving

the wisdom, strength, support and knowledge in exploring things.

I would like to thank my family members; Parents, brothers, sisters and my children

Omar and Aya for giving me their unequivocal support throughout, as always, for which

my mere expression of thanks likewise does not suffice.

Also, I am grateful for those who supported me and encouraged me in any way; my

teachers at Philadelphia University, my friends and my superiors and colleagues at

work.

 Ola A.Younis

VII

Table of Contents

Subject Page

Dedication V

Acknowledgment VI

Table of Contents VII

List of Tables IX

List of Abbreviations IX

List of Figures X

Abstract XI

CHAPTER ONE: INTRODUCTION 1

 1.1 Preface 2

 1.2 Research Context 3

 1.3 Problem Statement 5

 1.4 Motivation 6

 1.5 Contributions 7

 1.6 Thesis layout 7

CHAPTER TWO: CASE STUDY 8

 2.1 Introduction 9

 2.2 Set’s Features 10

CHAPTER THREE: APPROACHES MIXING CLASSES AND FEATURES

MODELS 12

 3.1 Introduction 13

 3.2 Features modelling fundamentals 13

VIII

 3.3 Models mixing classes and features 18

 3.4 Thesis contribution 22

CHAPTER FOUR: A TEXTUAL MODEL MIXING CLASSES AND

FEATURES 23

 4.1 A Textual Design Methodology (TDM) 24

 4.2 TDM Features Concepts 25

 4.3 TDM Object-oriented Concepts 31

 4.4 TDM Mixing Class and Features Concepts 32

 4.5 A product Instance: case study 35

 4.6 Discussion 41

CHAPTER FIVE: IMPLEMENTATION ISSUES, EVALUATION AND

APPLICATION AREAS 42

 5.1 Introduction 43

 5.2 Implementation issues 43

 5.3 Application areas 43

 5.4 Evaluation 44

 5.5 Conclusion: perspectives and future works 51

References 52

 55 ملخص

IX

List of Tables

Table

Number

Table Title Page

5-1
TDM Concepts vs. conventional related approaches 44

5-2 Comparisons with other's work 50

List of Abbreviations

Abbreviation Full Name

SPL
Software product line

DSL Domain specific language

OO Object oriented

FTR Features_Types relation

FTF Features_types feature

GR Global relation

GF Global feature

CR Control relation

ConR Configuration relation

ConF Configuration feature

OOPL Object oriented programming language

TDM Textual SPL design methodology

X

List of Figures

Figure Number Figure Title Page

Figure 1-1 Software product line spaces 2

Figure 2-1 Multiple implementations of methods 9

Figure 2-2 Multiple definition with multiple sub-classes 10

Figure 2-3 Features' implementations grow hugely 11

Figure 3-1 Feature modelling main relations 14

Figure 3-2 Meta-Features Model 15

Figure 3-3 Features Meta-Model 15

Figure 3-4 Feature Model 16

Figure 3-5 Feature Diagram 16

Figure 36 Features Configuration (stack example) 17

Figure 3-7 CLAFER Example for Mixing Class and Feature 19

Figure 3-8 CLAFER Configuration Instantiation 19

Figure 3-9 Bio-inspired Class and Aspect Model 20

Figure 4-1 A Textual SPL Design Methodology (TDM) 24

Figure 4-2 Meta-Features Model (graphical representation) 25

Figure 4-3 Meta-Features Model (textual representation) 26

Figure 4-4 Features Meta-Model (graphical representation) 26

Figure 4-5 Features Meta-Model (textual representation) 27

Figure 4-6 Features Types 27

Figure 4-7 Features Global 28

Figure 4-8 Features Control 29

Figure 4-9 Feature Configuration 30

Figure 4-10 Instantiation of Feature Model from Feature Meta-Model 31

Figure 4-11 Graphical representation for class interface 31

Figure 4-12 Class Interface and Class implementation (textual representation) 31

Figure 4-13 Interface Meta-Model (graphical representation) 32

Figure 4-14 Interface and Implementation Meta-Model (textual representation) 32

Figure 4-15 Product Model (graphical representation) 33

Figure 4-16 Product Model (textual representation) 33

Figure 4-17 TDM Variability Model 34

Figure 4-18 Set Feature Types (graphical representation) 35

Figure 4-19 Set Features Types (textual representation) 36

Figure 4-20 Set Global Feature (graphical representation) 37

Figure 4-21 Set Global Feature (textual representation) 37

Figure 4-22 Set's Control Features (graphical representation) 38

Figure 4-23 Set's Control Features (textual representation) 38

Figure 4-24 Set Configuration feature 39

Figure 4-25 "Set" Product Model 40

XI

Abstract

Designing software product line (SPL) is very important for increasing system

reusability and decreasing cost and efforts for building components from scratch for each

software configuration.

Several approaches handled SPL engineering process with several techniques. The

most famous one was done by separating the commonalities and variability for system’s

components to allow configuration selection based on user defined features. These

approaches deal with all software development phases, but the challenge and important

phases are design and implementation.

Textual notation-based approaches have been used for their formal syntax and

semantics to represent system features and implementations. But these approaches are still

weak in the mixing features (conceptual level) and classes (physical level) that guarantee

smooth and automatic configuration generation for software releases.

In this thesis, we will enhance SPL process by defining meta-features that captures

the most important characteristics of feature modelling concepts, and classifying these

features according to their functionalities. We will allow mixing class and feature concepts

in a simple way using class interfaces and inherent features for smooth move from feature

model to class model.

SPL process will be enriching with a textual design and implementation methodology

mixing class and feature model in new way. This methodology allows class model to be

declared in a way that reflects features model concepts with consistent mixing with feature

model. It enhances configuration generation process to be simpler, more coherent and

complete.

1 CHAPTER ONE: INTRODUCTION

2

1.1 Preface

Designing product lines process has received potential attention recently. This is due to

the need of decreasing software product line steps and increasing system reusability.

Software Product Line (SPL) is the process of developing products’ components from

pre-defined core assets rather develop each component individually (Jézéquel, 2012).

Software Product Line (SPL) approaches attempt to increase system’s productivity by

designing a set of products that have many commonalities and shared characteristics,

which leads to increasing system’s reusability. On the other hand, SPL aims to identify

and manage the variations among the products (Marco and Sybren, 2007).

Product line commonalities and variabilities are composed together in the Domain

Space model as feature models, these models form the basic structure for future releases

and system variant products (Jézéquel, 2012). A linked model named Solution Space is

connected to the Domain Space to represent the real assets for variability elements

associated with some rules to ensure valid selection and consistent system release

generation (Marcilio et al., 2009). The relation between domain space and solution space

is bi-directional; there is always a domain space needs a solution space, and for any

solution, there is always a need to return back to the domain for better understanding.

Figure 1-1 shows software product line spaces.

Figure 1-1 Software product line spaces

3

Several techniques are used to model domain space and solution space. Feature

modelling is the most famous technique for this purpose (Jézéquel, 2012; Marco and

Sybren, 2007). For modelling solution space, class models are used with some other

options like Domain Specific languages (DSL) compilers, generative programs and

configuration files (Laguna and Marques, 2009).

In the following sections, we present the context of our research, the problem for which

we propose a solution, and motivation and contribution of this solution.

1.2 Research Context

This thesis deals with mixing classes and features modelling, so its research context

shows SPL and variability approaches, object oriented (OO) approaches, and mixing class

and feature modelling approaches.

 Software product line and variability approaches: Over the past few years, several

research contributions were reported to handle SPL variability process. They can be

classified according to SPL’s development methodology (requirements, analysis, design,

and implementation) or the techniques they used to represent variability (text, graph, or

mixed).

Approaches that support design and implementation steps (Gunther and Sunkle, 2012;

Kacper, 2010; Kacper et al., 2011; Savinov, 2012; Stephan and Antkiewicz, 2008; Thaum

et al., 2012) were developed to cover feature models that show the design phase of the

product and class models that show the implementation phase.

Other approaches support SPL engineering in other steps like requirements and

analysis. Alone, or in conjunction with others steps, these approaches (Acher et al., 2013;

Asikainen et al., 2006; Gunther and Sunkle, 2012; Jézéquel, 2012; Marco and Sybren,

2007; Teixeira et al., 2011) presented variability by analysing the domain of the product

and by the separation of concerns.

In order to handle these contributions, several techniques were developed. Techniques

using graphical syntax and semantics were reported in (Jézéquel, 2012; Laguna and

Marques, 2009; Sarinho and Apolinario, 2010; Sarinho et al., 2012; Stephan and

4

Antkiewicz, 2008; Teixeira et al., 2011). Others approaches that used text notations to

represent variability were reported in (Classen et al., 2010; Ghoul, 2011). Finally, some

researchers proposed mixed approaches (graph notation and text notations) like (Gunther

and Sunkle, 2012; Kacper, 2010; Kacper et al., 2011).

Object-oriented modelling approaches: Approaches that used object-oriented

paradigm (Savinov, 2012; Sim-Hui, 2013) to model variability described system

architecture by package diagrams that used class diagrams. In order to understand these

approaches, their main concepts are briefly introduced in this section.

Concept of class: A class is a set of specifications for a system’s component (Sim-Hui,

2013). It defined the characteristics that this component may have, and the functionalities

it provides. Over the past years, many approaches developed class models and object

models and the relations between them to solve a lot of software programming domain

problems.

Is-a hierarchy: one of the main concepts of object-oriented approach is the “is-a

relation”. It defines a child component as a “is-a” other component. Several problems

were detected using this concept and reported in (Savinov, 2012; Sim-Hui, 2013). One of

its main problem was the unnatural feature definition of child characteristics as parent

characteristics.

Composed-by hierarchy: this approach was presented as a solution for the ‘is-a”

problems. It defines a component by composing other sub-components with different

characteristics and methods. No inheritance relation between these components is defined

using this approach. It is more natural and solves a lot of “is-a” approach problems.

Object (instances): Authors in (Savinov, 2012; Sim-Hui, 2013) defined object as a set

of values for classes components. It is passed by a copy of class structure with final values

added to it.

Mixing classes and features modeling approaches: Several approaches (Ghoul, 2011;

Gunther and Sunkle, 2012; Kacper et al., 2011; Sarinho and Apolinario, 2010; Stephan

and Antkiewicz, 2008) mix feature models with class models to present software product

line engineering process. These approaches designed the variability and commonalities

5

between variants of a product based on features with feature model, and implement these

variations in class model. The mixing was done using several techniques like constraints

additions (Gunther and Sunkle, 2012; Kacper, 2010), relation definition (Ghoul, 2011;

Sarinho and Apolinario, 2010) and references links (Stephan and Antkiewicz, 2008).

These approaches defined the way for instantiating objects (configuration) that

provides the final product (release) from selecting objects based on selected features and

resolving constraints and relations among them.

Approaches supporting SPL requirement and analysis are good for providing general

view of systems’ needs and characteristics, but, they do not support system functionalities

or structural behavioural like approaches covering design and implementation steps.

Graphical object-oriented modelling approaches provide clear representation for system

hierarchy and components relations. While textual object-oriented approaches gives very

strong semantic representation for system components and relations, but it is weak to

represent the hierarchy relations and structure. Both textual and graphical object –oriented

approaches are limited in modelling variability, because of absence of features.

Approaches that mix feature and class models encounter insufficient mixing

techniques. These techniques do not provide powerful languages that mix system’s feature

and variability implementation (Jézéquel, 2012).

.

1.3 Problem Statement

From the above research context, the following challenges may be largely derived:

 Design and implementation approaches are very challenging phases, because

they bridge between conceptual and implementation levels. Researches growth

increasingly in this context.

 Variability design and implementation methodology which are poor if not

absent. Their introduction and specification will lead to a great enhancement of

SPL.

6

 Textual notation – based approaches are more formal syntactically and

semantically than graphical approaches and more uniform than mixing ones.

 Mixing class and features approaches through new weak languages which are

so far to be mature, evaluated, and accepted. Conceptual enhancements and

practice evaluation will promote these valuables approaches to industrial level.

 Configuration generating approaches are complex and aiming to generate

coherent and complete objects. Ensuring the simplicity, coherence, and

completeness of these kinds of objects remain always as open problems.

1.4 Motivation

The work introduced in this thesis is stimulated by the following motivations:

 Lack of methodology supporting design and implementation of variabilities.

 Tackling the above challenges will allow SPL reaching high quality with

moderate cost.

 Feature modelling has to be enhanced by adding meta-feature model classifying

the features into main categories to reduce feature declaration and relation

implementation.

 Class model should be specified in a way that reflects the feature model

concepts and preserves its relations and constrains.

 Mixing feature model with class model has to be enhanced to guarantee fit

representation of feature model and meta-feature model in class

implementations.

 Configuration generation process has to be enhanced ensuring smooth and

smart selection technique that respects feature’s rules and maintains old

configuration for reuse.

7

1.5 Contributions

This thesis, propose new Textual Software Product Lines Design Model, mixing class

and feature concepts, and aiming to bring significant solution elements to the previous

problems, through its specific methodology:

 Provide a formal methodology supporting variability design and

implementation. It bridges between product lines design model and object

oriented implementation model.

 Provide a new concise and rich textual notation for feature modelling and class

modelling.

 Allow simple and natural new way of mixing feature models and class models

using small number of concepts and having uniform semantics.

 Allow simple, coherent, and complete configuration generation as simple class

instantiation.

1.6 Thesis layout

In the following, we will start by presenting a case study which will be used through

the entire thesis chapters, the literature review will be then introduced in chapter three. It

will be oriented to identify insufficiencies that motivated our present work.

Our approach (A Textual Software Product Lines Design Model Mixing Class and

Feature Concepts) will be presented in chapter 4, through the new developed methodology

supporting variability design and implementation. This approach will be evaluated and

compared with others’ works in Chapter 5 in addition to a conclusion and expected future

works.

2 CHAPTER TWO: CASE STUDY

9

2.1 Introduction

In this chapter, we will introduce a case study which will be used as a support to all our

work. Our case study is to illustrate the idea of our approach and not to compute its value.

Class method’s multiple definitions were introduced in several approaches like

software design and subjective programming (Ghoul, 2011). In our case study, we will

take “Set” product as an example.

Set product has several methods and attributes like Size, Data structure, Empty(),

Full(), Print(), and Add(). Each of these can be implemented statically or dynamically. For

an object of this product, it could use the static version of any method or the dynamic

version. Thus, each method should be defined in two different ways; static definition and

dynamic definition as shown in Figure 2-1.

Figure 2-1 Multiple implementations of methods

Set product can be presented with two forms; Stack component and Queue component.

Each of them has set’s characteristics and its own characteristics. Each of these

characteristics may be implemented statically or dynamically (Figure 2-2).

Implementing all these attributes and methods needs to be controlled, and the relations

between them should be reserved during the implementations. The configuration process

10

that requires selecting components with their implementation to create final reliable

releases (such as stack and queue) should reserve the control relations too.

Some of these methods and attributes are shared for all releases configurations, like the

Data structure and empty() method. Thus, their implementations should be in all releases

which lead to multi-implementation.

2.2 Set’s Features

Figure 2-2 Multiple definition with multiple sub-classes

To solve the problem of multi-implementation for methods and attributes, and to

increase software maintainability and problem finding cost, feature implementation

(Acher et al., 2013; Apel et al., 2013; Don, 2005; Kacper et al., 2011; Laguna and

Marques, 2009; Thaum et al., 2012) was reported.

11

These features came from domain analysis, stakeholders’ needs and many other sides

that affect the implementation hierarchy. Some of these features affect other components.

Some of them create new relations. And some of them shares specific characteristics that

are applicable for all components of the system.

Set’s features that can be extracted from its domain are View, Data structure, Scope,

Behaviour, Order… etc. some of these features are shared everywhere in all releases that

may be configured from set’s components. For example, the View feature should be

linked list or closed list in all releases.

Other features control the relations over set’s components. For example, if the

behaviour feature was static, this implies the data structure to be static.

If we will implement all set components and relations according to the feature they

cover, the system will grow hugely, like shown in Figure 2-3.

Thus, we need to classify the features that the set component covers to reflect the

global (shared) features, control features and other features that are included in

configuration process.

Figure 2-3 Features' implementations grow hugely

3 CHAPTER THREE: APPROACHES MIXING

CLASSES AND FEATURES MODELS

13

3.1 Introduction

Large systems that are composed by huge number of different components cover

multiple ideas and variant areas of interests. Thus, each of its components may have more

than one possible value to cover. These values came from domain analysis, stockholders’

needs, system evolution and so many other cases. The ability of a system to be generalized,

specialized or customized (Marco and Sybren, 2007) to perform special needs is called

system variability and specified using feature modelling.

In this chapter, we will review previous work that mixes class models and feature

models for system variability. We start this chapter with listing feature modelling

fundamentals and then overview approaches that mixes class and feature models.

3.2 Features modelling fundamentals

Over years of variability modelling, feature modelling using features diagrams was the

most popular technique to represent variability in clear and meaningful way (Jézéquel,

2012)

Researches adopting feature modelling can be classified in three main groups based on

the technique they used to present their feature models. These techniques are:

o Graph notations based approaches: Some approaches used pure graphical

representation for their feature model’s syntax and semantics like ECORE

(Stephan and Antkiewicz, 2008) and OOFM (Sarinho et al., 2012), and the work

reported by Laguna and Marques (2009), Razieh et al (2012), and Teixeira et al

(2011).

o Text notations based approaches: Other approaches choose to use textual

representation for their feature model’s syntax and semantics like TVL (Classen

et al., 2011) and FEATUREIDE (Thaum et al., 2012), and the work reported by

Arnaud et al (2011).

o Mixing text and graph notations: In order to benefit from graphical and textual

techniques, some approaches mixed them for representing their feature model.

14

These approaches like CLAFER (Kacper, 2010; Kacper et al., 2011) and

RBFEATURES (Gunther and Sunkle, 2012).

In the following we will describe each technique and its main concepts.

Graphical feature modelling consists of tree hierarchy that shows the variable feature as

the head node and the variant features as children nodes (Sarinho and Apolinario, 2010).

The relations between these features mainly are:

o Mandatory: all children must be included in any configurations.

o Optional: this feature can be missed in the configuration.

o Alternative (Xor): exactly one of the children features is accepted.

o Or: at least one of the children features is accepted.

o Propositional constrains: specifies the dependencies relations between

components.

Figure 3-1 shows these main relations graphically.

Figure 3-1 Feature modelling main relations

Graphical representation for feature models main concepts (Razieh et al., 2012) are:

 Meta-Features Model: Previous researches did not mention the Meta-Models

Clearly. They mentioned it as features that may contain more than one sub

features. We were the first to define Meta-Features Model as a design pattern

15

that specifies feature’s structure. It is applicable for all features and general for

all kinds. Figure 3-2 shows a graphical representation for Meta-Feature Model.

Figure 3-2 Meta-Features Model

 Features Meta-Model: Previous researches did not classify their features into

categories that capture the main concepts in the feature model. We defined

Features Meta-Model as a group that contains the main features that will be

included in systems’ release, and classified this model into four main categories.

This model is predefined and domain independent (Figure 3-3).

16

Figure 3-3 Features Meta-Model

 Feature Model: Compact model of features diagram and feature constrains. It is

an instance of the Features with Meta Model (Figure 3-4).

Figure 3-4 Feature Model

 Feature diagram: Graphical representation showing each feature and its relations

with its subs.

Composed

Composed

17

 Figure 3-5 Feature Diagram

 Feature’s configuration: Set of selected features producing a release in SPL.

Configuration is permitted with feature model and preserves features’ constrains.

Figure 3-6 shows an example from our case study for features configuration.

Figure 3-6 Features Configuration (stack example)

Designers do not prefer to use graphical representation for more than one reason

(Classen et al., 2011): firstly, designing feature models using graphical representation is

considered a very boring process and does not reflect the real semantic of system

components. Secondly, graphical representation is very weak in representing system

reasoning process (Marco and Sybren, 2007). Finally, graphical notation is still a “research

prototype” (Classen et al., 2011) and can’t reach text notations for representing feature

models.

Textual feature model got rid of all these notations and modeling languages for

representing features and their relations. They used simple texts composed by grammars,

and propositional formulas (Arnaud et al., 2011) to show model structure and

implementation.

Feature model’s textual syntax was reported in several techniques like GUIDSL (Don,

2005) that represents feature models as grammars. This approach used by the AHEAD

approach (Don, 2005) and FeatureIDE approach (Thaum et al., 2012).

18

Other techniques like SXFM file format (Marcilio et al., 2009), XML and The VSL file

format of the CVM framework (Reiser, 2009) were used to represent the meta-models, and

supported by textual feature models .

Some approaches prefer to mix graph notations with text notations to achieve the best

benefits from both of them.

CLAFER in (Kacper, 2010) presented their feature model as graph notations and

presented a textual representation for their class model. this was the same case for work

presented in (Kacper et al., 2011) and RBFEATURES approach presented in (Gunther and

Sunkle, 2012).

3.3 Models mixing classes and features

Feature modelling used to design system’s variability and communality over its

components (Kacper, 2010). Class models capture the implementation part of the products

by showing the real values and relations over components’ attributes. Thus, mixing both

models (feature model and class model) provides the full picture for SPL’s components.

In this section, we will review the literature works mixing feature models with class

models in two phases:

o How they mix feature models and class models?

o How they instantiate objects (configuration) to create final products?

 CLAFER model (Kacper, 2010) presents a good approach for mixing class model with

feature model based on constraints and inheritance concepts. The feature model was

presented as a collection of type definitions and features (Figure 3-7).

19

Figure 3-7 CLAFER Example for Mixing Class and Feature

The mixing between feature model and class model via constraints is added to class

model as attributes and attributes’ values. The final model is restricted to one configuration

based on the mixed feature. Object instantiation in CLAFER is done by adding constraints

to the feature model resulting as constrained feature model. These constraints restrict the

feature model to single or dual configuration presenting one or more final product

(Figure 3-8).

Figure 3-8 CLAFER Configuration Instantiation

Gunther and Sunkle (2012) reported feature oriented programming language called

RBFEATURES on top of dynamic programming language (ruby).

The class model was reported as a first-class entity and named ProductLine. Mixing

feature model with class model was done via add-feature method.

After creating feature model in RBFEATURES, the ProductLine that is created via

configure method and collects number of conceptual features. It is allowed to set specific

feature configuration with activate_feature and deactivate_feature operations. Final result

is represented in the variable called @feature_tree which is used in a method called

instantiate that creates object after checking some mandatory constraints that guarantee

consistent final product.

20

Sarinho and Apolinario (2010) presented object-oriented feature model that combined

feature models’ concepts with object-oriented concepts. They proposed object-oriented

feature model (OOFM) profile that is composed by feature model and feature modelling

package.

Feature classes were reported in (Sarinho and Apolinario, 2010) with object-oriented

relationships and resources to provide new level of variability documentation. Feature

classes can be declared using feature-class stereotype that creates classes according to

designer’s intentions. This process composed by several steps starting by feature package

creation, followed by OOFM profile mapping and ended by class feature declaration.

Bio-inspired aspect-oriented paradigm was presented by Ghoul (2011) to reflects

biological principles on the artificial systems. The author presented aspect models as

Genomes components and class models that implement them. The mixing was done using

relation between feature models and class models. Object instantiation is done by a

WEAVER component that guarantees the consistency over all components. After that an

adapted design interface will be created and a given object name will be defined.

Figure 3-9 shows an example for bio-inspired model.

Figure 3-9 Bio-inspired Class and Aspect Model

 Stephan and Antkiewicz (2008) reported ECORE , a class model notations that are

presented as feature models. It is composed of meta-model that is created from class model

using ECORE itself. Class model is composed by several sub-classes that are composed by

other sub-classes. Mapping between feature models and class models was done in both

ways: feature to class mapping and class to feature mapping.

21

Class to feature mapping requires implementing all class model notations as feature

notations. This is done by sequential steps mentioned and described in (Stephan and

Antkiewicz, 2008). The opposite mapping is done by specialization steps for feature model

to create class model based on designer intentions using commands like add, remove, and

modify.

 Object model provides a conceptual view of the final product to give designer basic

structure of configuration model. Features in the configuration are presented as children to

abstract features in feature model. The final set of configuration features is considered as a

prototype for object model.

CLAFER (Kacper, 2010) did not mention multiple feature connections and the contrary

relations that may arise during the mixing. Weak representation of features’ possible values

that may construct the feature model was found in CLAFER.

Feature classification was missed in (Gunther and Sunkle, 2012). And there was no

mention for the relations between these features. The class was defined based on

configuration only not based on the features. This makes the process of tracking features’

objects hard.

The OOFM that was introduced in (Sarinho and Apolinario, 2010) and extended in

(Sarinho et al., 2012) did not provide a separation between feature and object model. This

leads to an entangled system.

Aspect-oriented approach (Ghoul, 2011) is restricted for aspect-oriented programming

systems, and may not be applicable for all object-oriented programming systems.

Defining class model and extending it to feature model means that features are restricted

to class model. Adding, removing or modifying features will be hard process since class

model has to be modified each time. Thus, ECORE (Stephan and Antkiewicz, 2008) tool is

not efficient in separating concerns for system features and implementation. Design and

implementation methodologies in the previous approaches are weak or absent.

22

3.4 Thesis contribution

Based on weaknesses mentioned in the literature works presented in the previous

section, we are proposing our model to enhance the actual state of the research domain.

In order to make product line engineering process more natural and simple, and to

capture object oriented approaches’ benefits, we propose a software engineering

methodology bridging product lines design model and implementation model for creating

object oriented SPL and specifying its introduced concepts; Meta-Feature Model, Feature

Meta-Model, Feature Model, Product Meta-Model, Product Model.

After studying feature modelling techniques, we found that textual models have more

advantages than graphical techniques. Thus, we provide a concise and rich textual notation

for feature modelling and class modelling.

This feature model has to be linked with class model in a way that reflects features’

concepts. Thus we will allow simple and natural mixing feature models and class models

using small number of concepts and having uniform semantics.

Finally, we allow simple, coherent, and complete configuration generation as simple

class instantiation.

4 CHAPTER FOUR: A TEXTUAL MODEL MIXING

CLASSES AND FEATURES

24

4.1 A Textual Design Methodology (TDM)

In this section we present our approach for modelling features in SPL systems. We are

aiming to increase system modularization by separating concerns from the variability

components. Thus, four main meta-features were created.

We used the separated approach (Istoan, 2013; Jézéquel, 2012) to represent our model

where the Product model is represented separately from the Feature Model.

In the following, we introduce our textual SPL design methodology (TDM), its features

concepts, its object-oriented concepts, its mixed class and features concepts, its illustration

by our case study, and finally a conclusion on its specification.

The TDM, with graph notations showing its ordered steps for designing variable

software, is shown in Figure 4-1. Graph notations are used only for clarity purposes and not

as syntactical.

Figure 4-1 Textual Design Methodology (TDM) mixing class and feature concepts, using

UML state diagram notations

25

4.2 TDM Features Concepts

In the following, we will present TDM steps. Designing steps are based on pre-defined

features. A new development will be started by instantiating the Features Meta- Model.

This model is composed by four features: Features types, Features Global, Features

Control and Features Configuration.

1. Meta-Features Model: It is a predefined design pattern that defines all features in TDM.

It is the base for features in Features Meta-Model. The graphical structure is shown in

Figure 3-2 (repeated in Figure 4-2).

Figure 4-2 Graphical representation for Meta-Features Model

Figure 4-3 shows the textual representation for this model. Each feature is composed by

a name; to distinguish it from other features, an association component to determine its

associations with other features, a constrain component that specifies constraints may affect

its relations with others, and finally, a Product features that form the real features for it.

26

Figure 4-3 Meta-Features Model (textual representation)

Features Meta-Model: It is the input features design pattern to the methodology. It is

predefined based on Meta-Features Model design pattern. It is domain independent, and we

instantiate feature model (which is domain dependent) from it. Figure 3-3 (repeated in

Figure 4-4) shows a graphical representation for this model, while Figure 4-5 shows the

textual model.

Figure 4-4 Features Meta-Model (repeated)

Meta-Features Model
{
Name: String;
Association: Class;
Constraint: Class;
Product Feature: Feature;
}

27

Figure 4-5 Features Meta-Model (textual representation)

Below, each feature is presented separately showing its graphical and textual

representation.

2. Features Types: This composed (class) feature captures all features (relations and

features) in the system with their concrete values. It is composed by Features_ Types

and Relation_ Types. The former represents all systems’ features (characteristics). And

the later represents all systems’ possible relations.

These features and relations will specify the Global, Control and Configuration

features. Figure 4-6 shows graphical and textual representation of Features Types.

Figure 4-6 Features Types

28

3. Features Global: This composed feature specifies the Global features that will be

shared for all system components. Global features may be relations over components or

just features (characteristics) that must be applicable everywhere. Figure 4-7 shows the

textual and graphical representation for feature Global.

Figure 4-7 Features Global

4. Features Control: This composed feature specifies the controls over all systems’

components and relations. Any configuration should reserve control’s relations to

ensure system consistency. This feature is composed by relations only, and its main

goal is to keep systems’ components stable and avoid any conflicts. Figure 4-8 shows

graphical and textual representation for feature Control.

29

Figure 4-8 Features Control

5. Features Configuration: This composed feature specifies required and discarded

features for a product configuration (release). Figure 4-9 shows the graphical and

textual representation for Feature Configuration.

Features Types, Global, Control and Configuration together compose the Features

Meta-Model of TDM. The second step is creating Feature Model.

30

Figure 4-9 Feature Configuration

6. Features Model: This is an intermediate model between the conceptual part (Feature

Meta-Model) and the physical part (Product Model).

In this model, all features and relations in the Features Meta-Model are instantiated.

These features and relations are software-dependent. A clear view will be provided in the

fourth section.

 Figure 4-10 shows instantiation of Features Model from Features Meta-Model.

Meaning that each Features Meta-Model may have one or more instances in its Features

Model. Thus, the cardinality relation between them is one to many.

31

Figure 4-10 Instantiation of Feature Model from Feature Meta-Model

4.3 TDM Object-oriented Concepts

In this section, we will report the object-oriented concepts that TDM covers through its

Product Meta-Mode (Figure 4-11,Figure 4-12).

Class Interface specifies services provided by a product component. It includes its

provided methods, its attributes (data) and its different implementations’ list.

Figure 4-11shows the graphical representation for Class interface, and Figure 4-12 shows

the textual representation.

Figure 4-11 Graphical representation for class interface

Figure 4-12 Class Interface and Class implementation (textual representation)

32

4.4 TDM Mixing Class and Features Concepts

This section exposes the mix class and features concepts that TDM covers through its

Product Meta-Model and Product Model.

1- Product Meta-Model: It is the product meta-model of object-oriented paradigm mixed

with features (defined from domain), and inherent features (that is defined for each

component based on its properties). It is composed by Interface Meta-Model and

Implementation Meta-Model as shown in Figure 4-13 and Figure 4-14.

Each attribute or method can be defined in several ways depending on the features it

composes. Each time a new feature is added to an attribute, a new definition should be

held.

Figure 4-13 Interface Meta-Model (graphical representation)

Figure 4-14 Interface and Implementation Meta-Model (textual representation)

2- Product Model: This is the final model. It is composed by class interfaces and their

implemented attributes, methods and implementations. Figure 4-15 shows the graphical

representation for this model, and Figure 4-16 shows the textual representation.

33

Figure 4-15 Product Model (graphical representation)

Figure 4-16 Product Model (textual representation)

The full model is presented in Figure 4-17, it shows the composed Feature Meta-Model,

Feature Model and Product Model.

This model is inspired from TDM figure (Figure 4-1) with more details about the

components and Meta- features. The first two parts from this model (Features

Meta-Model and Features model) corresponds to the first state in TDM (feature

definition), while the last part (Product Model) corresponds to the second state in

TDM (Product development).

34

Figure 4-17 Full Model mixing feature and class concepts

35

4.5 A product Instance: case study

Our case study was reported in chapter 2 of this work.

 Set model has several implementations such as: Static stack, static queue, dynamic

stack and dynamic queue.

1- Feature Model: In the following, we present the Feature Model of the “Set Model”,

composed by its Features Types, Feature Global, Feature control and Feature

Configuration.

The first Feature in “Set” Feature Model is Features Types. It defines all the features

in the system with all their possible values.

Figure 4-18 shows the graphical representation for the Features Types, and

Figure 4-19 shows the textual representation.

Figure 4-18 Set Feature Types (graphical representation)

36

Features Types:
{
Name: Feature_Type;
Type: FTF;
Product Feature Scope;
{
Scope.name=Scope;
Scope.Num_of_values=2;
Scope.values[1]=shared;
Scope.values[2]=separated;
}//end of Feature_Type Scope

Product Feature Behavior;
{
Behavior.name= Behavior;
Behavior.Num_of_values=2;
Behavior.values[1]=Static;
Behavior.values[2]=Dynamic;
}//end of Feature_Type behavior

Product Feature State;
{
State.name= State;
State.Num_of_values=2;
State.values[1]=correct;
State.values[2]=experimental;
}//end of Feature_Type state

Features Types:
{
Name: Relation_Type;
Type: FTR;
Product Relation Exclude;
{
Exclude.name=Exclude;
Exclude.Type=bi;
}
Product Relation Defualt;
{
Defualt.name= Defualt;
Default.type=Unary;
}
Product Relation Imply;
{
Imply.name= Imply;
Imply.Type=bi;
}
Product Relation Require;
{
Require.name= Require;
Require.Type=bi;
}
Product Relation Reject;
{
Reject.name= Reject;
Reject.type=Unary;
}
}

// Features Types:continue
Product Feature View;
{
View.name= View;
View.Num_of_values=2;
View.values[1]=Ll;
View.values[2]=Cl;
}//end of Feature_Type view

Product Feature Datastr;
{
Datastr.name= Datastr;
Datastr.Num_of_values=4;
Datastr.values[1]=static;
Datastr.values[2]=dynaic;
Datastr.values[3]=persistent;
Datastr.values[4]=temporary;
}//end of Feature_Type Datastr

// Features Types:continue

Product Feature Order;
{
Order.name= Order;
Order.Num_of_values=3;
Order.values[1]=experimental;
Order.values[2]=first;
Order.values[3]=last;
}//end of Feature_Type order

Product Feature Form;
{
Form.name= Form;
Form.Num_of_values=2;
Form.values[1]=ch;
Form.values[2]=con;
}//end of Feature_Type Form
}

Figure 4-19 Set Features Types (textual representation)

37

The second feature is Features Global. It captures model global characteristics and

relations Figure 4-20 shows the graphical representation for global feature, and

Figure 4-21 shows the textual representation.

Figure 4-20 Set Global Feature (graphical representation)

Figure 4-21 Set Global Feature (textual representation)

Features Global
Name: global_Relation;
Type: GR;
Product Relation Imply_1;
{
Imply_1.parts[1]=view.Ll;
Imply_1.parts[2]=Behavior.dynamic;
}
Product Relation Imply_2;
{
Imply_2.parts[1]=view.Cl;
Imply_2.parts[2]=Behavior.static;
}
Product Relation Imply_3;
{
Imply_3.parts[1]=Form.ch;
Imply_3.parts[2]=Behavior.static;
}
Product Relation Imply_4;
{
Imply_4.parts[1]=Form.con;
Imply_4.parts[2]=Behavior.dynamic;
}
}

Features Global
{
Name: global_feature;
Type: GF;
Product Feature view;
Product Feature Form;
}

38

The third feature is Featurse Control. It is responsible of controlling the relations over

model components. Figure 4-22 shows the graphical representation for control features

and Figure 4-23 shows its textual representation.

Figure 4-22 Set's Control Features (graphical representation)

Figure 4-23 Set's Control Features (textual representation)

Feature Control_Relation
{
Name: Control _Relation;
Type: CR;
Product Relation Exclude_1
{
Exclude_1.parts[1]=behavior.static;
Exclude_1.parts[2]=behavior.dynamic;
}
Product Relation Exclude_2
{
Exclude_2.parts[1]=datastr.static;
Exclude_2.parts[2]=datastr.dynamic;
}
Product Relation Exclude_3
{
Exclude_3.parts[1]=datastr.temporary;
Exclude_3.parts[2]=datastr.persistent;
}
}

39

The last feature is in set’s feature model is Feature Configuration. It stores the

configured releases that had been done previously. For space reasons, we will show static

stack configuration only. Figure 4-24 shows the textual representation for set

configuration feature.

Figure 4-24 Set Configuration feature

2- Product Model: Figure 4-25 shows the final product model for “Set” example.

The figure specifies the “Set” interface, Stack sub-interface, Stack implementation,

and a Stack configuration.

Features Configuration
{
Name: S_stack configuration
Type: ConR;
Product Relation require
{
require.parts[1]=view.cl;
require.parts[2]=state.correct
}
Product Relation reject
{
reject.value=scope.shared;
reject.value=method.print;
}
}

40

Figure 4-25 "Set" Product Model

41

4.6 Discussion

We started this chapter with a textual SPL design methodology (TDM) showing

ordered steps for designing and implementing software.

Feature modelling approach was defined in the second section showing our feature

model. This model is composed by Features Meta-Model that categorizes features into

four categories, and a Product Model that captures system variabilities.

Class model was reported in the third section showing our enhancement on object-

oriented class model by allowing versions of attribute definitions and method

implementations.

Connecting feature model with class model was reported in the fourth section.

We closed this chapter presenting a model instance (Set example) to show the real

implementation for our approach.

5 CHAPTER FIVE: IMPLEMENTATION ISSUES,

EVALUATION AND APPLICATION AREAS

43

5.1 Introduction

In this chapter, we will show the implementation issues for our work. We will discuss

the application issues and areas where TDM can be used. We will evaluate our work by

presenting the concepts that we modify in conventional approaches and define our own

concepts, and compare the work and results we obtained with other works. We will end

this chapter by a conclusion describing the perspectives and future works.

5.2 Implementation issues

The implementation environment of this methodology requires a strongly typed and an

object-oriented programming language. The checking process should guarantee the

correct association between the Meta-Features model, Features Meta Model, Features

Types, Features Global, Features Control, Features Configurations, Product Meta Model,

and Product Model. We needed to add an extension to an existing OOPL, to adopt the

concepts of TDM.

We are building on extensions that were presented earlier in (S. Ghoul, 2011). These

extensions might be processed by any OOPL pre-processor. Configurations can be

created according to its Feature model.

5.3 Application areas

Software engineering process will be strengthened by adding TDM to its feature

modelling techniques, since it is more natural than current conventional approaches in

presenting features and classifying them.

Our approach in highly recommended to be used in any feature modelling area like

configuration management, feature-oriented programming, product family engineering

and software product lines.

Real examples for real systems that may use TDM in their programming is operating

system implementation, multi-agent systems and any system that needs feature

separation and classification.

44

5.4 Evaluation

In the following, we will compare the power of our concepts (new or enhancement of

old ones) and compare our contributions with similar works.

TDM Concepts vs. conventional related concepts: the following table summarizes

the comparison of TDM concepts with others related ones.

Table 5-1 TDM Concepts vs. conventional related approaches

Concept Current approaches Our approach

F
ea

tu
re

s
M

et
a-

M
o

d
e Conventional approaches like (Gunther

and Sunkle, 2012; , 2010; Kacper et al.,

2011; Laguna and Marques, 2009) and

other research works have described

meta-model in term of features that have

more than one sub-features as children.

Features Meta-Model is a structure that

captures system’s most characteristics. This

meta-model is composed by: Features Types,

Features Global, Features Control and

Features Configuration. The relations

between these meta-model features as

specified.

F
ea

tu
re

s
T

y
p

es

Each feature is defined individually. No

support for full declaration for systems’

features.

We present the type of all features, their

possible values and relation declaration in the

composed feature Features Types. It defines

all acceptable cases for the features that

construct system’s variability.

F
ea

tu
re

s
G

lo
b

al

Shared features are not separated as a

unit, but defined in the feature diagram

hierarchy.

Global features are a sub-set from the

Features Types. It defines the shared features

for all system’s components. They are

modelled as a separated model unit.

45

Comparison with similar works: while reading the literature (Gomaa and Shin, 2008;

Istoan, 2013; Jézéquel, 2012; Laguna and Crespo, 2012), we found that feature modeling

approaches can be compared based on several criteria. We selected the most recent and

closest researches to our work, and we choose the most important (from our vision)

comparison criteria to be:

1. Covered steps in software process.

2. Providing concise notation for feature modelling and meta-modelling.

F
ea

tu
re

s

C
o

n
tr

o
l Relations between features are not

separated as a unit, but defined along

with features.

Control features are relations that specify

coherence of configuration. They are

presented as a separated model unit.

F
ea

tu
re

s

C
o

n
fi

g
u

ra
ti

o
n

Configurations represent a set of selected

features from features model that specify

a unique release or system version. They

are presented along with the feature

model.

Configuration features contains relation

between features composing a release.

Features Configuration contains all the

product releases.

R
el

at
io

n

Conventional approaches describe the

relation as a constraint between two or

more components that have to be

reserved.

Relation is a feature that may have several

values and types. We did this to enhance

system’s tractability and maintenance. Since

dealing with relations as features shows them

in a structural and clear way and makes

adding relation process more systematic.

P
ro

d
u

ct

In
te

rf
ac

e

Conventional approaches are weak in

support component’s interfaces. Each

class is created based on its configuration

characteristics.

We created a component interface to increase

the modularization by separating the main

concerns from the concrete components.

46

3. Providing concise notation for class modelling.

4. Allow mixing feature-model and class models.

5. Use minimal number of concepts and have a uniform semantics.

6. Allow variability modelling.

7. Supporting methodology

And the papers used in this comparison are:

A. Clafer: unified modelling language (Kacper, 2010), Features and meta-model

in clafer (Kacper et al., 2011).

B. OOFM- A feature modelling approach to implement MPLs and DSPLs

(Sarinho and Apolinario, 2010).

C. A text based approach to feature modelling (Classen et al., 2011).

D. rbFeatures: feature-oriented programming with ruby (Gunther and Sunkle,

2012).

E. FAMILIAR: a domain-specific language for large scale management of feature

models (Acher et al., 2013).

F. Our model.

In the following subsections, we present the detailed comparison.

Covered steps in software process.

Generally languages are specific to a given step in the software life cycle. These steps

are: Requirements analysis, software architecture, design and implementation.

In (Kacper, 2010), the author presented CLAFER as a unified language for class and

feature modelling. So he covered the design and implementation step very well. Sarinho

et al. (2010) tried to combine object oriented concepts with feature modelling concepts to

produce object oriented feature modelling. They clearly covered the implementation step

but the design step was slightly represented. An implementation-only model was reported

in (Classen et al., 2011) to present a textual feature modelling language. This step and

47

design step were presented in (Gunther and Sunkle, 2012) too in a very tidy way to

show the feature model over a dynamic programming language “ruby”. Acher et al.

(2013) presented FAMILIAR language that covers the requirement analysis step with a

great implementation description for feature and class models.

In our work, we covered design and implementation steps by providing a TDM based

on Features Meta-Model, Feature Model, Product Meta-Model and Product Model, and

enhancing the class model.

Provide concise notation for feature modelling and meta-modelling.

Kacper (2010) presented the feature model as a set of type definitions, features and

constrains. And his work has been extended in (Kacper et al., 2011) to handle feature and

meta- model.

Sarinho et al. (2012) proposed feature model as a part of object oriented feature

model profile. There was no clear graphical notation to explicitly define the feature

model. They used FeatureTypes, AttributeTypes, GroupTypes and Constraints to build

the OOFM profile.

Classen et al. (2011) presented a textual feature model with feature declaration and

hierarchy. This model is composed by features' attributes, constraints and structure. There

was no mention for features' meta- model. In contrast to this, Gunther and Sunkle in their

work (Gunther and Sunkle, 2012) presented a well and very clear feature model including

meta-model and very tidy notation to present systems variation points and their relations.

Acher et al. (2013) decided to use textual scripting language instead of graphical

notations to present their feature model. However, this does not prevent them to use the

graphical notation in some small parts of their models.

In our work, a clear Feature Model including Feature Meta-Model was presented in

chapter 4 showing four main categories for capturing any system features. The Meta-

Model provides a features design pattern which may be used in designing any variable

product.

48

Provide concise notation for class modelling.

Class modelling is a very significant phase. It provides a good description for system's

structure and specifies the relations between its classes. Kacper in (Kacper, 2010; Kacper

et al., 2011) gave a brief description for this model with a “telematics system”. This

example was very poor with semantic that describes the system functionality.

Sarinho et al. (2012) presented feature class model as the main component of the

object oriented feature model they propose. The authors reported that their class model

shows different type of attributes and methods.

Classen et al. (2011) and Acher et al. (2013) works did not mention class models

directly. They only focused on feature models. Even Acher et al. in their work (Acher et

al., 2013) described all class's components (attributes, methods, values and types,

encapsulation), but they didn't specify a concise notation for class modelling. In contrast

to this, Gunther and Sunkle in their work (Gunther and Sunkle, 2012) presented class

models in a very good way (class numbers, class operations …..).

In our work, we enhance the object oriented paradigm by providing generalized view

for attributes and methods versions. Each attribute or method may have several versions

that reflect the domain features.

Allow mixing feature-model and class models.

Mixing between feature model and class model presents a new model that consists of

object oriented and features model together. Kacper (2010) did not support this in his

work. But a map between feature model and class model was presented by adding

constraints to the feature model to show class model.

Sarinho et al. in their work (2012) mixed class model and feature model in object

oriented feature model profile with all OO relations and resources. This step was missing

in the work reported in (Classen et al., 2011) and (Acher et al., 2013), since they don’t

have class model representation. Gunther and Sunkle (2012) presented a class model

separately from feature model. There was no mixing. In our work, mixing feature model

with class model was supporting by extending class concepts with feature concepts. Each

class interface, class implementation, attribute, and method possesses a set of features

allowing its selection in a configuration.

49

Use minimal number of concepts and have a uniform semantics.

Using minimal number of concepts to represent the system and having a uniform

semantics is a very powerful point for any proposed language. It minimizes the system

complexity and confusion. Kacper in his works (Kacper, 2010; Kacper et al., 2011) didn’t

mention this point during description CLAFER. Each case was presented separately with

its syntax and semantic.

Sarinho et al. (2012) used object constraint language to present the object oriented

feature model semantics supplied with a very good example representation. Classen et al.

(2011) presented a very strong semantic for their feature model that exceeds original

feature model semantics. But they didn’t show any effort to minimize these notation and

concepts to have a uniform semantic.

Gunther and Sunkle (2012) tried to minimize concepts by decomposing feature model

into several components like first-class entities (feature, feature model, product line,

product variant and validations), helper entity and other components that format a

uniform semantic for their rbFeatures model. Acher et al. (2013) did not presented a clear

semantic representation. Even the authors tried to represent their language’s constructs

like (values and types, storage and variables… etc.) but the concepts were scattered and

does provide a uniform semantic.

We extend the OO model only by supporting variability at attribute and method level.

This variability was supported attaching features to attributes and methods versions. the

feature meta model, the features model, and the product meta model are only as ordinary

required for syntax and semantics analysis.

Allow variability modelling.

Variability modelling provides a deep view of concrete features (values) for feature

model that system may contain and present the physical model for the system. It is very

clear that Kacper in his work (Kacper, 2010; Kacper et al., 2011) did not support this

kind of modelling since the last model was presented is class model.

Sarinho et al. (2012) approach mixed variability and class model in the term of feature

modelling package, that contains all resources and relations over the entire system. TVL

model that reported by Classen et al. (2011) didn’t provide a direct variability model. It is

50

hidden in the feature model they presented in their work. This is in contrast to the work

reported in (Gunther and Sunkle, 2012), where variability model was clearly and strongly

presented using UML notations and formally specified its syntax and semantics. Acher et

al. (2013) presented this model textually without a uniform pattern of syntax to show the

variation point and its possible values.

In our work, we believe that variabilities are important to show systems’ possible

cases and functionalities. So we provide with the feature model a variability model

representation to show the possible values for each feature.

Supporting methodology

None of the presented works have developed a design and implementation

methodology for software configuration. Configurations were done individually without

any formal way.

In our work, a textual design and implementation methodology was presented shown

ordered steps for software configuration.

This comparison is summarized in Table 5-2 Comparisons with other's work). The

comparison criteria are numbered from 1-7 and the papers used for the comparison are

from A-G. Symbol means strongly supported. Symbol means not supported, and

symbol means weak supporting.

Table 5-2 Comparisons with other's work

Paper/

Criterion
Clafer OOFM Classen et al.

rbFeatures

FAMILIAR

Our

approach

1

2

3

4 . .

5

6

7

51

5.5 Conclusion: perspectives and future works

Through our study about feature modeling and SPL engineering, we found that current

feature models did not support feature modularization and separation. We found that

linking feature models with class models is still weak and does not reflects feature

model’s concepts, and there is a lack in variability design and implementation

methodology.

In section 1.5, we proposed 4 contributions to be done during this thesis. The first

contribution was clearly done through the textual feature design methodology that

supports software product line engineering. The second contribution was done by

defining four meta-feature models to support feature modularization and to classify

features based on their functionalities.

The third contribution was done by enhancing object-oriented class model and

formally defined the links between feature model and class model to allow mixing

features’ concepts with real implementation for classes. And finally, the last contribution

was done by proposing a procedure for configuration generation based on pre-selected

features.

Our work can be extended and developed in future to:

o TDM enhancement and evolution.

o Define other meta-feature models to capture all software’s variability features.

o Enhance current class model to be more realistic and reflects feature model in

uniform and formal way.

o Enhance the configuration generation to be a smart automated generation.

o Design a uniform language mixing features and classes.

52

References

Acher M., P. Collet, P. Lahire & R. B. France, (2013). FAMILIAR: A domain-specific

language for large scale management of feature models. Science of Computer

Programming. (78): 657-681.

Apel S., A. von Rhein, T. Thum & C. Kustner, (2013). Feature-interaction detection

based on feature-based specifications. Computer Networks.

Arnaud H., B. Quentin, H. Herman, Rapha, M. l & H. Patrick, (2011). Evaluating a

textual feature modelling language: four industrial case studies, Proceedings of

the Third international conference on Software language engineering, 337-356.

Asikainen T., T. Mannisto & T. Soininen, (2006). A unified conceptual foundation for

feature modelling, 10th International Conference of Software Product Line 31-40.

Classen A., Q. Boucher & P. Heymans, (2010). A text-based approach to feature

modelling: Syntax and semantics of TVL. Science of Computer Programming.

(76): 1130-1143.

Classen A., Q. Boucher & P. Heymans, (2011). A text-based approach to feature

modelling: Syntax and semantics of TVL. Science of Computer Programming.

(76): 1130-1143.

Don B., (2005). Feature models, grammars, and propositional formulas, Proceedings of

the 9th international conference on Software Product Lines, 7-20.

Ghoul S., (2011). Supporting Aspect-Oriented Paradigm by bio-inspired concepts, IEEE

explorer, Nov. 29 2011-Dec. 1 2011, 63-73.

Gomaa H. & M. E. Shin, (2008). Multiple-view modelling and meta-modelling of

software product lines. Software, IET. (2): 94-122.

Gunther S. & S. Sunkle, (2012). rbFeatures: Feature-oriented programming with Ruby.

Science of Computer Programming. (77): 152-173.

Istoan P. 2013. Methodology for the derivation of product behavior in a Software product

Line. Ph.D thesis. Universit e de Rennes 1, University of Luxembourg (LASSY).

Jézéquel J.-M., (2012). Model-Driven Engineering for Software Product Lines. 24 Sep

2012. Report.

Kacper B., (2010). Clafer: a unifed language for class and feature modeling. April, 2010.

Report.

53

Kacper B., C. Krzysztof & W. Andrzej, (2011). Feature and meta-models in Clafer:

mixed, specialized, and coupled, Proceedings of the Third international

conference on Software language engineering, 102-122

Laguna M. A. & J. M. Marques, (2009). Feature Diagrams and their Transformations: An

Extensible Meta-model, 35th Euromicro Conference on Software Engineering and

Advanced Applications., 27-29 Aug. 2009, 97-104.

Laguna M. A. & Y. Crespo, (2012). A systematic mapping study on software product line

evolution: From legacy system reengineering to product line refactoring. Science

of Computer Programming.

Marcilio M., B. Moises & C. Donald, (2009). S.P.L.O.T.: software product lines online

tools, Proceedings of the 24th ACM SIGPLAN conference companion on Object

oriented programming systems languages and applications, 761-762.

Marco S. & D. Sybren, (2007). Classifying variability modeling techniques. Information

and Software Technology (49): 717-739.

Razieh B., N. Shiva, Y. Tao, G. Arnaud & B. Lionel, (2012). Model-based automated and

guided configuration of embedded software systems, Proceedings of the 8th

European conference on Modelling Foundations and Applications, 226-243.

Reiser M.-O., (2009). Core concepts of the compositional variability management

framework (CVM): A practitioner's guide. Report.

Sarinho V. T. & A. L. Apolinario, (2010). Combining feature modeling and Object

Oriented concepts to manage the software variability, IEEE International

Conference on Information Reuse and Integration (IRI), 4-6 Aug. 2010, 344-349.

Sarinho V. T., A. L. Apolinario & E. S. de Almeida, (2012). OOFM - A feature modeling

approach to implement MPLs and DSPLs, IEEE 13th International Conference on

Information Reuse and Integration (IRI). 8-10 Aug. 2012, 740-742.

Savinov A., (2012). Concept-oriented programming: classes and inheritance revisited, 7th

International Conference on Software Paradigm Trends (ICSOFT 2012), 12, 24-

27 July 2012, 381-387.

Sim-Hui T., (2013). Problems of Inheritance at Java Inner Class. ArXiv e-prints.

Stephan M. & M. Antkiewicz, (2008). Ecore.fmp: A tool for editing and instantiating

class models as feature models. 05/2008. Report.

54

Teixeira L., P. Borba & R. Gheyi, (2011). Safe Composition of Configuration

Knowledge-Based Software Product Lines, 25th Brazilian Symposium on

Software Engineering (SBES). 28-30 Sept. 2011, 263-272.

Thaum T., C. Kustner, F. Benduhn, J. Meinicke, G. Saake & T. Leich, (2012).

FeatureIDE: An extensible framework for feature-oriented software development.

Science of Computer Programming , Available online 21 June 2012.

55

 ملخص

إعادة استخدام النظام وتقليل التكاليف والجهود لبناء مكونات عملية مهم جدا لزيادة تصميم خط إنتاج البرمجيات

 .من الصفر لكل برامج التكوين

تقنية فصل القواسم باستخدام العديد من التقنيات. وقد كان أشهرها عدة نهج سابقة تعاملت مع عملية الهندسة

المشتركة والتنوع لمكونات النظام مما يتيح السماح باختيار التكوين على أساس الخصائص التي يحددها المستخدم.

 .هذه النهج تعاملت مع جميع مراحل تطوير البرمجيات، ولكن المراحل الاكثر تحدي هي التصميم والتنفيذ

امها بسبب التمثيل الرسمي لمعانيها ودلالاتها المستخدمه لتمثيل ميزات النهج النصية المستندة إلى تدوين تم استخد

النظام والتطبيقات. ولكن هذه الأساليب لا تزال ضعيفة في ملامح خلط)المستوى المفاهيمي(والطبقات)المستوى

 .المادي(والتي تضمن سلاسة وتلقائية جيل التكوين لإصدارات البرامج

صناعة خط انتاج البرمجيات من خلال تعريف فوقية الميزات التي وف يعزز عمليةفي هذه الأطروحة، ونحن س

تحتوي أهم خصائص مفاهيم النمذجة الميزة، وتصنيف هذه الميزات وفقا لوظائفها. وسوف نسمح لحدوث عملية خلط

لى نحو سلس من المفاهيم والميزات في طريقة بسيطة باستخدام واجهات التطبيقات والميزات الملازمة للتحرك ع

 .نموذج إلى نموذج ميزة فئة

سيتم إثراءها مع تصميم وتنفيذ منهجية نصية تخلط النموذج وميزة في طريقة صناعة خط البرمجيات عملية

جديدة. وتتيح هذه المنهجية تعريف نموذج الطبقة ابطريقة تعكس ملامح نموذج المفاهيم مع خلط متسقة مع نموذج

 .ية تكوين جيلالبرمجيات لان يكون أكثر بساطة، وأكثر تماسكا وكاملةالميزة. لأنه يعزز عمل

56

نموذج خطي لتصميم خطوط انتاج البرمجيات يجمع بين خصائص الفئات

 والمميزات

 بواســطة

 علا عبد الرؤوف يونس

 بإشــراف

 أ.د. سـعـيد الغول

استكمالاً لـمـتطلبات الحصول على درجةقدمت هذه الرسالة

 الــمـاجـسـتير في عـلـم الـحـاسـوب

 عـمـادة البحث العلمي والدراسات العليا

 جامعة فيلادلفيا

3102حزيران

