A Textual Software Product Lines Design Model By
Mixing Class and Feature Concepts

By
Ola Abdel Raoof Younis

Supervisor
Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the
Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies
Philadelphia University

2013

PSR EESEN
a5 7 sad

S Sl Al e g s i LA dadls (¢ i Glade Cigs il ae Sle U
el die al 5V o gl o il sal)
gl

c_)_)tm

Philadelphia University
Authorization Form

I am, Ola Abdel Raoof Suliman Younis, authorize Philadelphia University to supply
copies of my thesis to libraries or establishments or individuals upon request.

Signature:

Date:

A Textual Software Product Lines Design Model Mixing
Class and Feature Concepts

By
Ola Abdel Raoof Younis

Supervisor
Prof. Said Ghoul

This Thesis was Submitted in Partial Fulfilment of the
Requirements for the Master's Degree in Computer Science

Deanship of Academic Research and Graduate Studies
Philadelphia University

2013

Successfully defended and approved on

Examination Committee Signature

Dr. , Chairman.

Academic Rank:

Dr. , Member.
Academic Rank:

Dr. , Member.
Academic Rank:

Dr. , External Member.

Academic Rank:

\

Dedication

| dedicate this work to my husband @r. Mohammad Alomar,
Who encouraged me all the way to reach this point, with his personal support, great
patience at all times, and his endless love and support....

Ola A. Younis

\

Acknowledgment

It would not have been possible to write this master thesis without the help and support
of the kind people around me, to only some of whom it is possible to give particular
mention here.

Above all, I would like to express my thanks and sincere gratitude for who has guided
me through my study and my thesis work; my supervisor prof. Said” Ghoul, for giving
the wisdom, strength, support and knowledge in exploring things.

| would like to thank my family members; Parents, brothers, sisters and my children
Omarand Aya for giving me their unequivocal support throughout, as always, for which
my mere expression of thanks likewise does not suffice.

Also, | am grateful for those who supported me and encouraged me in any way; my
teachers at Philadelphia University, my friends and my superiors and colleagues at
work.

Ola A.Younis

Vil

Table of Contents

Subject Page
Dedication \Y
Acknowledgment VI
Table of Contents VI
List of Tables IX
List of Abbreviations IX
List of Figures X
Abstract XI
CHAPTER ONE: INTRODUCTION 1
1.1 Preface 2
1.2 Research Context 3
1.3 Problem Statement 5
1.4 Motivation 6
1.5 Contributions 7
1.6 Thesis layout 7
CHAPTER TWO: CASE STUDY 8
2.1 Introduction 9
2.2 Set’s Features 10
CHAPTER THREE: APPROACHES MIXING CLASSES AND FEATURES
MODELS 12
3.1 Introduction 13
3.2 Features modelling fundamentals 13

VIl

3.3 Models mixing classes and features 18
3.4 Thesis contribution 22
CHAPTER FOUR: A TEXTUAL MODEL MIXING CLASSES AND
FEATURES 23
4.1 A Textual Design Methodology (TDM) 24
4.2 TDM Features Concepts 25
4.3 TDM Object-oriented Concepts 31
4.4 TDM Mixing Class and Features Concepts 32
4.5 A product Instance: case study 35
4.6 Discussion 41
CHAPTER FIVE: IMPLEMENTATION ISSUES, EVALUATION AND
APPLICATION AREAS 42
5.1 Introduction 43
5.2 Implementation issues 43
5.3 Application areas 43
5.4 Evaluation 44
5.5 Conclusion: perspectives and future works 51
References 52
Lails 55

IX

List of Tables

Table Table Title Page
Number
51 TDM Concepts vs. conventional related approaches 44
5-2 Comparisons with other's work 50
List of Abbreviations
Abbreviation Full Name
SPL Software product line
DSL Domain specific language
00 Obiject oriented
FTR Features_Types relation
FTF Features_types feature
GR Global relation
GF Global feature
CR Control relation
ConR Configuration relation
ConF Configuration feature
OOPL Object oriented programming language
TDM Textual SPL design methodology

List of Figures

Figure Number Figure Title Page
Figure 1-1 Software product line spaces 2
Figure 2-1 Multiple implementations of methods 9
Figure 2-2 Multiple definition with multiple sub-classes 10
Figure 2-3 Features' implementations grow hugely 11
Figure 3-1 Feature modelling main relations 14
Figure 3-2 Meta-Features Model 15
Figure 3-3 Features Meta-Model 15
Figure 3-4 Feature Model 16
Figure 3-5 Feature Diagram 16
Figure 36 Features Configuration (stack example) 17
Figure 3-7 CLAFER Example for Mixing Class and Feature 19
Figure 3-8 CLAFER Configuration Instantiation 19
Figure 3-9 Bio-inspired Class and Aspect Model 20
Figure 4-1 A Textual SPL Design Methodology (TDM) 24
Figure 4-2 Meta-Features Model (graphical representation) 25
Figure 4-3 Meta-Features Model (textual representation) 26
Figure 4-4 Features Meta-Model (graphical representation) 26
Figure 4-5 Features Meta-Model (textual representation) 27
Figure 4-6 Features Types 27
Figure 4-7 Features Global 28
Figure 4-8 Features Control 29
Figure 4-9 Feature Configuration 30

Figure 4-10 Instantiation of Feature Model from Feature Meta-Model 31
Figure 4-11 Graphical representation for class interface 31
Figure 4-12 Class Interface and Class implementation (textual representation) 31
Figure 4-13 Interface Meta-Model (graphical representation) 32
Figure 4-14 Interface and Implementation Meta-Model (textual representation) 32
Figure 4-15 Product Model (graphical representation) 33
Figure 4-16 Product Model (textual representation) 33
Figure 4-17 TDM Variability Model 34
Figure 4-18 Set Feature Types (graphical representation) 35
Figure 4-19 Set Features Types (textual representation) 36
Figure 4-20 Set Global Feature (graphical representation) 37
Figure 4-21 Set Global Feature (textual representation) 37
Figure 4-22 Set's Control Features (graphical representation) 38
Figure 4-23 Set's Control Features (textual representation) 38
Figure 4-24 Set Configuration feature 39
Figure 4-25 "Set" Product Model 40

Xl

Abstract

Designing software product line (SPL) is very important for increasing system
reusability and decreasing cost and efforts for building components from scratch for each
software configuration.

Several approaches handled SPL engineering process with several techniques. The
most famous one was done by separating the commonalities and variability for system’s
components to allow configuration selection based on user defined features. These
approaches deal with all software development phases, but the challenge and important
phases are design and implementation.

Textual notation-based approaches have been used for their formal syntax and
semantics to represent system features and implementations. But these approaches are still
weak in the mixing features (conceptual level) and classes (physical level) that guarantee
smooth and automatic configuration generation for software releases.

In this thesis, we will enhance SPL process by defining meta-features that captures
the most important characteristics of feature modelling concepts, and classifying these
features according to their functionalities. We will allow mixing class and feature concepts
in a simple way using class interfaces and inherent features for smooth move from feature
model to class model.

SPL process will be enriching with a textual design and implementation methodology
mixing class and feature model in new way. This methodology allows class model to be
declared in a way that reflects features model concepts with consistent mixing with feature
model. It enhances configuration generation process to be simpler, more coherent and

complete.

CHAPTER ONE: INTRODUCTION

1.1 Preface

Designing product lines process has received potential attention recently. This is due to

the need of decreasing software product line steps and increasing system reusability.

Software Product Line (SPL) is the process of developing products’ components from

pre-defined core assets rather develop each component individually (Jézéquel, 2012).

Software Product Line (SPL) approaches attempt to increase system’s productivity by
designing a set of products that have many commonalities and shared characteristics,
which leads to increasing system’s reusability. On the other hand, SPL aims to identify

and manage the variations among the products (Marco and Sybren, 2007).

Product line commonalities and variabilities are composed together in the Domain
Space model as feature models, these models form the basic structure for future releases
and system variant products (Jézéquel, 2012). A linked model named Solution Space is
connected to the Domain Space to represent the real assets for variability elements
associated with some rules to ensure valid selection and consistent system release
generation (Marcilio et al., 2009). The relation between domain space and solution space
is bi-directional; there is always a domain space needs a solution space, and for any
solution, there is always a need to return back to the domain for better understanding.

Figure 1-1 shows software product line spaces.

- Produce
é Implemented by
é Generalized to

Solution Space

Domain Space

Structure and selection
Commonalities and rules for solution

variabilities elements

Product variant Real assets for product

line

Figure 1-1 Software product line spaces

Several techniques are used to model domain space and solution space. Feature
modelling is the most famous technique for this purpose (Jézéquel, 2012; Marco and
Sybren, 2007). For modelling solution space, class models are used with some other
options like Domain Specific languages (DSL) compilers, generative programs and

configuration files (Laguna and Marques, 2009).

In the following sections, we present the context of our research, the problem for which

we propose a solution, and motivation and contribution of this solution.

1.2 Research Context

This thesis deals with mixing classes and features modelling, so its research context
shows SPL and variability approaches, object oriented (OO) approaches, and mixing class

and feature modelling approaches.

Software product line and variability approaches: Over the past few years, several
research contributions were reported to handle SPL variability process. They can be
classified according to SPL’s development methodology (requirements, analysis, design,
and implementation) or the techniques they used to represent variability (text, graph, or

mixed).

Approaches that support design and implementation steps (Gunther and Sunkle, 2012;
Kacper, 2010; Kacper et al., 2011; Savinov, 2012; Stephan and Antkiewicz, 2008; Thaum
et al., 2012) were developed to cover feature models that show the design phase of the

product and class models that show the implementation phase.

Other approaches support SPL engineering in other steps like requirements and
analysis. Alone, or in conjunction with others steps, these approaches (Acher et al., 2013;
Asikainen et al., 2006; Gunther and Sunkle, 2012; Jézéquel, 2012; Marco and Sybren,
2007; Teixeira et al., 2011) presented variability by analysing the domain of the product
and by the separation of concerns.

In order to handle these contributions, several techniques were developed. Techniques
using graphical syntax and semantics were reported in (Jézéquel, 2012; Laguna and
Marques, 2009; Sarinho and Apolinario, 2010; Sarinho et al., 2012; Stephan and

Antkiewicz, 2008; Teixeira et al., 2011). Others approaches that used text notations to
represent variability were reported in (Classen et al., 2010; Ghoul, 2011). Finally, some
researchers proposed mixed approaches (graph notation and text notations) like (Gunther
and Sunkle, 2012; Kacper, 2010; Kacper et al., 2011).

Object-oriented modelling approaches: Approaches that used object-oriented
paradigm (Savinov, 2012; Sim-Hui, 2013) to model variability described system
architecture by package diagrams that used class diagrams. In order to understand these
approaches, their main concepts are briefly introduced in this section.

Concept of class: A class is a set of specifications for a system’s component (Sim-Hui,
2013). It defined the characteristics that this component may have, and the functionalities
it provides. Over the past years, many approaches developed class models and object
models and the relations between them to solve a lot of software programming domain

problems.

Is-a hierarchy: one of the main concepts of object-oriented approach is the “is-a
relation”. It defines a child component as a “is-a” other component. Several problems
were detected using this concept and reported in (Savinov, 2012; Sim-Hui, 2013). One of
its main problem was the unnatural feature definition of child characteristics as parent

characteristics.

2

Composed-by hierarchy: this approach was presented as a solution for the ‘is-a
problems. It defines a component by composing other sub-components with different
characteristics and methods. No inheritance relation between these components is defined

using this approach. It is more natural and solves a lot of “is-a” approach problems.

Object (instances): Authors in (Savinov, 2012; Sim-Hui, 2013) defined object as a set
of values for classes components. It is passed by a copy of class structure with final values
added to it.

Mixing classes and features modeling approaches: Several approaches (Ghoul, 2011;
Gunther and Sunkle, 2012; Kacper et al., 2011; Sarinho and Apolinario, 2010; Stephan
and Antkiewicz, 2008) mix feature models with class models to present software product

line engineering process. These approaches designed the variability and commonalities

between variants of a product based on features with feature model, and implement these
variations in class model. The mixing was done using several techniques like constraints
additions (Gunther and Sunkle, 2012; Kacper, 2010), relation definition (Ghoul, 2011,
Sarinho and Apolinario, 2010) and references links (Stephan and Antkiewicz, 2008).

These approaches defined the way for instantiating objects (configuration) that
provides the final product (release) from selecting objects based on selected features and

resolving constraints and relations among them.

Approaches supporting SPL requirement and analysis are good for providing general
view of systems’ needs and characteristics, but, they do not support system functionalities

or structural behavioural like approaches covering design and implementation steps.

Graphical object-oriented modelling approaches provide clear representation for system
hierarchy and components relations. While textual object-oriented approaches gives very
strong semantic representation for system components and relations, but it is weak to
represent the hierarchy relations and structure. Both textual and graphical object —oriented

approaches are limited in modelling variability, because of absence of features.

Approaches that mix feature and class models encounter insufficient mixing
techniques. These techniques do not provide powerful languages that mix system’s feature

and variability implementation (Jézéquel, 2012).

1.3 Problem Statement
From the above research context, the following challenges may be largely derived:

e Design and implementation approaches are very challenging phases, because
they bridge between conceptual and implementation levels. Researches growth

increasingly in this context.

e Variability design and implementation methodology which are poor if not
absent. Their introduction and specification will lead to a great enhancement of
SPL.

Textual notation — based approaches are more formal syntactically and

semantically than graphical approaches and more uniform than mixing ones.

Mixing class and features approaches through new weak languages which are
so far to be mature, evaluated, and accepted. Conceptual enhancements and

practice evaluation will promote these valuables approaches to industrial level.

Configuration generating approaches are complex and aiming to generate
coherent and complete objects. Ensuring the simplicity, coherence, and

completeness of these kinds of objects remain always as open problems.

1.4 Motivation

The work introduced in this thesis is stimulated by the following motivations:

Lack of methodology supporting design and implementation of variabilities.

Tackling the above challenges will allow SPL reaching high quality with
moderate cost.

Feature modelling has to be enhanced by adding meta-feature model classifying
the features into main categories to reduce feature declaration and relation

implementation.

Class model should be specified in a way that reflects the feature model

concepts and preserves its relations and constrains.

Mixing feature model with class model has to be enhanced to guarantee fit
representation of feature model and meta-feature model in class

implementations.

Configuration generation process has to be enhanced ensuring smooth and
smart selection technique that respects feature’s rules and maintains old

configuration for reuse.

1.5 Contributions

This thesis, propose new Textual Software Product Lines Design Model, mixing class
and feature concepts, and aiming to bring significant solution elements to the previous
problems, through its specific methodology:

e Provide a formal methodology supporting variability design and
implementation. It bridges between product lines design model and object

oriented implementation model.

e Provide a new concise and rich textual notation for feature modelling and class

modelling.

e Allow simple and natural new way of mixing feature models and class models

using small number of concepts and having uniform semantics.

e Allow simple, coherent, and complete configuration generation as simple class

instantiation.

1.6 Thesis layout

In the following, we will start by presenting a case study which will be used through
the entire thesis chapters, the literature review will be then introduced in chapter three. It

will be oriented to identify insufficiencies that motivated our present work.

Our approach (A Textual Software Product Lines Design Model Mixing Class and
Feature Concepts) will be presented in chapter 4, through the new developed methodology
supporting variability design and implementation. This approach will be evaluated and
compared with others’ works in Chapter 5 in addition to a conclusion and expected future

works.

CHAPTER TWO: CASE STUDY

2.1 Introduction

In this chapter, we will introduce a case study which will be used as a support to all our

work. Our case study is to illustrate the idea of our approach and not to compute its value.

Class method’s multiple definitions were introduced in several approaches like
software design and subjective programming (Ghoul, 2011). In our case study, we will

take “Set” product as an example.

Set product has several methods and attributes like Size, Data structure, Empty(),
Full(), Print(), and Add(). Each of these can be implemented statically or dynamically. For
an object of this product, it could use the static version of any method or the dynamic
version. Thus, each method should be defined in two different ways; static definition and

dynamic definition as shown in Figure 2-1.

—> Composed b
Set p y
Public Class
Empty();
.l\|.'|l.|;1);_ C] Implementation
Print(),
; O Configuration

I
| l

e rE—
R
Comi> Comr D

Figure 2-1 Multiple implementations of methods

Set product can be presented with two forms; Stack component and Queue component.
Each of them has set’s characteristics and its own characteristics. Each of these

characteristics may be implemented statically or dynamically (Figure 2-2).

Implementing all these attributes and methods needs to be controlled, and the relations

between them should be reserved during the implementations. The configuration process

10

that requires selecting components with their implementation to create final reliable

releases (such as stack and queue) should reserve the control relations too.

Some of these methods and attributes are shared for all releases configurations, like the
Data structure and empty() method. Thus, their implementations should be in all releases

which lead to multi-implementation.

2.2 Set’s Features

> Composed by

S{et I:’ Class

Methods and D Configuration
attributes
)

Stack Queve

{ {

Methods and Methods and

attributes attributes

)

}

Figure 2-2 Multiple definition with multiple sub-classes

To solve the problem of multi-implementation for methods and attributes, and to
increase software maintainability and problem finding cost, feature implementation
(Acher et al., 2013; Apel et al., 2013; Don, 2005; Kacper et al., 2011; Laguna and
Marques, 2009; Thaum et al., 2012) was reported.

11

These features came from domain analysis, stakeholders’ needs and many other sides
that affect the implementation hierarchy. Some of these features affect other components.
Some of them create new relations. And some of them shares specific characteristics that
are applicable for all components of the system.

Set’s features that can be extracted from its domain are View, Data structure, Scope,
Behaviour, Order... etc. some of these features are shared everywhere in all releases that
may be configured from set’s components. For example, the View feature should be

linked list or closed list in all releases.

Other features control the relations over set’s components. For example, if the

behaviour feature was static, this implies the data structure to be static.

If we will implement all set components and relations according to the feature they
cover, the system will grow hugely, like shown in Figure 2-3.

Thus, we need to classify the features that the set component covers to reflect the
global (shared) features, control features and other features that are included in

configuration process.

?Et > Composed by

Methods; Class
Attributes;

} > Configuration

Stack Queue

{ {
Methods; Methods;
Attributes; Attributes;

} }

Static
behavior
Static
datastr

Dynamic Static
behavior behavior
Dynamic Static
datastr datastr

Figure 2-3 Features' implementations grow hugely

Dynamic
behavior

CHAPTER THREE: APPROACHES MIXING
CLASSES AND FEATURES MODELS

13

3.1 Introduction

Large systems that are composed by huge number of different components cover
multiple ideas and variant areas of interests. Thus, each of its components may have more
than one possible value to cover. These values came from domain analysis, stockholders’
needs, system evolution and so many other cases. The ability of a system to be generalized,
specialized or customized (Marco and Sybren, 2007) to perform special needs is called

system variability and specified using feature modelling.

In this chapter, we will review previous work that mixes class models and feature
models for system variability. We start this chapter with listing feature modelling

fundamentals and then overview approaches that mixes class and feature models.

3.2 Features modelling fundamentals

Over years of variability modelling, feature modelling using features diagrams was the
most popular technique to represent variability in clear and meaningful way (Jézéquel,
2012)

Researches adopting feature modelling can be classified in three main groups based on
the technique they used to present their feature models. These techniques are:

o Graph notations based approaches: Some approaches used pure graphical
representation for their feature model’s syntax and semantics like ECORE
(Stephan and Antkiewicz, 2008) and OOFM (Sarinho et al., 2012), and the work
reported by Laguna and Marques (2009), Razieh et al (2012), and Teixeira et al
(2011).

o Text notations based approaches: Other approaches choose to use textual
representation for their feature model’s syntax and semantics like TVL (Classen
et al., 2011) and FEATUREIDE (Thaum et al., 2012), and the work reported by
Arnaud et al (2011).

o Mixing text and graph notations: In order to benefit from graphical and textual

techniques, some approaches mixed them for representing their feature model.

14

These approaches like CLAFER (Kacper, 2010; Kacper et al., 2011) and
RBFEATURES (Gunther and Sunkle, 2012).

In the following we will describe each technique and its main concepts.

Graphical feature modelling consists of tree hierarchy that shows the variable feature as
the head node and the variant features as children nodes (Sarinho and Apolinario, 2010).

The relations between these features mainly are:
o Mandatory: all children must be included in any configurations.
o Optional: this feature can be missed in the configuration.
o Alternative (Xor): exactly one of the children features is accepted.
o Or: at least one of the children features is accepted.

o Propositional constrains: specifies the dependencies relations between

components.

Figure 3-1 shows these main relations graphically.

Set Mandatory Set Optional
Relation Relation
I Size I | Data type | Total | ISmaIIest Num
| Data structure I Xor I Data structure | or
A Relation /A\ Relation
| Sequential | I Dynamic I I Dynamic I I Persistent I

Figure 3-1 Feature modelling main relations

Graphical representation for feature models main concepts (Razieh et al., 2012) are:

e Meta-Features Model: Previous researches did not mention the Meta-Models
Clearly. They mentioned it as features that may contain more than one sub
features. We were the first to define Meta-Features Model as a design pattern

15

that specifies feature’s structure. It is applicable for all features and general for

all kinds. Figure 3-2 shows a graphical representation for Meta-Feature Model.

Constraint

* Name: string
« Selected: boolean

Add_constraint();

* Remove_constraint();

Meta-Feature

Association

- Name: string

- Association: Class

- Constraint: Class

N

Name: string
Selected: boolean

.

- Product Feature: Feature

Add_association();
+ Remove_association();

1
1.*

- Constraint: Class

- Product Feature: Feature

Figure 3-2 Meta-Features Model

Variability Feature Class Name
Attributes UML Class
- Name: string
Methods
- Association: Class
—_— Composed by

e Features Meta-Model: Previous researches did not classify their features into

categories that capture the main concepts in the feature model. We defined

Features Meta-Model as a group that contains the main features that will be

included in systems’ release, and classified this model into four main categories.

This model is predefined and domain independent (Figure 3-3).

Features Meta-Model

- Name: string

- Association: Class

- Constraint: Class

- Product Feature: Feature

=3 Composed of

Feature

Feature

Feature

Feature

- Name : Features Types
- Association: Associated

to control, global, and
configuration

- Constraint: none

Name : Global
Association:
Associated to control
and configuration
Constraint: none

- Name : Control
- Association:

Associated to global
and configuration

- Constraint: depends

on global

- Name : Configuration
- Association:

- Constraint: depends

Associated to control
and Global

on global and control

16

Figure 3-3 Features Meta-Model

e Feature Model: Compact model of features diagram and feature constrains. It is

an instance of the Features with Meta Model (Figure 3-4).
> Composed

Imply relation

-————
Meta-Feature Meta-Feature
- Name: View; - Name: Behavior;
- Association: Imply(); 2 5 - Association: Imply();
Constraint#of Value=22 | - Constraint: # of Value=2;
- Product Feature: - Product Feature:
Variability Feature Variability Feature Variability Feature Variability Feature
- Name: LL; - Name: CL; - Name: Static; - Name: Dynamic;
- Association: Dynamic; - Association: Static; - Association: Cl; - Association: LI;
- Constraint: # of values: 0; - Constraint: # of values:0; - Constraint: # of values: 0; - Constraint: # of values:0;
- Product Feature: none; - Product Feature: none; - Product Feature: none; - Product Feature: none;
T — ~ .. ___-- = — —A

- -
- - -
- - -

e e - - e ———

Figure 3-4 Feature Model

e Feature diagram: Graphical representation showing each feature and its relations

with its subs.

Meta-Feature E— Composed

- Name: View;

- Association: Imply();

- Constraint: # of Value=2;

- Product Feature:

Variability Feature Variability Feature
- Name: LL; - Name: CL;
- Association: Dynamic; - Association: Static;
- Constraint: # of values: 0; - Constraint: # of values:0;
- Product Feature: none; - Product Feature: none;

17

Figure 3-5 Feature Diagram

e Feature’s configuration. Set of selected features producing a release in SPL.
Configuration is permitted with feature model and preserves features’ constrains.

Figure 3-6 shows an example from our case study for features configuration.

Class Stack

{ Inherent features

[component= Configurations)

Config_ S5t (Mame= 5t_Stack)

1Require {{Wiew=CL),

[State= Corredct)

i

Figure 3-6 Features Configuration (stack example)

Designers do not prefer to use graphical representation for more than one reason
(Classen et al., 2011): firstly, designing feature models using graphical representation is
considered a very boring process and does not reflect the real semantic of system
components. Secondly, graphical representation is very weak in representing system
reasoning process (Marco and Sybren, 2007). Finally, graphical notation is still a “research
prototype” (Classen et al., 2011) and can’t reach text notations for representing feature
models.

Textual feature model got rid of all these notations and modeling languages for
representing features and their relations. They used simple texts composed by grammars,
and propositional formulas (Arnaud et al., 2011) to show model structure and

implementation.

Feature model’s textual syntax was reported in several techniques like GUIDSL (Don,
2005) that represents feature models as grammars. This approach used by the AHEAD
approach (Don, 2005) and FeaturelDE approach (Thaum et al., 2012).

18

Other techniques like SXFM file format (Marcilio et al., 2009), XML and The VSL file
format of the CVM framework (Reiser, 2009) were used to represent the meta-models, and

supported by textual feature models .

Some approaches prefer to mix graph notations with text notations to achieve the best

benefits from both of them.

CLAFER in (Kacper, 2010) presented their feature model as graph notations and
presented a textual representation for their class model. this was the same case for work
presented in (Kacper et al., 2011) and RBFEATURES approach presented in (Gunther and
Sunkle, 2012).

3.3 Models mixing classes and features

Feature modelling used to design system’s variability and communality over its
components (Kacper, 2010). Class models capture the implementation part of the products
by showing the real values and relations over components’ attributes. Thus, mixing both

models (feature model and class model) provides the full picture for SPL’s components.

In this section, we will review the literature works mixing feature models with class

models in two phases:
o How they mix feature models and class models?
o How they instantiate objects (configuration) to create final products?

CLAFER model (Kacper, 2010) presents a good approach for mixing class model with
feature model based on constraints and inheritance concepts. The feature model was
presented as a collection of type definitions and features (Figure 3-7).

19

1 Abstract Set
Size : integer

)

Abstract stack extends Set
Abstract S_stack extends Set
Behavior: static
[Size>=1]

A U B~ ow

Figure 3-7 CLAFER Example for Mixing Class and Feature

The mixing between feature model and class model via constraints is added to class
model as attributes and attributes’ values. The final model is restricted to one configuration
based on the mixed feature. Object instantiation in CLAFER is done by adding constraints
to the feature model resulting as constrained feature model. These constraints restrict the
feature model to single or dual configuration presenting one or more final product
(Figure 3-8).

Concret product
Datastr==Dynamic && View==LL;

Figure 3-8 CLAFER Configuration Instantiation

Gunther and Sunkle (2012) reported feature oriented programming language called

RBFEATURES on top of dynamic programming language (ruby).

The class model was reported as a first-class entity and named ProductLine. Mixing
feature model with class model was done via add-feature method.

After creating feature model in RBFEATURES, the ProductLine that is created via
configure method and collects number of conceptual features. It is allowed to set specific
feature configuration with activate_feature and deactivate_feature operations. Final result
is represented in the variable called @feature_tree which is used in a method called
instantiate that creates object after checking some mandatory constraints that guarantee

consistent final product.

20

Sarinho and Apolinario (2010) presented object-oriented feature model that combined
feature models’ concepts with object-oriented concepts. They proposed object-oriented
feature model (OOFM) profile that is composed by feature model and feature modelling
package.

Feature classes were reported in (Sarinho and Apolinario, 2010) with object-oriented
relationships and resources to provide new level of variability documentation. Feature
classes can be declared using feature-class stereotype that creates classes according to
designer’s intentions. This process composed by several steps starting by feature package

creation, followed by OOFM profile mapping and ended by class feature declaration.

Bio-inspired aspect-oriented paradigm was presented by Ghoul (2011) to reflects
biological principles on the artificial systems. The author presented aspect models as
Genomes components and class models that implement them. The mixing was done using
relation between feature models and class models. Object instantiation is done by a
WEAVER component that guarantees the consistency over all components. After that an
adapted design interface will be created and a given object name will be defined.
Figure 3-9 shows an example for bio-inspired model.

Set: (Aspect Class= Interface) | __ __ __________ .
{ ,,: Relation with feature model J|
Public: e

Bool Empty() : (beh=st)/(beh=dy);
Bool full () : (beh=st)/(beh=dy);
}

-1

Figure 3-9 Bio-inspired Class and Aspect Model

Stephan and Antkiewicz (2008) reported ECORE , a class model notations that are
presented as feature models. It is composed of meta-model that is created from class model
using ECORE itself. Class model is composed by several sub-classes that are composed by
other sub-classes. Mapping between feature models and class models was done in both

ways: feature to class mapping and class to feature mapping.

21

Class to feature mapping requires implementing all class model notations as feature
notations. This is done by sequential steps mentioned and described in (Stephan and
Antkiewicz, 2008). The opposite mapping is done by specialization steps for feature model
to create class model based on designer intentions using commands like add, remove, and

modify.

Object model provides a conceptual view of the final product to give designer basic
structure of configuration model. Features in the configuration are presented as children to
abstract features in feature model. The final set of configuration features is considered as a

prototype for object model.

CLAFER (Kacper, 2010) did not mention multiple feature connections and the contrary
relations that may arise during the mixing. Weak representation of features’ possible values

that may construct the feature model was found in CLAFER.

Feature classification was missed in (Gunther and Sunkle, 2012). And there was no
mention for the relations between these features. The class was defined based on
configuration only not based on the features. This makes the process of tracking features’
objects hard.

The OOFM that was introduced in (Sarinho and Apolinario, 2010) and extended in
(Sarinho et al., 2012) did not provide a separation between feature and object model. This

leads to an entangled system.

Aspect-oriented approach (Ghoul, 2011) is restricted for aspect-oriented programming

systems, and may not be applicable for all object-oriented programming systems.

Defining class model and extending it to feature model means that features are restricted
to class model. Adding, removing or modifying features will be hard process since class
model has to be modified each time. Thus, ECORE (Stephan and Antkiewicz, 2008) tool is
not efficient in separating concerns for system features and implementation. Design and

implementation methodologies in the previous approaches are weak or absent.

22

3.4 Thesis contribution

Based on weaknesses mentioned in the literature works presented in the previous

section, we are proposing our model to enhance the actual state of the research domain.

In order to make product line engineering process more natural and simple, and to
capture object oriented approaches’ benefits, we propose a software engineering
methodology bridging product lines design model and implementation model for creating
object oriented SPL and specifying its introduced concepts; Meta-Feature Model, Feature
Meta-Model, Feature Model, Product Meta-Model, Product Model.

After studying feature modelling techniques, we found that textual models have more
advantages than graphical techniques. Thus, we provide a concise and rich textual notation

for feature modelling and class modelling.

This feature model has to be linked with class model in a way that reflects features’
concepts. Thus we will allow simple and natural mixing feature models and class models

using small number of concepts and having uniform semantics.

Finally, we allow simple, coherent, and complete configuration generation as simple

class instantiation.

CHAPTER FOUR: A TEXTUAL MODEL MIXING
CLASSES AND FEATURES

24

4.1 A Textual Design Methodology (TDM)

In this section we present our approach for modelling features in SPL systems. We are
aiming to increase system modularization by separating concerns from the variability

components. Thus, four main meta-features were created.

We used the separated approach (Istoan, 2013; Jézéquel, 2012) to represent our model

where the Product model is represented separately from the Feature Model.

In the following, we introduce our textual SPL design methodology (TDM)), its features
concepts, its object-oriented concepts, its mixed class and features concepts, its illustration

by our case study, and finally a conclusion on its specification.

The TDM, with graph notations showing its ordered steps for designing variable

software, is shown in Figure 4-1. Graph notations are used only for clarity purposes and not

as syntactical.
Meta-Feature \
Model 2 Define Features [~__1______| Features
‘b Ei Types E Types
3 S
Feat:/:e(si I\Ifleta- g Define Features _ ig ______ Features Features
ode £ Global Global S
1 = !
o U H®
Design pattern Completed' Define Features — | Features Model complete
Control J £ Control
=
&
Deflng Featgres __________ Features
Configuration Types

J

Features deﬁniﬁon/
Start product Interface implementations N
model £ N

Develop Develop
Interface Implementation J&,

=
! Cdl

release Completed
rd

Product Model

r
1
1 1
] ' |
Product Meta 1 -1
Model

Implementation

= Interface Code Code

N
Selecting Interfaces

and implementations v

-[Generate Configuration b Select components

K Configuration Code pmducweve,W

Figure 4-1 Textual Design Methodology (TDM) mixing class and feature concepts, using
UML state diagram notations

25

4.2 TDM Features Concepts

In the following, we will present TDM steps. Designing steps are based on pre-defined
features. A new development will be started by instantiating the Features Meta- Model.
This model is composed by four features: Features types, Features Global, Features

Control and Features Configuration.

1. Meta-Features Model: It is a predefined design pattern that defines all features in TDM.
It is the base for features in Features Meta-Model. The graphical structure is shown in

Figure 3-2 (repeated in Figure 4-2).

Constraint Meta-Feature Association
* Name: string - Name: string 1 o_* | * Name:string
+ Selected: boolean - Association: Class 3| + Selected: boolean
0.*
1
+ Add_constraint(); A - Constraint Class + Add_association();
* Remove_constraint(); - Product Feature: Feature * Remove_association();
1
1.%
Variability Feature Class Name
Attributes UML C‘ass
- Name: string
Methods

- Association: Class
5 Composed by

- Constraint; Class

- Product Feature: Feature

Figure 4-2 Graphical representation for Meta-Features Model

Figure 4-3 shows the textual representation for this model. Each feature is composed by
a name; to distinguish it from other features, an association component to determine its
associations with other features, a constrain component that specifies constraints may affect

its relations with others, and finally, a Product features that form the real features for it.

26

{

Name: String

Constraint: C

}

Meta-Features Model

Association: Class;

lass;

Product Feature: Feature;

Figure 4-3 Meta-Features Model (textual representation)

Features Meta-Model: It is the input features design pattern to the methodology. It is
predefined based on Meta-Features Model design pattern. It is domain independent, and we

instantiate feature model (which is domain dependent) from it. Figure 3-3 (repeated in

Figure 4-4) shows a graphical representation for this model, while Figure 4-5 shows the

textual model.

Features Meta-Model

- Name: string

- Association: Class

- Constraint: Class

- Product Feature: Feature

=3 Composed of

Feature Feature Feature Feature

- Name : Features Types - Name : Global) Name_: C_ontrol Name_: C_onflguratmn
. ; . - Association: Association:

- Association: Associated - Association:

to control, global, and
configuration
- Constraint: none

Associated to control
and configuration
- Constraint: none

Associated to global
and configuration
Constraint: depends
on global

Associated to control
and Global

Constraint: depends
on global and control

Figure 4-4 Features Meta-Model (repeated)

27

Features Meta-Model Product Feature

{ {

Name: string; Features Types: Feature;
Associations: Class; Features Global: Feature;
Constraint: Class; Features Control: Feature;
Product Feature: Feature; Features Configuration: Feature;
¥ ¥

Figure 4-5 Features Meta-Model (textual representation)

Below, each feature is presented separately showing its graphical and textual

representation.

2.

Features Types: This composed (class) feature captures all features (relations and
features) in the system with their concrete values. It is composed by Features Types
and Relation_ Types. The former represents all systems’ features (characteristics). And

the later represents all systems’ possible relations.

These features and relations will specify the Global, Control and Configuration

features. Figure 4-6 shows graphical and textual representation of Features Types.

Constraint Association
* Name: string; * Name: string;
* Selected: boolean; * Selected: boolean; Feature Features Types
+ Add_constraint(); « Add_association(); {
* Remove_constraint(); « Remove_association();
& -+ Name: Features Types;
________ Features Types : Associations: Control, Global,
- Name: string
—> Composed by ¥ - .
- Association: Class ~ f======! Configuration;
_——— :
specity - Constraint: Class Constraint: none;
===3 Relation - Product Feature: Feature
T Product Feature Feature_Type;
" ¥ .
Relation Types Foature Types Product Feature Relation_Type;
- Name: Feature Types; - Name: Feature Types; }
- Association: Control, Global and - Association: Control, Global and
Configuration; Configuration;
- Constraint: none; - Constraint: none;
- Product Feature: - Product Feature:
L] L]
[(mm————— [a2 |m————— R
v ! " v I v
~ Global ™ 1 ~ Contral - “Global ™ 1 ~" Control ™
_V_Eeliion) - A:L B — Relatlon)< ~ Feature)) A:L B (Feaﬂ-‘fﬁ_,.-)
Conflguratlon Canlguratan
Q Relatlon > Q Feature >

Figure 4-6 Features Types

28

3. Features Global: This composed feature specifies the Global features that will be
shared for all system components. Global features may be relations over components or
just features (characteristics) that must be applicable everywhere. Figure 4-7 shows the
textual and graphical representation for feature Global.

Constraint Association
. : string: * Name: string;
. gz,f;ef;:rl,"fmeam * Selected: boolean; Features G|0ba|
+ Add_constraint(); * Add_association();
+ Remove_constraint(); * Remove_association();
i f {
i Feature Global %
; - Name: string i
1 1 1
> Compossdby i--{ - Association: Class -2 NameI G|0ba|[
- Constraint: Class
"""""""" > Specify - Product Feature: Feature TR L.
e Associations: Control, Configuration;
Constraint: none:
A 4 A 4
Global Relation Global Feature
* Name: Global_Relation; * Name: Global_Feature; P d CtF t G| b | R | t. !
* Association: Control, Configuration; * Association: Control, Configuration; m u ea ure 0 a_ ea |0n!
* Constraint: none; * Constraint: none; ,
e : = Product Feature Global_Relaton;
roduct eature: Product FeatureI m u ea ure 0 a_ ea |0n[
1
fremmmena. } mEm= -

Figure 4-7 Features Global

4. Features Control: This composed feature specifies the controls over all systems’
components and relations. Any configuration should reserve control’s relations to
ensure system consistency. This feature is composed by relations only, and its main
goal is to keep systems’ components stable and avoid any conflicts. Figure 4-8 shows

graphical and textual representation for feature Control.

29

Constraint Association
. . string: + Name: string;
Name: string; |

; Name:string; . Selectod: boglean; Features Contro
+ Add_constraint(); - Add_associatiorj()_;
= Remove_constraint(); « Remove_association();

A N

i i

1 1

i Feature Control i

! i

- Name: string

i - i , .
—— = Composed by wmer] - Assoclation: Class s Name. CUntm',
- Constraint: Class

* Specify - Product Feature: Feature
- Relation Associations: Global, Configuration;
4 .
Control Relation Constraint; depends on Global;

* Name: Control _Relation;

* Association: Global, Configuration;

= Constraint: Depends on Global;

Product Feature Control_Relation;

* Product Feature:

Control o CDntroI }
Relatlon Relation

Figure 4-8 Features Control

5. Features Configuration: This composed feature specifies required and discarded
features for a product configuration (release). Figure 4-9 shows the graphical and

textual representation for Feature Configuration.

Features Types, Global, Control and Configuration together compose the Features

Meta-Model of TDM. The second step is creating Feature Model.

— > Composed by

"""""""" > Specify

30

Constraint

+ Name: string;
+ Selected: boolean;

« Add_constraint();
+ Remove_constraint();

Association

* Name: string;
* Selected: boolean;

« Add_association();
* Remove_association();

A A
i I
H I

1
i Feature Configuration i
1 1
i | -Name: string i

1
i--{ - Association: Class -

- Constraint: Class
> Relation - Product Feature: Feature

Configuration_Relation

Configuration_Feature

* Name: configuration_Relation;

+ Name: Configuration_Relation;

* Association: Control, Global;

+ Association: Control, Global;

« Constraint: Depends on Control
and Global;

+ Constraint: Depends on Control
and Global;

* Product Feature

* Product Feature

_____ M
|

T
I
Configuration Configuration
Relation Relation

6. Features Model: This is an intermediate model between the conceptual part (Feature
Meta-Model) and the physical part (Product Model).

In this model, all features and relations in the Features Meta-Model are instantiated.

These features and relations are software-dependent. A clear view will be provided in the

fourth section.

Figure 4-10 shows instantiation of Features Model from Features Meta-Model.

Meaning that each Features Meta-Model may have one or more instances in its Features

Features Configuration

Name; Configurations;

Associations: Control, Global;

Constraint; depends on Conrol and Global;
Product Feature Configuration_Feature;

Product Feature Confiquration_Relation:

Figure 4-9 Feature Configuration

Model. Thus, the cardinality relation between them is one to many.

31

Meta-Features
Model

Feature Feature
Control Configuration

Figure 4-10 Instantiation of Feature Model from Feature Meta-Model

Features Types Feature Global

4.3 TDM Object-oriented Concepts

In this section, we will report the object-oriented concepts that TDM covers through its
Product Meta-Mode (Figure 4-11,Figure 4-12).

Class Interface specifies services provided by a product component. It includes its
provided methods, its attributes (data) and its different implementations’ list.
Figure 4-11shows the graphical representation for Class interface, and Figure 4-12 shows

the textual representation.

_——2 Compose of
Class Interface —_— Implemented by
]
1
]
1
¥
Methods Attributes Implementations

Figure 4-11 Graphical representation for class interface

Class Interface <name= Class Implementation <name>
{ {

Attributes; Attributes implementation;
Methods;

Implementation; Methods implementation;

} }

Figure 4-12 Class Interface and Class implementation (textual representation)

32

4.4 TDM Mixing Class and Features Concepts

This section exposes the mix class and features concepts that TDM covers through its
Product Meta-Model and Product Model.

1- Product Meta-Model: It is the product meta-model of object-oriented paradigm mixed
with features (defined from domain), and inherent features (that is defined for each
component based on its properties). It is composed by Interface Meta-Model and

Implementation Meta-Model as shown in Figure 4-13 and Figure 4-14.

Each attribute or method can be defined in several ways depending on the features it
composes. Each time a new feature is added to an attribute, a new definition should be
held.

=— = » Compose of

— Implemented by

Class Interface
< Inherent Features>

|
1
s I
I
l

& \"4

Methods Attributes Implementations
< Inherent Features> < Inherent Features> < Inherent Features>

Figure 4-13 Interface Meta-Model (graphical representation)

Class Interface <name> Class Implementation<name>
{ {

Inherent features < ...=; Inherent features < ...>;
Attributes definition <...=>;

Methods definition <...=; Attributes <...=>;

Implementation Link;
Methods <...=;

} }

Figure 4-14 Interface and Implementation Meta-Model (textual representation)

2- Product Model: This is the final model. It is composed by class interfaces and their
implemented attributes, methods and implementations. Figure 4-15 shows the graphical

representation for this model, and Figure 4-16 shows the textual representation.

33

= =% Compose of
Class Interface —> Implemented by
-~
-
- |
e |
Product Model e
> |
e
- I
P d
-~ |
-~
e I
£ A"
Methods Attributes Implementation
— —— — —— — — — — Y |
| v |
Method Method Attribute Attribute Implementation |
| - Name - Name - Name - Name - Inherent feature
- Inherent feature - Inherent feature)
- Inherent - Inherent - Implemented attributes
- Datatype .. | - Datatype
feature . feature . . Implemented Methods
- Signature Sienat Access specifier - Access specifier |
I € - lgnature Definition - Definition

Figure 4-15 Product Model (graphical representation)

Product Model
{

Interfaces;
Implementations;

}

Figure 4-16 Product Model (textual representation)

The full model is presented in Figure 4-17, it shows the composed Feature Meta-Model,
Feature Model and Product Model.

This model is inspired from TDM figure (Figure 4-1) with more details about the
components and Meta- features. The first two parts from this model (Features
Meta-Model and Features model) corresponds to the first state in TDM (feature
definition), while the last part (Product Model) corresponds to the second state in
TDM (Product development).

34

m——3 Composeby

= = ¥ Implementedby

Features Meta-
Model

Define

Feature Meta- \ Global Feature Control Feature Configuration Feature
I Features Types o o Conf |
Model | I

> Cons Cons GF GF CF Conf ConF
| Relations Features || Relations Features Relations Relations Features |
1 L I
Feature Model 1
| |
|
| I
L N N EE - .. - SN B O B B S B S S B B B BB BEE BEE BEE BB (RN BEE BEE BB BEE BB B e .. l
r N N S - . - S S O) P S S S BB BEE BEE BEE BB BEE B e B A BB BEE BB BB B e .. 1
Product Model | Interface A<..> Interface B <..> Interface Z <..> I
| - Attributes<..> - Attributes<..> - Attributes<..> |

-Methods <..> -Methods <..> -Methods <..>
| - Implementatlon - Implementation - Implementation |
> ! | !
I | |

| Y \" \"4 |
I Implementation Implementation Implementation I

Figure 4-17 Full Model mixing feature and class concepts

35

4.5 A product Instance: case study
Our case study was reported in chapter 2 of this work.

Set model has several implementations such as: Static stack, static queue, dynamic
stack and dynamic queue.

1- Feature Model: In the following, we present the Feature Model of the “Set Model”,

composed by its Features Types, Feature Global, Feature control and Feature
Configuration.

The first Feature in “Set” Feature Model is Features Types. It defines all the features
in the system with all their possible values.

Figure 4-18 shows the graphical representation for the Features Types, and
Figure 4-19 shows the textual representation.

—_
Features Types Compose
====% Or-relation
T TN
~ — -~ Bi-relation
D Unary relation
O Concrete value
Feature Relation
S
cope Order
lﬂ

1 ™
N\ ~ -
) HMS ~
\ Behavior oS~ f\ Exclude
~
\ x Datastr '|\\ ~ ~ e -
\ I 1 S~ -
A T ™ D
Iy gl BN . AN ~
\ \
Y N Default
<D '
‘

-
{ Require
“ q

—— -

3

State View

ca> 77,
s N, N
»” S s, N

Figure 4-18 Set Feature Types (graphical representation)

36

Features Types:

{

Name: Relation_Type;
Type: FTR;

Product Relation Exclude;
{

Exclude.name=Exclude;
Exclude.Type=hi;

}

Product Relation Defualt;
{

Defualt.name= Defualt;
Default.type=Unary;

}

Product Relation Imply;
{

Imply.name= Imply;
Imply. Type=bi;

}

Product Relation Require;
{

Require.name= Require;
Require.Type=hi;

}

Product Relation Reject;
{

Reject.name= Reject;
Reject.type=Unary;

}

}

Features Types:

{

Name: Feature_Type;
Type: FTF;

Product Feature Scope;

{

Scope.name=Scope;
Scope.Num_of_values=2;
Scope.values[l]=shared,;
Scope.values[2]=separated,;
Y/end of Feature_Type Scope

Product Feature Behavior;

{

Behavior.name= Behavior;
Behavior.Num_of values=2;
Behavior.values[1]=Static;
Behavior.values[2]=Dynamic;
Y/end of Feature_Type behavior

Product Feature State;

{

State.name= State;
State.Num_of values=2;
State.values[1]=correct;
State.values[2]=experimental;
Ylend of Feature_Type state

/I Features Types:continue
Product Feature View;

{

View.name= View;
View.Num_of values=2;
View.values[1]=LlI;
View.values[2]=ClI;

Ylend of Feature_Type view

Product Feature Datastr;

{

Datastr.name= Datastr;
Datastr.Num_of values=4;
Datastr.values[1]=static;
Datastr.values[2]=dynaic;
Datastr.values[3]=persistent;
Datastr.values[4]=temporary;
Ylend of Feature_Type Datastr

/l Features Types:continue
Product Feature Order;

{

Order.name= Order;
Order.Num_of values=3;
Order.values[1]=experimental;
Order.values[2]=first;
Order.values[3]=last;

Y/end of Feature_Type order

Product Feature Form;

{

Form.name= Form,;
Form.Num_of_values=2;
Form.values[1]=ch;
Form.values[2]=con;

Ylend of Feature_Type Form

}

Figure 4-19 Set Features Types (textual representation)

37

The second feature is Features Global. It captures model global characteristics and
relations Figure 4-20 shows the graphical representation for global feature, and

Figure 4-21 shows the textual representation.

—_— Compose

Global - Or composition
/ \ T Imply relation
Global Feature Global Relation
(GF) (GR)
/\ N~
View Form
,‘) /\
s A Y Y ~
7 N 7 ~
’ AN z \\
o4 N 72)
LL CL Ch Con View Beh Form Beh
7

i 7~ ™
-7 £ N LAY Vo .
- z ’ \ i A ~
C
H “

Figure 4-20 Set Global Feature (graphical representation)

Features Global

Name: global_Relation;

Type: GR;

Product Relation Imply_1;

{

Imply_1.parts[1]=view.LlI;
Imply_1.parts[2]=Behavior.dynamic;

}

Product Relation Imply_2; Features Global

{

Imply_2.parts[1]=view.ClI; Name: global_feature;
Imply_2.parts[2]=Behavior.static; Type: GF; .

} Product Feature view;
Product Relation Imply_3; fdeUCt Feature Form;
{

Imply_3.parts[1]=Form.ch;

Imply_3.parts[2]=Behavior.static;

}
Product Relation Imply_4;

{
Imply_4.parts[1]=Form.con;
Imply_4.parts[2]=Behavior.dynamic;

Figure 4-21 Set Global Feature (textual representation)

38

The third feature is Featurse Control. It is responsible of controlling the relations over

model components. Figure 4-22 shows the graphical representation for control features

and Figure 4-23 shows its textual representation.

—> Compose
Control — = = Or composition
J s Imply re