

AN AGENT MODELING FORMALISM

(ENHANCING AUML CLASS DIAGRAM)

By

Mahmoud Adnan Ibrahim Sawalha

Supervisor

Dr. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

February, 2008

ii

AN AGENT MODELING FORMALISM

(ENHANCING AUML CLASS DIAGRAM)

By

Mahmoud Adnan Ibrahim Sawalha

Supervisor

Dr. Said Ghoul

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

February, 2008

iii

iv

Dedication

This thesis is dedicated to my family. So many thanks to my parents, my
brothers, and sisters for their unconditional support, I would never have
reached this point without their support.

Also, I want to dedicate this thesis to my friends.

v

Acknowledgment

This research project would not have been possible without the support of

many people. I would like to express my deepest sense of gratitude to my

supervisor Dr. Said Ghoul for his patient guidance, encouragement and

excellent advice throughout this study, his constant encouragement, support,

and invaluable suggestions made this work successful, he has been

everything that one could want in an advisor.

I am deeply indebted to my committee members for their time and effort in

reviewing this work.

Finally, I wish to express my gratitude to all those who gave me the

possibility to complete this thesis.

vi

List of contents

Subject Page
Title
Committee Decision

ii
iii

Dedication iv
Acknowledgment v
List of contents vi
List of figures viii
List of abbreviations ix
Abstract x

Chapter1: Introduction 1
1.1 Agent 2
1.2 AUML Class Diagram Problem 2
 Planning 2
 Roles 2
 Knowledge Base 2
 Configurations 3
 Unpredictable Agent behavior 3
1.3. Importance of the problem 3
1.4. Insufficiencies of actual approaches dealing with the problem 3
1.5. The Contribution 3

Chapter 2: Cass study 4
2.1 RobocupRescue simulation 5
 Overview of RobocupRescue simulation 5
 Fire Brigade Agents 6
 Police Force Agents 7
 Ambulance Teams 8
2.2 Case study analysis 8
 Fire Brigade Agents 8
 Police Force Agents 10
 Ambulance Teams 11

Chapter 3: Class Diagram in actual works

13

3.1. Class Diagram in Unified Modeling Language 14
 Classes 14
 Interfaces 15
 Relationships 15
3.2. AUML Class Diagram 16
 Agent Class 16
 Agent Communication Language 19
 Agent Service 19
 Agent Class relationships 20

vii

 Applying the case study in AUML 20

3.3. Toward Agent-Oriented Conceptualization and Implementation 25
 Applying the case study in Toward Agent-Oriented
 Conceptualization and Implementation

26

3.4. A Methodology for Ontology Based Multi-Agent
 Systems Development (MOBMAS)

28

 Applying the case study in MOBMAS 29
3.5. Jadex 31
 Applying the case study in Jadex 32
3.6. Developing Role-Based Open Multi-Agent Software Systems 35
 Agent Class 35
 Role Class 37
 Applying the case study in Developing Role-Based
 Open Multi- Agent Software Systems

39

3.7. Conclusion 43

Chapter 4: An Agent Class Diagram Enhancement

44

4.1. Agent Structural Requirements 45
 Autonomy 45
 Communication 46
 History 46
 Social ability 47
 Rationality 47
 Unpredictable behavior 47
 Learning ability 47
 Mobility 47
 Reasoning 48
 Multi-agent planning 48
4.2. An AUML Class Diagram Enhancement 48
 Agent Class 48
 Role Class 55
 Agent Communication Language 56
 Agent Service 56
 Agent Class Diagram Relationships 57
4.3. Applying the case study in AUML Class Diagram Enhancement 59

Chapter 5: The Evaluation 68
5.1. Introduction 69
5.2. Comparison with similar works 70
 Multiagent System Structural Requirements 70
 Model Coherence 75

Chapter 6: Conclusions and Future Work

76

6.1 Conclusions 77
6.2 Future Work 77
References 78

viii

List of Figures

Figure Number Figure Title Page
Figure 2.1 A proposed workflow for a fire brigade agent 7

Figure 4.1 Automata-Reasoning Mechanism 54

Figure 4.2 Agent Class 55

Figure 4.3 Role Class 56

Figure 4.4 Agent Service 57

Figure 4.5 Inheritance relationship 57

Figure 4.6 Play relationship 57

Figure 4.7 Control relationship 57

Figure 4.8 Dependency relationship 58

Figure 4.9 Aggregation relationship 58

Figure 4.10 Inheritance relationship 58

Figure 4.11 Leading relationship 58

ix

List of Abbreviations

ACL Agent Communication Language

AIP Agent Interaction Protocol

AOSE Agent Oriented Software Engineering

AUML Agent Unified Modeling Language

FIPA Foundation for Intelligent Physical Agents

FIPA SL FIPA Semantic Language

KQML Knowledge Query and Manipulation Language

MAS Multi-Agent Systems

OCL Object Constraint Language

OMG Object Management Group

OOSE Object Oriented Software Engineering

UML Unified Modeling Language

x

ABSTRACT

Multi-Agent Systems (MAS) has been used successfully for years with

different purposes. It is used in systems that using some kind of intelligence

and automation. Nowadays, there are a lot of modeling languages used to

model MAS. One of the well-known MAS modeling languages is Agent

Unified Modeling Language (AUML). AUML is an agent modeling

language based on Unified Modeling Language (UML 2.0), it enhances

some of UML diagrams and it doesn’t use or enhance the remain of UML

diagrams. Even, AUML is the closest agent modeling language to UML; it

still has some serious weaknesses that have not been solved yet while

dealing with agents.

This study enhanced the agent class diagram in the agent modeling language

AUML and presents a new agent class diagram that solves some of the

weaknesses of AUML by using strengthens of some other agent modeling

languages.

CHAPTER 1

INTRODUCTION

2

The Unified Modeling Language UML [5, 10], was introduced for supporting Object

Oriented Software Engineering (OOSE), it was developed by Object Management

Group (OMG). OMG is an international, open membership, not-for-profit computer

industry consortium. It is modeling standards to enable powerful visual design,

execution, and maintenance of software and other processes. It defines and maintains

the UML specifications which is published and promoted continuously in a set of

versions. Agent Unified Modeling Language (AUML), was extended from UML for

supporting Agent Oriented Software Engineering (AOSE), it was developed by

Foundation for Intelligent Physical Agents (FIPA). FIPA is an international non-profit

association of companies and organizations dedicated to promoting the industry of

intelligent agents by openly developing specifications supporting interoperability

among agents and agent-based applications [1, 2].

1.1 Agent
An agent is a computational entity such as a software program that can be viewed

as perceiving and acting upon its environment and that is autonomous in that its

behavior at least partially depends on its own experience [4, 8, 15].

1.2. AUML Class Diagram Problem
There are a set of problems in AUML models especially in Agent Class Diagram.

The majority of these problems come from that AUML doesn’t deals with

knowledge; and there are no formal semantics in AUML diagrams at all [19, 20, 21].

We can classify AUML Agent Class Diagram problems in the following:

1.2.1. Planning

Any agent should have the ability to react based on plans [2, 19, 22]; in AUML

there were no plans for agents, there is only an automata that defines a set of

states for each agent communicative act “incoming message” that represented in

state chart diagram, and what will be the reaction for that communicative act

based on its internal state [2, 19, 22].

1.2.2. Roles

In AUML Role is defined as attribute without any corresponding behavior to

that Role [2, 22].

1.2.3. Knowledge Base

AUML extended from Object-Oriented modeling language that means it doesn’t

support or contains a Knowledge Base, and the outcome will be a dummy agent

that doesn’t solve problems rationally [2, 22].

3

1.2.4. Configurations

In AUML, every time we instantiate an agent we should verify all its attributes,

same thing when the agent want to die, it doesn’t have any plan for dying, and

these booth are very important for agents [1].

1.2.5. Unpredictable Agent behavior

Because Agent-Head Automata in AUML Agent Class Diagram is responsible

for an agent behavior, AUML facing serious problems in unpredictable

behavior; because all agent behaviors are implemented in a static and in a

predictable way [2, 3].

1.3. Importance of the problem
AUML is the strongest agent modeling language as stated in the two surveys [29,

30], but it still doesn’t have a complete solution for agent modeling; because since

2004, FIPA stopped developing and improving AUML diagrams [29].

The Agent Class Diagram is the kernel of these models and its improvement will

lead to the improvements of all other models and consequentially to the

enhancement of agent modeling in general.

1.4. Insufficiencies of actual approaches dealing with the problem

There are number of languages modeling Agent structure [12, 21, 25]. Some of these

modeling languages based on object oriented concepts like AUML [19, 20, 21],

PASSI [2], GAIA [2]. And the other modeling languages like CoMoMAS [2] and

MASCommonKADS [12] use knowledge engineering to model multiagent systems.

The insufficiencies of AUML (area of study) were enumerated in details above; the

problem in other models is that they concentrate on a specific modeling field. Agent

modeling languages are classified in two types, first type built upon the concept of

knowledge engineering, and the other built upon pure object oriented concepts.

Neither pure object oriented nor pure knowledge engineering can give us the optimal

Agent Class Diagram Model.

1.5. The Contribution
In this research, we identified a more comprehensive set of agent structural

requirements, by discovering the ones upon which are based the above works, and

combining them in a complete useful in a justified way. We propose a set of new

agent structures combining object oriented and knowledge engineering concepts.

CHAPTER 2

CASE STUDY

5

In this chapter, we will present a RobocupRescue Simulation system as a case study

[34]. We will begin this chapter by taking an overview to RobocupRescue Simulation

system, after that we will present all scenarios for each agent used in RobocupRescue

system. After that, analyzing all these agents based on automated negotiation,

knowledge, thinking, environment, events, services, goals, and resources.

2.1 RobocupRescue Simulation

Design and construction of multi-agent system infrastructures is a challenging but

an interesting problem. Designing systems for soccer player robots, computer-

aided design of a generic robot controller for a multi- robot system, design and

implementation of automated highway systems, and the hot topic of trading agents

are a few examples of the works in this field.

The engaged test bed is the rescue simulation environment. This test bed is

basically designed for the goal of disaster mitigation of an earthquake. Three kinds

of completely different agents are aimed to minimize the overall damage to the

city. Such agents have various abilities and hence different responsibilities such as

extinguishing burning buildings, rescuing injured civilians, etc. Also they are

supposed to come across a mutual agreement so that their cooperation and

coordination would enhance their collaborative efforts and this adds to their

complexity. Two aspects of a multi-agent system with intelligence are eligible to

note. The first one is the intelligence of each agent. The other one is considered

with the system as a whole and it is the agents’ coordination and cooperation to

reach desired goals. In the implemented system both issues are considered and

emphasized. It means that although each agent tries to perform his assigned tasks

as perfect as possible, he tries to act so that the overall system benefits. In other

words the agents are not selfish.

2.1.1 Overview of RobocupRescue Simulation

The main aim of RobocupRescue Simulation is simulating a disaster

situation in a city. There is a kernel simulating the city and some simulators

6

simulating the disaster conditions. The parts that we have developed are the

agents, and they are:

– Fire Brigades

– Ambulance Teams

– Police Forces

The main goal of the agents is to rescue more civilians. Although,

ambulances are responsible for rescuing civilians, but polices will clear the

roads so that ambulances and fire brigades can move in the city. Fire

brigades have to extinguish fires to reduce the amount of damage (the less

fire, the more alive civilians).

2.1.2 Fire Brigade Agents

In this environment, the fire brigades are responsible for controlling the

spread of fire in the city, and extinguishing as many buildings as possible.

For this purpose, each agent takes advantage of his visual perception and

identifies the buildings on fire. For each burning building the agent

autonomously tries to estimate how dangerous that building would be and

how much it threatens its neighbors. After this phase, the fire brigades need

to act upon the world’s situation in a unified approach to increase their

coordination. The most obvious approach in this phase is finding the most

important buildings on fire and extinguishing them. So, the way agents

calculate a building’s priority plays an important role in this phase. A

proposed workflow for a fire brigade is depicted in figure 2.1. As the figure

suggests, the workflow contains four phases, namely: perception, analysis,

decision making, and implementation. This means that the agent first

receives raw information about the environment. Then by means of

communication with other agents, his experiments and his experiences, the

agent uses this information to gain some kind of knowledge that would be

useful in the decision making phase. Then the agent’s world model is

investigated to find appropriate targets.

The most useful and the best estimated targets are selected in this decision

making process. In the last phase the agent implements the desired actions

according to the target he has chosen.

7

Figure 2.1: A proposed workflow for a fire brigade agent

The decision making section is the most important phase in the agent’s

workflow in each cycle. The fire brigade agents use a two layered

architecture for this phase. In the first stage, the agents decide independently.

They do not care the state of other agents and they selfishly choose some

targets for their own. In the next stage, the agents try to both actively

coordinate with other fire brigades and also communicate with other types of

agents. In this way the overall rescue integrity is guaranteed and this

collaboration enriches the result and the overall performance of the system.

One of the advantages of this architecture is the independence of the two

layers. This enables implementation and evaluation of different algorithm in

each layer.

2.1.3 Police Force Agents

In Rescue Simulation, the police forces are supposed to clear roads. Trying to

clear more roads is not the optimum action. Polices have to select the most

important roads. Importance of a road is defined as how many times other

agents will pass through this road in the following cycles.

In order to improve the police forces’ in decision making, reinforcement

learning has been used. In this method each agent has three actions as

follows:

8

– Stay in his area: the police stay and walk around in the area his currently in.

– Help other agents: Selection of this action means the police will be leaving

his current area so as to clear a specific road to help another agent achieve his

goal

– Change the area of responsibility

2.1.4 Ambulance Teams

Ambulance team agent’s rescue injured civilians. They obtain information of

civilians by means of communication, and gathering auditory and visual

information. In order to determine whether to go to rescue a civilian or move

around to find an injured civilian.

2.2 Case study analysis
In Robocup Rescue system, there are three types of agents: Fire Brigade Agents,

Police Force Agents, and Ambulance agents.

2.2.1 Fire Brigade Agents

Agent in Fire Brigade should contain the following structure:

- Automated Negotiation

Any agent in Fire Brigade Agents should have the ability to communicate,

collaborate, cooperate, and negotiate with other agents in the same

environment and with other agents in other environments. This operation

should lead to reach, or to get closer, to the goal.

Automated negotiation happened in the second stage in decision making, the

agents try to both actively coordinate with other fire brigades and also

communicate with other types of agents.

- Knowledge

Agent must have some kind of knowledge about his experiments and

experiences

- Thinking

Thinking happened in the Decision Making phase. It contains two stages: in

the first stage, the agents decide independently; they do not care the state of

9

other agents and they selfishly choose some targets for their own. In the next

stage, the agents try to both actively coordinate with other fire brigades and

also communicate with other types of agents.

Each agent receives a visual perception and identifies the buildings on fire.

For each burning building the agent autonomously tries to estimate how

dangerous that building would be and how much it threatens its neighbors.

After this phase, the fire brigades need to act upon the world’s situation in a

unified approach to increase their coordination. The most obvious approach

in this phase is finding the most important buildings on fire and

extinguishing them. So, the way agents calculate a building’s priority plays

an important role in this phase.

- Environment

Fire Brigade environment

- Events

All raw information about the environment received from its perception and

some actions that agents do and that may affect other agents.

For example:

All visual information about burning buildings (received event)

All visual information about civilians (received event)

Fire Brigade whistle (sent event)

- Services

There are no services provided by this agent in this system

- Goals

Extinguishing burning buildings

Evacuation injured civilians

- Resources

Fire brigade vehicle

10

2.2.2 Police Force Agents

Agent in Police Force should contain the following structure:

- Automated Negotiation

Any agent in Police Force should have the ability to communicate,

collaborate, cooperate, and negotiate with other agents in the same

environment and with other agents in other environments. This operation

should lead in the final stage to reach or to get closer to the goal.

- Knowledge

Agents must have knowledge about his experiments and experiences

- Thinking

Thinking in police forces needed in two areas:

Clearing roads: The police forces are supposed to clear roads. Trying to

clear more roads is not the optimum action. Polices have to select the most

important roads.

After selecting the most important road: Police forces have three actions

to do as follows:

– Stay in his area: When this action is chosen, the police stay in his area and

walks around the area he is currently in.

– Help other agents: Selection of this action means the police will be leaving

his current area so to clear specific road to help another agent.

– Change the area of responsibility

- Environment

Police Force environment

- Events

All raw information about the environment received from its perception and

some actions that agents do and that may affect other agents.

For example:

All visual information about roads to clear (received event)

All visual information about civilians (received event)

11

- Services

There are no services provided by this agent in this system

- Goals

Evacuation injured civilians

Clearing roads

- Resources

Police car and Police station

2.2.3 Ambulance Teams

Agent in Ambulance Teams should contain the following structure:

- Automated Negotiation

Any agent in Ambulance Teams should have the ability to communicate,

collaborate, cooperate, and negotiate with other agents in the same

environment and with other agents in other environments. This operation

should lead in the final stage to reach or to get closer to the goal.

- Knowledge

All Agents must have knowledge about their old experiments and

experiences

- Thinking

Ambulance team agent’s rescue injured civilians. They obtain information of

civilians by means of communication, and gathering auditory and visual

information. The rescuer should know whether to go to rescue a civilian or

move around to find an injured civilian.

- Environment

 Ambulance Teams environment

12

- Events

All raw information about the environment received from its perception and

some actions that agents do and that may affect other agents.

For example:

All visual information about civilians (received event)

- Services

There are no services provided by this agent in this system

- Goals

Evacuation injured civilians

Rescuing injured civilians

- Resources

Ambulance vehicle

Ambulance first aid

CHAPTER 3

CLASS DIAGRAM IN ACTUAL WORKS

14

In this chapter, we will present Class Diagrams in actual researches. We will begin this

presentation by introducing Class Diagram in Unified Modeling Language, then

introducing the Agent Class Diagram in Agent Unified Modeling Language that we

will enhance, after that we will present a set of new Agent structures and their

relationships, proposed by several actual recent research works.

3.1. Class Diagram in Unified Modeling Language UML

Class diagrams are one of the most fundamental diagrams in UML [5, 23]. They are

used to capture the static relationships of software elements [5, 10, 23].

UML divides diagrams into two categories: structural diagrams and behavioral

diagrams [10, 23]. Structural diagrams are used to capture the physical organization

of the things in a system, while behavioral diagrams focus on the behavior of

elements in a system. Class Diagram is one of UML structural diagrams that used to

capture the static relationships of the software.

Class diagrams commonly contain the following:

3.1.1. Classes

Classes are the most important building block of any Object Oriented system. A

class represents a group of things that have common state and behavior. In other

words, a class can be seen as a set of objects that share the same attributes,

operations, relationships, and semantics [5, 23]

• Attributes

An attribute is a named property of a class that describes a range of values

that instances of the property may hold. A class may have any number of

attributes or no attributes at all. An attribute represents some property of the

thing you are modeling that is shared by all objects of that class. An

attribute is therefore an abstraction of the kind of data or state an object of

the class might encompass.

• Operations

An operation is the implementation of a service that can be requested from

any object of the class to affect behavior. In other words, an operation is an

abstraction of something you can do to an object that is shared by all objects

of that class. A class may have any number of operations or no operations.

15

3.1.2. Interfaces

An interface is a collection of operations that are used to specify a service of a

class or a component. A type is a stereotype of a class used to specify a domain

of objects, together with the operations (but not the methods) applicable to the

object.

3.1.3. Relationships

A relationship is a connection among entities. In Object Oriented modeling, the

four most important relationships are generalizations, associations, and

realizations.

• Dependencies

A dependency is a using relationship, specifying that a change in the

specification of one entity may affect another entity that uses it, but not the

reverse. Dependencies used when we want to show one thing using another.

• Generalizations

A generalization is a relationship between a general classifier (superclass)

and a more specific classifier (subclass). With a generalization relationship

from the child to the parent, the child will inherit all the structure and

behavior of his parent. The child may even add new structure and behavior,

or it may override the behavior of the parent.

• Associations

An association is a structural relationship, specifying that objects of one

thing are connected to objects of another. It is used when the relationship

between two elements is complex.

• Realizations

A realization is a semantic relationship between classifiers, where one

classifier specifies a contract that another classifier guarantees to carry out.

This relationship can be found in two places: between interfaces and the

classes or components that realize them, and between use cases and the

collaborations that realize them.

16

3.2. AUML Class Diagram

UML Class diagrams are modified deeply in order to encompass agent features

such as mental state or interaction protocols. For pointing out the differences with

class diagrams in UML, the Class Diagrams in AUML called Agent Class Diagram

[2, 20, 21, 22].

AUML Agent Class Diagram is constituted by: Agent Class, Agent Communication

Language (ACL), Agent Service, and relationships.

3.2.1. Agent Class

Agent Class in AUML consists of the following:

• Name

Three information may be supplied in agent name: instance, role, and class.

 Instance

Instances give the name of each agent involved.

 Role

A role is the behavior associated to an entity into a particular context.

 Class

In AUML, a Class is a set of agents that share the same set of agent

characteristics.

• State Description

It defines the state of the agent. It has the same construction of attributes in

UML:

[visibility] name [multiplicity] [:type] [= initial-value] [property-string]

 Visibility defines how an attribute can be seen and used by others.

Three cases are available: public, private and protected.

 Name is the name of the attribute. It is a textual string and name must be

unique within the class.

 Multiplicity is used when it is necessary to represent several copies of

the same attribute.

 Type represents the type of the attribute.

 Initial-value describes the initial value of this attribute.

17

 Property-string defines how attributes can be used: changeable is the

default value and means that it is possible to update the value of this

attribute, add-only is used for lists and means that only the insertion is

possible, it is then not possible to update or to delete values in the list,

frozen corresponds to constants, the value of the attribute cannot be

modified.

• Actions

In AUML, two kinds of actions can be specified for an agent: proactive

actions that are triggered by the agent itself and reactive actions that are

triggered when receiving some message from another agent.

In its full form, the syntax of an action is:

[visibility] [pre-conditions] name [(parameter-list)] [post-conditions]

 Visibility defines how an attribute can be seen and used by others.

 Parameter-list contains both the name of the parameter and its type.

 Pre-conditions are constraints that must be true when an action is

invoked.

 Post-conditions are constraints that must be true to complete an action.

• Methods

Methods like operations in UML. An operation is the implementation of a

service that can be requested from any agent of the class to affect behavior;

in other words, an operation is an abstraction of something you can do to an

agent and that is shared by all agent of that class.

In its full form, the syntax of a method is:

[visibility] [pre-conditions] name [(parameter-list)]

[: return-type] [post-conditions] [property-string]

 Visibility defines how an attribute can be seen and used by others.

 Parameter-list contains a list of parameters.

 Type and return-type represent the type of the action and of the

parameter respectively.

 Pre-conditions are constraints that must be true when an action

invoked.

 Post-conditions are constraints that must be true to complete an action.

18

 Property-string defines how attributes can be used: changeable is the

default value and means that it is possible to update the value of this

attribute, add-only is used for lists and means that only the insertion is

possible, it is then not possible to update or to delete values in the list,

frozen corresponds to constants, the value of the attribute cannot be

modified.

• Service Description

Service description can be seen as interface in UML. Service descriptions

are represented with their operations as a class called Agent Service.

• Supported Protocols

Supported protocols are described as a list. Supported protocols are adorned

with the roles played by the agent in these protocols.

• Agent-Head-Automata

The agent head automata define the behavior of an agent’s head. Agents are

composed of three parts: communicator, head, and body.

The agent communicator is responsible for the physical communication of

the agent. The main functionality of the agent is implemented in the agent

body. The agent’s head behavior has to be specified with the agent head

automata. Especially, this automata related to the incoming messages with

the internal state, actions, methods and the outgoing messages, called the

reactive behaviors of the agent.

Moreover, it defines the pro-active behaviors of an agent, i.e. it

automatically triggers different actions, methods, and state-changes

depending on the internal state of the agent. An example of pro-active

behavior is to do some action at a specific time, e.g. an agent migrates at

predefined times from one machine to another, or it is the result of some

request-when communicative acts.

19

• Group Representation “Organization”

The compartment organization gives the different groups in which the agent

evolves, which roles it plays and under which constraints, it can evolve in

these groups. The syntax for this information written as the following:

[constraint] organization : role

 Constraints are written as a free-form text or as an OCL expression.

Constraints must be satisfied if agents want to belong to this group.

3.2.2. Agent Communication Language “ACL”

In order to communicate with other agents, agents use protocols and a specific

agent communication language that describes the semantics associated to

communicative acts.

Agent Communication Language in AUML consists of the following:

• Agent Communication Language name

Name of the communicative act.

• Description

Description of the content of this communicative act in natural language.

• Message Content

Description of the content associated to this communicative act. In FIPA

ACL the message content in written in the “: content” compartment.

• Semantics

Contains the structure of this communicative act. It can be written by FIPA

Semantic Language “FIPA SL”.

3.2.3. Agent Service

A service is an activity that an agent can perform and is provided to other agents.

Agent Service in AUML consists of the following:

• Name

Name of the service.

• Description

A description in natural language of this service.

• Type

The type of the service.

20

• ACL

List of agent communication languages used in this service.

• Ontology

A list of ontologies supported by the service.

• Content Language

A list of content languages supported by the service.

• Properties

A list of properties that discriminate the service.

3.2.4. Agent Class Relationships

There were many proposed relationships for AUML Class Diagram, but nothing has

been accomplished yet because FIPA has some internal organizational problems

[19, 20]. Agent main relationships are:

• Generalization

It is an organizational abstraction mechanism that creates an agent class

from its constituent classes that satisfy a subclass-of to the generalized class.

The inverse of generalization is known as specialization. The specialized

agent class inherits the mental state of the generalized agent class.

• Aggregation

It is also an organizational abstraction mechanism by which an agent class is

constructed from its constituent agent classes that satisfy a part-of

relationship to the aggregated form.

• Cooperation

It is a behavioral abstraction mechanism that creates an organization or a

society of cooperative agents from the constituent agent classes.

3.2.5. Applying the case study in AUML

In our case study we have three types of agents: Fire Brigades agents,

Ambulance Teams, and Police Force Agents. For simplicity we will design two

types of them Fire Brigades agents and Police Force Agents.

We can design an Agent Class Diagram in AUML as follows:

21

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In AUML, we can
model Fire Brigades agent as follows:

 Agent Class
o Name

- Instance: fireman-agent1
- Role: fireman, rescuer, negotiator
- Class: fire-extinguisher

o State Description

public recover 1..10 {frozen}
public water-tank 1..1 :integer = 200 {changeable}
public multi 0..1 :integer = 40 {frozen}
public burn-building :integer {changeable}

o Actions

public water-tank = 0 retreat water-tank = 200

o Methods

public burn-building = 1 extinguish (burn-building, floors)
:string recover = recover+1 {changeable}

o Service Description

Extinguishing burning buildings and rescuing civilians

o Supported Protocols

Brokering interaction protocol
Query interaction protocol
Request interaction protocol

o Agent-Head-Automata

It contains functions that manages all agents actions, methods,
and messages

o Group representation
Group representation used in systems that contains agents who
have the ability to join more than one organization. In this case
of Fire Brigades agent, the fireman couldn’t move from one its
organization to another one.

22

 Agent Communication Language
o Name

Instance: Accept Proposal1

o Description

Accept-proposal is a general-purpose acceptance of a proposal
that was previously submitted. The agent sending the acceptance
informs the receiver that it intends that the receiving agent will
perform the action, once the given precondition is, or becomes,
true.

o Message Content

A tuple consisting of an action expression denoting the action to
be done and a proposition giving the conditions of the agreement
It could be written like:
<j, INFORM (i, p)> | <j, INFORM (i, ￢p)>

o Semantics

(accept-proposal
:sender (agent-identifier :name i)
:receiver (set (agent-identifier :name j))
:in-reply-to fireman2
:content
((action (agent-identifier :name j)
(stream-content tank 19))
(B (agent-identifier :name j)
(ready fireman2)))
:language FIPA-SL)

 Agent Service

o Name
Extinguishing burning buildings

o Description

This service is responsible for extinguishing burning buildings,
were these buildings specified by the agent itself.

o Type

Public service

o ACL

Accept Proposal, Agree, Cancel, and Call for Proposal

o Ontology

Burning buildings ontology, Fire station ontology, and Rescuing
ontology

23

o Content Language
A list of content languages like LOTA and FIPA SL

o Properties

None

o Message Content

A tuple consisting of an action expression denoting the action to
be done and a proposition giving the conditions of the agreement

 Agent Class Relationships

o Generalization
All a fireman agents inherits everything from its parent (Fire
Brigade agent).

o Aggregation

We can not define part-of relationship between agents in this
environment.

o Cooperation

We can make a cooperation relationship between policeman
agent and fireman agent.

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and it
may evacuate injured civilians. In AUML, we can model Police Force Agent as
follows:

 Agent Class
o Name

- Instance: police agent1
- Role: policeman, rescuer, negotiator
- Class: fireman

o State Description
public rank 1..1 :character = b {frozen}
public streets :string {frozen}
public street-priority :string = 0{changeable}

o Actions

public street-priority < 20 change-street street-priority > 60

24

o Methods
public street-priority = 0 explore (streets) :string recover =
recover+1 {changeable}

o Service Description

Evacuation injured civilians and clearing roads

o Supported Protocols

Brokering interaction protocol
Query interaction protocol
Request interaction protocol

o Agent-Head-Automata

It contains functions that manages all agents actions, methods,
and messages

 Agent Communication Language

o Name
Instance: Call for Proposal1

o Description

It is a general-purpose action to initiate a negotiation process by
making a call for proposals to perform the given action.

o Message Content

A tuple containing an action expression denoting the action to be
done, and a referential expression defining a single-parameter
proposition which gives the preconditions on the action

o Semantics

(call-for-proposal
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
((action (agent-identifier :name i)
(move policeman))
:ontology Rescuing ontology)

 Agent Service
o Name

Clearing roads

o Description

This service is responsible for clearing roads.

25

o Type
None

o ACL

Accept Proposal, Agree, Cancel, and Call for Proposal

o Ontology

Clearing roads ontology and rescuing ontology

o Content Language

A list of content languages like LOTA and FIPA SL

o Properties

None

 Agent Class Relationships

o Generalization
All a policeman agents inherits everything from its parent (Police
Force agent).

o Aggregation

We can not define part-of relationship between agents in this
environment.

o Cooperation

We can make a cooperation relationship between fireman agent
and policeman agent.

After this presentation of a Class Diagram in UML and Agent Class Diagram in
AUML, we will present a set of new Agent structures, proposed in several actual recent
research works.

3.3. Toward Agent-Oriented Conceptualization and Implementation
Agent Structure in Toward Agent-Oriented Conceptualization and Implementation

[26] consists of Agent template that composed of the following:

• Agent Name

• Location

Agent location in the Organization.

26

• Communists ”Goals”

All Agents’ goals that should be achieved.

• Knowledge Base

Knowledge Base is union of the set of domain classes for its attributes and

the underlying knowledge base that is always accessible to it for its decision

making.

• Communication Languages

All Agent Communication Languages that an Agent can use.

• Ontology

Contains the dictionary of the domain.

• Interaction protocols

Indicating the types of interactions witnessed in the application, and they

identify patterns of behavior.

• Capabilities

A set of methods to communicate, migrate, and learn.

• Accessory methods

All methods required to accomplish Agent specific responsibilities.

3.3.1 Applying the case study in Toward Agent-Oriented Conceptualization and

Implementation

In our case study we have three types of agents: Fire Brigades agents,

Ambulance Teams, and Police Force Agents. For simplicity we will design two

types of them Fire Brigades agents and Police Force Agents.

We can design an Agent Class Diagram in [26] as follows:

27

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In [26], we can model
Fire Brigades agent as follows:

 Agent Class
o Agent Name

fire-man1

o Location

Fire brigade organization

o Communists

Extinguishing burning buildings and rescuing civilians

o Knowledge Base

Contains all the required knowledge for the fire-man which is
used in decision making

o Communication languages

FIPA ACL
Knowledge Query and Manipulation Language (KQML)

o Ontology

Burning buildings ontology, Fire station ontology, and Rescuing
ontology

o Interaction Protocols

Brokering interaction protocol
Query interaction protocol
Request interaction protocol

o Capabilities

It contains all functions that make the agent to communicate,
migrate, and learn

o Accessory methods

Carrying civilian, carrying fireplug, move, and using the fireplug

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and it
may evacuate injured civilians. In [26], we can model Police Force Agent as follows:

 Agent Class
o Agent Name

police-man1

28

o Location
Police Force organization

o Communists

Evacuation injured civilians and clearing roads

o Knowledge Base

Contains all the required knowledge for the police-man which is
used in decision making

o Communication languages

FIPA ACL
KQML

o Ontology

Clearing roads ontology and Rescuing ontology

o Interaction Protocols

Brokering interaction protocol
Query interaction protocol
Request interaction protocol

o Capabilities

It contains all functions that make the agent to communicate,
migrate, and learn

o Accessory methods

Carrying civilian, move, and using police vehicle

3.4. A Methodology for Ontology Based Multi-Agent Systems

Development “MOBMAS”

Agent Structure in MOBMAS [27], consists of the following:

• Agent class name

• Roles

Roles played by the agent. Each Role represents a set of functions, each one

of them solves one agent goal.

• Belief

There are two kinds of information:

29

 Belief State: corresponds to an agent’s knowledge about a particular

state of the world and capturers the run-time facts about the state entities

that exists in the agent’s application and the Environment.

 Belief Conceptualization: contains the Knowledge that an agent holds

about the conceptualization of the world, particularly the

conceptualization of the entities referred to in the Belief state.

• Agent-Goal

It is the state of the world that an agent class would like to achieve.

• Events

It is defined as a significant occurrence in the environment that an agent

may respond “react”.

• Relationships

 Acquaintance

Each acquaintance between agent classes is depicted as an undirected

line connecting the agent classes. Inter-agent acquaintances can be

derived from the acquaintances amongst roles.

3.4.1 Applying the case study in MOBMAS

In our case study we have three types of agents: Fire Brigades agents,

Ambulance Teams, and Police Force Agents. For simplicity we will design two

types of them Fire Brigades agents and Police Force Agents.

We can design an Agent structure in [27] as follows:

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In [27], we can model
Fire Brigades agent as follows:

30

 Agent Class
o Agent Name

fire-man1

o Roles

fireman, rescuer, negotiator

o Belief

Belief State: state of burning buildings, state of water-tank
Belief Conceptualization: knowledge about dealing with burning
buildings, knowledge about dealing with water-tank

o Agent Goal

Extinguishing burning buildings and rescuing civilians

o Events

State of all burning buildings, injured civilians, and other agents

 Relationships
o Acquaintance

Every agent has an acquaintance relationship with its neighbors.

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and it
may evacuate injured civilians. In [27], we can model Police Force Agent as follows:

 Agent Class
o Agent Name

police-man1

o Roles

Police-man, rescuer, negotiator

o Belief
Belief State: state of burning buildings, roads, and civilians
Belief Conceptualization: knowledge about dealing with burning
buildings, clearing roads, and evacuation injured civilians

o Agent Goal

Evacuation all injured civilians, clearing all roads

o Events

State of all injured civilians, roads, and other agents

 Relationships

o Acquaintance
Every agent has an acquaintance relationship with its neighbors.

31

3.5. Jadex

Jadex is the famous platform for modeling Multiagent Systems [14]. It is an Agent

Oriented reasoning engine for writing rational agents with XML and the Java

programming language.

Agent Structure in Jadex called Agent Template, and it consists of the following:

• Imports

The imports tag is used to specify, which classes and packages can be used

by Java expressions.

• Capabilities

Each agent has at least one capability which is given by the beliefs, goals,

and plans, contained in an XML file.

A capability is basically the same as an agent, but without its own reasoning

process. On the other hand, an agent can be seen as a collection of

capabilities plus a separate reasoning process shared by all its capabilities.

In Jadex, Capabilities contains three types of information:

 Beliefs

Beliefs represent the agent's knowledge about its environment and itself.

In Jadex the beliefs can be any Java objects. They are stored in a belief

base, and can be accessed and modified from plans using the belief-base

interface.

 Goals

Goals make up the agent's motivational stance and are the driving forces

for its actions. Therefore, the representation and handling of goals is one

of the main features of Jadex.

 Plans

Plans represent the agent's means to act in its environment. Therefore,

the plans predefined by the developer compose the library of actions the

agent can perform. Plans are selected in response to occurring events or

goals. The selection of plans is done automatically by the system.

32

• Events

An important property of agents is the ability to react timely to different

kinds of events.

Jadex supports two kinds of application-level events.

 Internal events can be used to denote an occurrence inside an agent,

 Message events represent a communication between two or more agents.

• Properties

Properties represented in static expressions. They can be defined in two

different ways. First, you can use the properties section of the agent XML

file and add an arbitrary number of properties. Secondly, the agent tag has

an optional attribute "property-file" which refers to an XML file containing

important definitions.

• Configurations

Configurations represent both the initial and/or end states of an agent type.

Initial instance elements can be declared that are created when the agent is

started. This means that initial elements such as goals or plans are created

immediately when an agent is born.

End elements can be used to declare instance elements such as goals or

plans that will be created when an agent is going to be terminated.

• Means-end Reasoning

It includes a set of functions used to select and execute plans based on

internal or external event.

• Relationships

Jadex uses all Java language relationships, without any additional features.

3.5.1 Applying the case study in Jadex

In our case study we have three types of agents: Fire Brigades agents, Ambulance

Teams, and Police Force Agents. For simplicity we will design two types of them

Fire Brigades agents and Police Force Agents.

33

We can design an Agent Template in [14] as follows:

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In [14], we can model
Fire Brigades agent as follows:

 Agent Template
o Imports

<imports>
<import> fireman.* </import>
<import> search.civil.* </import>
</imports>

o Capabilities

- Beliefs
<beliefs>
<beliefset name="friend-Agent-names" class="String">
<fact>"fireman2"</fact>
<fact>"fireman3"</fact>
<fact>"fireman4"</fact>
</beliefset>
</beliefs>

- Goals
<goals>
<goal name="evacuation">
<parameter name="applicables"class="civilian"/>
<parameter name="result" class="civilian"
direction="in"/>
</goal>
</goals>

- Plans
<plans>
<plan name="fireman_move_plan">
<parameter name="move" class="Move">
<trigger>
<goal ref="makemove"/>
</trigger>
</plans>

o Events

<events>
<internalevent name="gui_update">
<parameter name="content" class="String"/>
</internalevent>
</events>

o Properties

<properties>
<property name="contentcodec.jade-management-sl0">
new JadeContentCodec(new SLCodec(0),
JADEManagementOntology.getInstance())
</property>
</properties>

34

o Configurations
<configurations default="two">
<configuration name="one">
<capabilities>
<initialcapability ref="mycap" configuration="a"/>
</capabilities>
</configuration>
</configurations>

o Means-end Reasoning

jadex_rt.jar: The Jadex runtime jar includes the kernel of
the Jadex reasoning engine.

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and
it may evacuate injured civilians. In [14], we can model Police Force Agent as
follows:

 Agent Template
o Imports

<imports>
<import> policeman.* </import>
<import> search.street.* </import>
<import> search.civil.* </import>
</imports>

o Capabilities

- Beliefs
<beliefs>
<beliefset name="friend-Agent-names" class="String">
<fact>"policeman2"</fact>
<fact>"policeman3"</fact>
<fact>"policeman4"</fact>
</beliefset>
</beliefs>

- Goals
<goals>
<achievegoal name="moveto">
<parameter name="location" class="Location"/>
beliefbase.my_location.isNear(goal.location)
</achievegoal>
</goals>

- Plans
<plans>
<plan name="repair">
<body> new RepairPlan() </body>
<trigger>
<condition> beliefbase.out_of_order </condition>
</trigger>
</plan>
</plans>

35

o Events
<events>
<messageevent name="query" type="fipa"
direction="receive">
<value>Fipa.QUERY_REF</value>
</parameter>
<parameter name="content" class="String"
direction="fixed">
<value>"ping"</value>
</parameter>
</messageevent>
</events>

o Properties

<properties>
<property name="contentcodec.fipa-management-sl0">
new JadeContentCodec(new SLCodec(0),
FIPAManagementOntology.getInstance())
</property>
</properties>

o Configurations

<configurations>
<configuration>
<capabilities>
<initialcapability ref="mycap" configuration="b"/>
</capabilities>
</configuration>
</configurations>

o Means-end Reasoning

jadex_rt.jar: The Jadex runtime jar includes the kernel of
the Jadex reasoning engine.

3.6. Developing Role-Based Open Multi-Agent Software Systems

Agent Structure in Developing Role-Based Open Multi-Agent Software Systems

[11], constituted by: Agent Class, Role Class, Relationships between Role Classes.

3.6.1. Agent Class

• Attributes

An agent is identified by its attributes such as the agent name, agent owner

and agent identification.

• Knowledge

Knowledge about the agent and the Environment around that agent; it is

represented as a special type of attributes.

36

• Motivations

Motivations, which is defined as any desire or preference that can lead to the

generation and adoption of goals, and also affect the outcome of the

reasoning or behavioral task intended to satisfy those goals.

• Sensor

The sensor of an agent perceives related environment changes and

transforms the inputs into a set of sensor data.

• Reasoning Mechanism

The reasoning-Mechanism is defined as a function that takes a set of sensor

data and a set of motivations as arguments and maps them to a set of goals

and sub-goals.

• Role-Matching Mechanism

Based on the goals and sub-goals, the function role-Matching Mechanism

further derives a set of needed roles with certain attributes. The agent then

searches the role space for any available role instances that satisfies the role

properties, and takes each needed available role instance from the role space

to achieve its goals.

• Committed Plan

To realize an agent’s goal, a committed-plan is derived according to the role

instances and the knowledge possessed by the agent, which includes the

agent knowledge and the domain knowledge of each role instance taken by

the agent.

• Roles Taken

The state variable roles-Taken refers to a set of roles that are currently taken

by the agent.

37

3.6.2. Role Class

• Attributes

Represents a set of role attributes that describe the characteristic properties

of a role, including role name and role identification.

• Domain Knowledge

Specifies a set of domain knowledge that a role must possess to achieve its

domain goals.

• Domain Goals

Describes the current goal states and a set of domain goals that a role may

achieve.

• Domain Plans

Represents a set of plan trees that are used to achieve a goal or sub-goal by

executing several actions in a specified order. Each plan tree is associated

with a goal or a sub-goal; however, a goal or sub-goal may associate with

more than one plan tree, and the most suitable one will be selected to

achieve that goal or sub-goal.

• Domain Actions

Refer to a set of actions that will be trigged to execute when an associated

plan tree is selected to carry out.

• Protocols

Defines the way how role instances may interact with each other.

• Permissions

Describes the resources that are available to that role in order to achieve a

goal or sub-goal.

• Be Taken

It defines if a role instance has already been taken by an agent. An

instantiated role is similar to the concept of object, which is an instantiated

38

entity of a class. It has certain goals, plan trees, and actions, it cannot start to

execute until it is taken by an agent.

• Relationships

The relationships are only between two “role classes”. i.e. there are no

relationship between Agents.

 Inheritance Relationship

An inheritance relationship between two role classes represents the

generalization or specialization relationship between two role

classes, where one class is a specialized version of another.

Inheritance is a mechanism for incremental specification and design,

whereby new classes may be derived from one or more existing

classes.

 Leading Role Relationship

A leading role is responsible for hiring other roles in achieving its

goal. For example, a company A is a leading role, which is

responsible for hiring new employees. The leading role inherits all

the data fields as well as all operations defined in the Role class. In

addition, a leading role records the number of role instances that are

required to achieve its goals.

 Composite Role Relationship

In the Composite-Role class, the state variable sub-Roles describe a

set of role instances of type Role or its derivatives. Sub-roles can be

added into or deleted from the sub-roles set.

 Aggregation Relationship

The aggregation relationship between role classes is most suitable

for defining the hierarchy of a role organization. For instance, we

can use a composite role to represent a team, a group or even a role

organization.

 Association Relationship

The association relationship is one of the most common relationships

between role classes. The association indicates an action that an

instance of one role may perform on an instance of another role.

39

3.6.3. Applying the case study in Developing Role-Based Open Multi-Agent

Software Systems

In our case study we have three types of agents: Fire Brigades agents,

Ambulance Teams, and Police Force Agents. For simplicity we will design

two types of them Fire Brigades agents and Police Force Agents.

We can design an Agent class in [11] as follows:

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In [11], we can model
Fire Brigades agent as follows:

 Agent Class
o Attributes

Agent name: fireman1
Organization: Fire brigades agents
Type: none

o Knowledge
Team leader: fireman2
Team-members: fireman1, fireman2, fireman3, fireman4
Agent state: working

o Motivations
State of all burning buildings and injured civilians

o Sensor

Environment sensor1,
Environment sensor2

o Reasoning Mechanism
If environment sensor1 = injured civilian then => rescue
If environment sensor2 = burning building then => extinguish

o Role-Matching Mechanism
When the agent wants to achieve extinguishing burning buildings
goal, Role-Matching Mechanism derives a set of needed roles for
extinguishing burning buildings goal, these roles may include:
fireman role, rescuer role, policeman role. After that the agent
searches the role space for the closer role properties with his
derived roles. After finding the closer role, the agent makes an
instance from that role to achieve extinguishing burning
buildings goal.

40

o Committed Plan
It contains all information about all domain knowledge gathered
from the instances of agent roles related with knowledge
possessed by the agent.

o Roles Taken
Fireman role and rescuer role

 Role Class

o Attributes

Name: rescuer1

o Domain Knowledge
Knowledge about transporting injured civilians and first aid.

o Domain Goals
Evacuation injured civilians, give first aid to injured civilians.

o Domain Plans
Each goal in the “domain goals” may have one or more plan tree,
and each plan tree contains a sequence of actions that could be
done by the role to achieve its goal.

o Domain Actions
It is the set of that is used by domain plan, it could be: carrying
injured civilian, transporting injured civilian, and giving first aid
to injured civilian.

o Protocols
There is no specific type of agent communication protocols. We
can use FIPA ACL or KQML protocols.

o Permissions
Ambulance first aid [only use]
Oxygen cylinder [none]

o Be Taken
Rescuer

 Relationships
All relationships are between Roles
Inheritance Relationship

All rescuer roles are inherited from Rescuer parent role.

o Leading Role Relationship

The rescuer role could be a leading role for negotiation role.

41

o Composite Role Relationship
We can specify the relationship between fireman role and rescuer
role as composite role relationship from fireman to rescuer; that
means the rescuer role is a sub-role of fireman role.

o Aggregation Relationship

All fireman roles have an Aggregation Relationship with fireman
Headquarters role.

o Association Relationship
The rescuer role could make association with policeman role; by
this association the policeman may help the rescuer in some
purposes like: carrying injured civilians.

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and
it may evacuate injured civilians. In [11], we can model Police Force Agent as
follows:

 Agent Class
o Attributes

Agent name: policeman1
Organization: Police Force agents
Type: none

o Knowledge
Team leader: policeman1
Team-members: policeman1and policeman2.
Agent state: working

o Motivations
State of all streets and injured civilians

o Sensor

Environment sensor1,
Environment sensor2

o Reasoning Mechanism
If environment sensor1 = injured civilian then => rescue
If environment sensor2 = cars-in-road then => clearing roads

o Role-Matching Mechanism
When the agent wants to achieve clearing roads goal, Role-
Matching Mechanism derives a set of needed roles for clearing
roads goal, these roles may include: policeman role, rescuer role,
negotiator role. After that the agent searches the role space for
the closer role properties with his derived roles. After finding the
closer role, the agent makes an instance from that role to achieve
clearing roads goal.

42

o Committed Plan
It contains all information about all domain knowledge gathered
from the instances of agent roles related with knowledge
possessed by the agent.

o Roles Taken
Policeman role and rescuer role

 Role Class

o Attributes

Name: rescuer1

o Domain Knowledge
Knowledge about transporting injured civilians and first aid.

o Domain Goals
Evacuation injured civilians, give first aid to injured civilians.

o Domain Plans
Each goal in the “domain goals” may have one or more plan tree,
and each plan tree contains a sequence of actions that could be
done by the role to achieve its goal.

o Domain Actions
It is the set of that is used by domain plan, it could be: carrying
injured civilian, transporting injured civilian, and giving first aid
to injured civilian.

o Protocols
There is no specific type of agent communication protocols. We
can use FIPA ACL or KQML protocols.

o Permissions
Ambulance first aid [only use]
Oxygen cylinder [none]

o Be Taken
Rescuer

 Relationships
All relationships are between Roles
o Inheritance Relationship

All rescuer roles are inherited from Rescuer parent role.

o Leading Role Relationship
The rescuer role could be a leading role for negotiation role.

o Composite Role Relationship
We can specify the relationship between policeman role and
rescuer role as composite role relationship from policeman to
rescuer; that means the rescuer role is a sub-role of policeman
role.

43

o Aggregation Relationship
All policeman roles have an aggregation Relationship with their
Headquarters role.

o Association Relationship

The rescuer role could make association with policeman role; by
this association the policeman may help the rescuer in some
purposes like: carrying injured civilians.

3.7. Conclusion

In this chapter, we introduced a set of new agent structures. In [26], the agent

structure can act rationally using its knowledge base and can make communications

to other agents using communication protocols, communication languages, and

ontology; but it still has a problem in planning, it doesn’t have plans to reach goals,

it reaches goals only by running the capabilities without any line of actions. In [27],

agent structure has set of goals and can reach them by using its roles and beliefs,

while it triggers the goal by events; but in this structure, the agent can’t act

depending on structured actions “plans”. In [14], agent structure can reach its goals

based on executing plans using Means-end Reasoning; this structure doesn’t use a

knowledge base, this states that its decisions are predefined decisions while it

doesn’t deals with roles. In [11], the agent can make decisions based on its

knowledge, while it still can execute plans using the associated role; the problem

appears when an agent receives an event which is always playing a role to achieve

that goal, but the event may be a small request, and doesn’t need to play a role,

despite of having a knowledge by an agent that is separated from the domain

knowledge; this states that when an agent plays a role then finishes playing that role

it will eliminate all domain knowledge that is represented in the role knowledge. In

[19, 20, 21, 22], agents knowledge is represented as attributes in State Description,

and the agent does its thinking process in the Agent-head Automata, without using

any inference from a knowledge base; this indicates that its decisions are built on a

predefined behavior without any rationality.

From the previous review, we can collect the strengthens of these modeling

languages and take in our consideration the coherence and consistency of all these

components and integrate them together to make a good agent model having the

maximum strengthens and the minimum problems.

CHAPTER 4

AN AUML CLASS DIAGRAM ENHANCEMENT

45

In this chapter we will introduce a set of Agent Structural Requirements that gathered

from several researches and trying to build a new Agent Class Diagram based on

AUML Class Diagram and the strengthens of the other Agent modeling languages.

4.1. Agent Structural Requirements

To achieve a more complete and useful Agent structural requirements, we studied all

Agents capabilities and characteristics, and upon what agents are based in actual

multiagent systems researches [11, 14, 26, 27, 19, 20, 21, 22], then combine them in

a complete and coherent set, as in the following:

4.1.1 Autonomy

When an agent has a certain independence from external control, it is considered

autonomous [11]. Without any autonomy, an agent would no longer be a dynamic

entity, but rather a passive object [18]. That means, Agents can operate and make

their own decision on which action they should take, independent of humans or

other agents [18], [28]. An agent is said to be an “autonomous agent” if its behavior

and actions are not only based on the built-in knowledge, but also on its own

experience. [18].

• Reactive

It is a property that allows agents to perceive and react to the changes in

their environment [26]. An agent should be capable of adapting itself for

any changes taking place in its environment in order to carry out the

functionalities upon which it has been designed [28].

• Proactive

It might be possible to build agents that only act towards their goal or only

react to their environment [33].

Agents can react not only to specific method invocations but to observable

events within the environment, as well. Proactive agents will actually poll

the environment for events and other messages to determine what action

they should take. In short, an agent can decide when to say "go” [26], [28].

46

In reality, many agents are designed as hybrid agents, possessing both

reactive and proactive characteristics [26], [28]. The challenge then is for

the designer to balance these two very different behaviors in order to create

an overall optimal behavior [26].

4.1.2 Communication

An agent can communicate with other agents on a common topic of discourse by

exchanging a sequence of messages in a speech-act-based language that others

understand [26]. The domain of discourse is described by its Ontology [7].

Ontologies describe the concepts and their relationships with different levels of

formality in a domain of discourse. For example, the ontology of a mobile device

can specify its concepts using the following terms: manufacturer, memory, screen

size. It used mainly by Agents negotiation for sharing and reusing knowledge.

• Automated Negotiation

Negotiation is one of the vaguest aspects pertaining to many different

mechanisms of interaction to employ a set of existing conditions and

constraints of a discrete-agents environment in order to optimize specific

solutions and decisions [1]. Negotiation is mainly based on the cooperation

between agents, which have the desire to share their knowledge and

conflicting interests [26]. That is, in a problem where each agent has

different local knowledge negotiation can be an effective method for finding

the one global course of action which maximizes utility without having to

send all the local knowledge bases to a central location for consideration.

• Cooperation

Cooperation means that the agent is able to coordinate with other agents to

achieve a common purpose; Cooperation involves communication and

interaction between agents to achieve common goals [26].

4.1.3 History

Mechanisms are required to provide a historical recording of the agent’s actions; so

that agent behavior can be audited and that agents can evaluate prior actions [26].

47

4.1.4 Social ability

Interaction that is marked by friendliness or pleasant social relations, that is, where

the agent is affable, companionable, or friendly.

A software agent may have to possess social ability, to be capable of interacting

with other agents to provide its service [17, 33].

4.1.5 Rationality

It is the assumption that an agent will act in order to achieve its goals, and will not

act in such a way as to prevent its goals being achieved; at least insofar as its beliefs

permit [26], [33]. An agent should act rationally, based on its mental state, toward

achieve its internal pleasure [33].

4.1.6 Unpredictable behavior

Agents may also employ some degree of unpredictable (or nondeterministic)

behavior [33]. When observed from the environment, an agent can range from

being totally predictable to completely unpredictable [18].

4.1.7 Learning ability

When designing an agent, the developer may furnish it with all the intelligence

needed to carry out its assigned roles to achieve specific goals [26]. However, this

is not the best approach for either the agent or the designer. An agent should be able

to learn, in a dynamic manner, from its environment and from other agents, and

employ the incorporated information from this cognition to build and update its

knowledge base [33]. A real-world agent should be able to learn from past

experiences in order to improve on future solutions.

4.1.8 Mobility

Mobility is the ability for a software agent, under certain circumstances, to migrate

from one machine to another in a heterogeneous network environment to process its

tasks locally on that machine [26]. When the immigration decision takes place, the

agent is temporarily suspending its processing until it moves to the new destination

to resume it [30].

48

4.1.9 Reasoning

Reasoning is the decision-making mechanism, by which an agent decides to act on

the basis of the information it receives, and in accordance with its own objectives to

achieve its goals [33].

4.1.10 Multi-agent planning

Multiagent planning is concerned with planning by multiple agents (globally), or

inside the agent itself (locally). It can involve agents planning for a common goal,

an agent coordinating the plans or planning of others, or agents refining their own

plans while negotiating over tasks or resources.

• Deliberative

Deliberative agents can learn and/or evolve; that is, they can change their

behavior based on their experience with other agents and the environment

[18]. The key component of a deliberative agent is a central reasoning

system. Deliberative agents generate plans to accomplish their goals [28].

The deliberative agent increasing the agent's ability to generate a plan to

successfully achieving its goals [28]. The main problem with a purely

deliberative agent occurs when dealing with real-time systems is reaction

time [33].

4.2. An AUML Class Diagram Enhancement

In the following, we present a new Agent Class Diagram, overcoming the precedent

AUML Agent Class Diagram insufficiencies and contributing to the achievement of

the above identified structural requirements. It consists of Agent Class, Role Class,

Agent Communication Language “ACL”, Agent Service, Agent Relationships, and

Role Relationships.

4.2.1 Agent Class

Agent can be Static or Dynamic

49

• Static Agent class is one whose instances are required to play all of the

assigned roles through out their lifetime.

• Dynamic Agent class is one whose instances may change their active roles

from one time to another.

Agent Class in our approach consists of:

• Identification “Name”

• Location

Any Agent location should contain the name of the organization and the

environment that it belongs to; because the organization may belong to more

than one environment.

 An Organization: It is a group of Agents working together to achieve

common purposes.

 An Environment: It involves determining all the entities and resources

that the Multiagent System can exploit, control, or consume.

Written as: organization@environment

• Middle Agents

A set of all middle Agents that an agent can register itself to them.

Middle Agents compartments is related to Agent Service; when an agent

register itself to middle agents it should register all its services “Agent

Service” into the middle agents.

Written as: middle-gent@organization

• Supported Protocols

Supported protocols are described as a list. Supported protocols are adorned

with the roles played by the agent in these protocols.

• Destination

A set of all Organizations that the Agent can go to (mobile), and a list of

constraints for each one of them.

Each Organization may have a set of constraints that each agent should

comply before it registers itself in that Organization.

50

Written as: organization@environment {set of constraints}

Destination used to enhance the mobility requirement, and it is used by

mobile agents to locate all organizations they can go to.

• Roles

Every Agent must have at least one role, this role used to achieve some

purposes by activating a plan or a set of plans.

MAS Environment define a set of System-Tasks that must be achieved,

those System-Tasks are mapped into Role-Tasks, and the Role-Tasks are

grouped into Roles [27]; that means each Role is a set of coherent tasks,

each task solve one problem i.e. each task achieves one Goal.

An Agent can play a role in a static or a dynamic way in follows:

 Static Roles: A set of roles that an agent can play in asynchronous

 Dynamic Roles: A set of roles that an agent can play in synchronous

The default state of the role is to be synchronous; but we may have some

role that couldn’t be played in synchronous, because they may cause some

conflict if they played together. These conflicts may happen from accessing

resources and executing plans. Role classes used to enhance the Multiagent

Systems Planning, but it uses only the internal planning.

Written as: (Static/Dynamic) role@organization@environment

• Ontology

It should contain all system Ontologies: Concepts, Interaction Protocols,

Domain Ontology, and Application Ontology.

Ontology compartment is related to beliefs compartment; that means when

an agent wants to build its ontology, one of the most important trees in that

ontology is belief tree.

Ontology used to enhance the Communication, Negotiation, and

Cooperation between Agents.

51

• Environment resources

A set of all resources that an Agent can access from the environment with its

restrictions; these restrictions may be read, write, read-only, write-only, or

combining between any two of them.

resource@environment {read/write/read-only/…}

• Configurations

Configurations represent both the initial and/or end states of an agent type.

 Initial instance elements can be declared that are created when the

agent is started. This means that initial elements such as goals or plans

could be created immediately when an agent is born.

 End elements can be used to declare instance elements such as goals or

plans that will be created when an agent is going to be terminated.

Configurations used to make the agent have basic characteristics like the

human being.

• Belief “Knowledge Base”

It is a small local Knowledge Base, that contains the state of the Agent and

the state of its Environment.

Agent can extend its knowledge base from: its Environment, other Agents

reactions, and from its own decisions.

The main purpose of this Knowledge Base is to let the agent have the ability

to think by its own “mind” and take its own decisions. These decisions may

always be under evaluation and set on a Knowledge Base as a good or a bad

decision. i.e. learn from its experience.

Agent Knowledge Base could be useful in Learning Ability, Deliberative,

Communication, and Autonomy for an Agent.

• Intentions “Goals”

It defines a set of goals “internal or external” that an agent can achieve.

Goals may be composed of sub-goals.

Goals in general are extracted from the Multiagent System as “system tasks”

after that they are grouped into roles; each role contains a set of coherent

goals and their plans.

52

Mainly, Agent Goals used to support Agent Planning, and Agent Proactive

behavior.

• Actions

We can define a set of Actions that an Agent can perform for some small

requests that don’t need for playing a Role to achieve it “Re-Active

Actions”, the other type of Actions “Pro-Active Actions” are actions

triggered by the agent itself, e.g. using timer. These two types of Actions

define reactive and proactive behavior of the Agent.

Actions can trigger some events from events compartment.

Agent Actions used to identify Agent Proactive and Reactive behaviors.

• Events

There are two types of Events:

 Agent Generated Events

Internal Events: Agent generates this kind of events for its internal

purposes and it is occurred with some agent’s actions.

External Events: Agent generates this kind of events for outside

purposes like send an event to an Environment resource.

 Agent Received Events

Agent may receive an event from outside the agent. i.e. receive events

from the environment, or another Agent.

In general, events maybe generated by:

 Agents via execution of there Actions

 Environment Resources via the execution of their services

 Human users via their inputs to the system

 Outside “Environment” Sensors

Events used to support Agent Proactive behavior.

• Methods “Accessory Methods”

This compartment contains all methods that are required by an Agent to

provide it while doing its work.

Accessory Methods are all methods that support all Agent basic operations.

53

• Inference engine

This compartment is responsible to derive answers from a Knowledge Base.

The agent may use it for decision making.

The main purpose of this compartment is to derive logical decisions to the

Agent; these decisions used by some Agent Mental Reasoning methods to

provide them with logical answers.

• Mental Reasoning methods

This compartment contains a set of all agent intelligent methods like:

Negotiation, Learning, Prediction, and Migration. Most of these methods

use the agent Knowledge Base decisions by asking the Inference engine.

By using this compartment, the Agent can do an automated negotiation,

rational thinking, and automated mobility.

• Automata-Reasoning Mechanism

Automata-Reasoning Mechanism is the mind of the Agent; it uses a

technique to decide the appropriate action to trigger, or the appropriate role

to play or the appropriate service to run, or to do nothing, based on the

incoming event or the incoming communicative act and also based on the

Agent internal state.

Agent in AUML doesn’t have the ability to make decisions based on mental

reasoning because it doesn’t have a knowledge base, so its decisions based

on a predefined algorithm designed on Agent-Head-Automata.

Automata-Reasoning Mechanism mainly supporting the Rationality of

Agents. And it causes the unpredictable behavior of the Agent.

Figure 4.1 represents the Automata-Reasoning Mechanism in our approach.

54

Figure 4.1: Automata-Reasoning Mechanism

The Automata-Reasoning runs when it receives an event which is made internally

“normally by timers” or externally “from the outside”. After that, the Automata-

Reasoning read this event “that contains Communicative Act” and make the decision

that will be either triggering a goal, an action, a service, or to do nothing based on its

previous experience and knowledge, if it triggers a goal the Automata will execute the

appropriate role from the goals set, this role will run a plan to reach the goal, this plan

could use some mental reasoning methods and could trigger a goal. If the Automata

trigger an Action, it will directly execute an action or a sequence of actions based on

the actions set, and it also could use the mental reasoning methods and could triggers an

event. Finally if the Automata execute a service, it will directly execute a service from

a set of services based on the requested service, and it also could use the mental

reasoning methods and could triggers an event.

The Automata can use inference engine to reason about some information in the

knowledge base for the ultimate purpose of formulating new conclusions.

55

Figure 4.2: Agent Class

4.2.2 Role Class

We propose a Role Class consisting of the following:

• Role Name

• Role Tasks

Role tasks are derived from system tasks, and they contain a set of all tasks

that a role can perform.

• Desire “Plans”

It should be described in “Role Framework” because one goal, for example

“gaining money” can be done in two ways “Plans”; either by “legal job” or

by “stealing money”, these two “Plans” needs two roles “Worker” and

“Thief”.

Plans can be seen as a sequence of actions that used to achieve a goal or

sub-goal. A goal or sub-goal may associate with more than one plan, and the

most suitable one will be selected by using Plan Selector.

56

• Plan Selector

It is a function that is used to select the appropriate Plan based on the set of

Role Tasks.

• Actions

A set of all Actions that all Plans need to accomplish their work.

In general we can see an action as a special type of functions.

• Events

Role can generate Events and send them to the Agent.

Figure 4.3: Role Class

4.2.3 Agent Communication Language “ACL”

Agent uses Agent Communication Language to send messages to other agents. It

has the same structure as it is in AUML.

Agent Communication Language is the basic for any Agent to Agent general

Communication; that means any Agent Communication, Negotiation, or

Cooperation is done only by sending Communicative Acts.

4.2.4 Agent Service

A service is an activity that an agent can perform and is provided to other agents.

Agent Service in AUML consists of the following:

• Name

Name of the service.

• Description

A description in natural language of this service.

57

• Type

The type of the service.

• Methods

A set of methods supporting the service.

Figure 4.4: Agent Service

4.2.5 Agent Class Diagram relationships

In our approach we propose the following relationships:

• Agent Class relationships

 Inheritance (parent, child)

Inheritance between two agents represents that the “child” Agent may

takes his entire parent characteristics, or a set of his parent

characteristics. Figure 4.5, shows the inheritance relationship.

Figure 4.5: Inheritance relationship

 Play (Role, Agent)

The play relationship specifies the roles that an Agent can play. When

an Agent class is related to a role class by the play relationship it means

that the Agent instance can play one or more role instances. Figure 4.6,

shows the play relationship.

Figure 4.6: Play relationship

 Control (controller, controlled)

The control relationship defines that the controlled entity must do

anything that the controller entity requests. Figure 4.7, shows the control

relationship. By using control, we can specify the hierarchical chain

management in Agents society.

Figure 4.7: Control relationship

58

 Dependency (client, supplier)

In this relationship, the “client Agent” may be defined to be dependent

on another one the “supplier Agent” to do its job. The dependency

relationship specifies that the client agent cannot completely do its job

unless it asks the supplier. Figure 4.8 shows the dependency relationship

This relationship is used between two agents, the first one “the client”

didn’t have the service that the “supplier” has; in this case it sends a

request to the “supplier” to do that service.

Figure 4.8: Dependency relationship

 Aggregation (aggregator, part)

The aggregator agent may use the functionalities available in its parts.

The parts do not need to know that they are being aggregated to an

aggregator, but the aggregator should know each of its parts. Figure 4.9,

shows the aggregation relationship.

Figure 4.9: Aggregation relationship

• Role Class relationships

 Inheritance (parent, child)

Inheritance between roles means that a role may inherit some

functionality from another role; this functionality maybe a plan, an

action, or other. Figure 4.10, shows the inheritance relationship.

Figure 4.10: Inheritance relationship

 Leading (leader, subordinator)

The leader relationship between roles used to define the hierarchy of a

role organization; that means when we define a leader and a

subordinator, the subordinator should obey his leader. Figure 4.11,

shows the leading relationship.

Figure 4.11: Leading relationship

59

4.3. Applying the case study in AUML Class Diagram Enhancement

In our case study we have three types of agents: Fire Brigades agents, Ambulance

Teams, and Police Force Agents. For simplicity we will design two types of them Fire

Brigades agents and Police Force Agents.

We can design an Agent Class Diagram in our approach as follows:

• Fire Brigades agents

Fire Brigades agent is an agent who is responsible for controlling the spread of fire
in the city, and extinguishing as many buildings as possible. In our approach, we
can model Fire Brigades agent as follows:

 Agent Class
o Identification

fireman-agent1

o Location

Fire Brigades agent organization@burning building environment

o Middle Agents

There is no need for middle agents

o Supported Protocols

Brokering interaction protocol
Query interaction protocol
Request interaction protocol

o Destination

In this case all agent organization will be the same, because the
fireman agent couldn’t be a policeman agent.
Fire Brigades agent organization@ fire station environment
Fire Brigades agent organization@ street environment

o Roles
(dynamic) fireman@ Fire Brigades agent@ burning building
(dynamic) rescuer @ Fire Brigades agent@ burning building
(static) negotiator @ Fire Brigades agent@ burning building

o Ontology

Burning buildings ontology, Fire station ontology, Rescuing
ontology, and all interaction protocols ontology

60

o Environment resources
Water-tank @ burning building environment {read, write}
Water-tank @ street environment {read, write}
Water-tank @ fire station environment {read only}
Oxygen cylinder @ burning building environment {read, write}
Oxygen cylinder @ street environment {read only}
Oxygen cylinder @ fire station environment {read only}

o Configurations
There is no need for configuring initial instance elements or end
elements

o Belief

It contains a small local Knowledge Base about the state of the
Agent and the state of its Environment. And also, contains the
experiences and expertise gathered in the agent lifetime.

o Intentions

Extinguishing burning buildings and rescuing civilians.

o Actions
Reactive actions
When a fireman agent detects that it has run out of water, all
plans will be ignored except triggering “out of water” action, and
going to fill out water-tank

Proactive action
There is no need to proactive behavior in this agent.

o Events

- Agent generated events
Agent internal events

While a fireman agent extinguishing burning
building he detects that it has run out of water,
internal events will be triggered to the agent itself
called “run out of water”, after that all plans will
be ignored except triggering “out of water” action,
and going to fill out water-tank then completing
the plans.

Agent external events
Calling for help from any agents by broadcasting.
Whistling to all fireman team to regroup.

- Agent received events
State of all burning buildings, injured civilians, and other
agents.

61

o Methods “Accessory Methods”
It contains all methods that support Automata-Reasoning
Mechanism to do its jobs. Like:
Methods for calling actions.
Methods for dealing with inference engine.
Methods for querying for the best goal.

o Inference engine

This compartment is responsible to derive answers from a
Knowledge Base. The agent may use it for decision making.

o Mental Reasoning methods
It contains all Negotiation, Learning, Prediction, and Migration
methods.

o Automata-Reasoning mechanism

This compartment is responsible of receiving and sending all
messages and events from itself to other agents and it is
responsible for managing all the system functionalities including
running Actions, Methods, Inference engine, and Mental
reasoning methods to achieve its main goals.

 Role Class
o Role Name

Fireman_transport1

o Role Tasks

By using this role, agent can do the following:
Going to the burning building

o Desire
In general, desire could be represented as a set of trees which
contains a set of related Role Actions. For example, a fireman
could has a plan to go to the burning building named “going to
the burning building” that contains the following sequence of
actions: when the warning alarm fired, go to the extinguisher
vehicle, and take the information for the destination, then drive
the vehicle, after that when reaching the destination, get off the
vehicle, grouping together, go to the burning building.

o Plan Selector

In this case we have only on possible plan. So we don’t have to
select the most appropriate one.

62

o Actions
Going to the burning building plan contain the following actions:
Go to the extinguisher vehicle
Go to the burning building by vehicle
Get off the vehicle
Grouping together outside the vehicle
Go to the burning building by foot
Extinguish the fire in the building
Finding civilians

o Events
Calling for help from any agents by broadcasting.

 Agent Communication Language

o Name
Accept Proposal1

o Description

Accept-proposal is a general-purpose acceptance of a proposal
that was previously submitted. The agent sending the acceptance
informs the receiver that it intends that the receiving agent will
perform the action, once the given precondition is, or becomes,
true.

o Message Content

A tuple consisting of an action expression denoting the action to
be done and a proposition giving the conditions of the agreement
It could be written like:
<j, INFORM (i, p)> | <j, INFORM (i, ￢p)>

o Semantics

(accept-proposal
:sender (agent-identifier :name i)
:receiver (set (agent-identifier :name j))
:in-reply-to fireman2
:content
((action (agent-identifier :name j)
(stream-content tank 19))
(B (agent-identifier :name j)
(ready fireman2)))
:language FIPA-SL)

63

 Agent Service
We will not using agent service in this case because the agents are not
doing a service because the agent doesn’t have the ability to reject doing
his work. We can replace the using of service by using the ACL from
the agent itself. But in this case we must use one common type of
content language.

 Agent Class Relationships

o Inheritance (parent, child)
Inheritance (Fire Brigade agent, fireman1)

o Play (Role, Agent)
Play (fireman, fireman1)
Play (rescuer, fireman1)
Play (negotiator, fireman1)

o Control (controller, controlled)
Control (fireman-agent1, fireman-agent2)
Control (fireman-agent1, fireman-agent3)
Control (fireman-agent1, fireman-agent4)

o Dependency (client, supplier)

There is no need for this relationship type in this case.

o Aggregation (aggregator, part)

There is no need for this relationship type in this case.

 Role Class relationships
o Inheritance (parent, child)

Inheritance (fire brigade agent, fireman)

o Leading (leader, subordinator)
Leading (fireman1, fireman2)
Leading (fireman1, fireman3)
Leading (fireman1, fireman4)

• Police Force Agents

Police Force Agent is an agent who is responsible, basically, for clearing roads and
it may evacuate injured civilians. In our approach, we can model Police Force
Agent as follows:

 Agent Class
o Identification

policeman-agent1

64

o Location
Police Force Agent organization@ burning building environment

o Middle Agents

There is no need for middle agents.

o Supported Protocols

Brokering interaction protocol.
Query interaction protocol.
Request interaction protocol.

o Destination
In this case all agent organization will be the same; the fireman
agent couldn’t change its organization to be a policeman agent.
Police Force Agent organization@ Police station environment
Police Force agent organization@ street environment

o Roles
(dynamic) policeman@ Police Force agent@ burning building
(dynamic) rescuer @ Police Force agent@ burning building
(static) negotiator @ Police Force agent@ burning building
(dynamic) policeman@ Police Force agent@ street
(dynamic) rescuer @ Police Force agent@ street
(static) negotiator @ Police Force agent@ street

o Ontology

Clearing roads ontology and rescuing ontology, and all
interaction protocols ontology.

o Environment resources

Vehicle@ street environment {read, write}

o Configurations

There is no need for configuring initial instance elements or end
elements.

o Belief
It contains a small local Knowledge Base about the state of the
Agent and the state of its Environment. And also, contains the
experiences and expertise gathered in the agent lifetime.

o Intentions

Evacuation injured civilians and clearing roads.

65

o Actions
Reactive action
When a policeman agent saw an injured civilian who needs to be
carried out of that place, all plans will be ignored except
triggering “rescuing civilian” action.

Proactive action
There is no need to proactive behavior in this agent.

o Events

- Agent generated events
Agent internal events

A policeman agent may have an internal timer
that remembers him to check streets every hour.

Agent external events
Calling for help from any agents by broadcasting.

- Agent received events
State of all streets, injured civilians, and other agents.

o Methods “Accessory Methods”

It contains all methods that support Automata-Reasoning
Mechanism to do its jobs. Like:
Methods for calling actions
Methods for dealing with inference engine
Methods for querying for the best goal

o Inference engine

This compartment is responsible to derive answers from a
Knowledge Base. The agent may use it for decision making.

o Mental Reasoning methods
It contains all Negotiation, Learning, Prediction, and Migration
methods.

o Automata-Reasoning mechanism

This compartment is responsible of receiving and sending all
messages and events from itself to other agents and it is
responsible for managing all the system functionalities including
running Actions, Methods, Inference engine, and Mental
reasoning methods to achieve its main goals.

66

 Role Class
o Role Name

Policeman_clearing_roads1

o Role Tasks
By using this role, agent can have only one role task which is
clearing all streets from civilians and cars.

o Desire
In general, desire could be represented as a set of trees which
contains a set of related Role Actions. For example, a policeman
may have a plan to clearing some roads named “clearing roads”
that contains the following sequence of actions: when the
policeman arrived to the specific place, he must find the most
important street to clear, after specify the street, he beginning
clearing that street from cars, then clearing it from civilians.

o Plan Selector

In this case we have only on possible plan. So we don’t have to
select the most appropriate one.

o Actions

Clearing roads plan contains the following actions:
Finding the most important street to clear
Clearing that street from cars
Clearing that street from civilians
Search again for the most important street to clear

o Events
Calling for help from any agents by broadcasting.

 Agent Communication Language

o Name
Instance: Call for Proposal1

o Description

It is a general-purpose action to initiate a negotiation process by
making a call for proposals to perform the given action.

o Message Content

A tuple containing an action expression denoting the action to be
done, and a referential expression defining a single-parameter
proposition which gives the preconditions on the action.

67

o Semantics
(call-for-proposal
:sender (agent-identifier :name j)
:receiver (set (agent-identifier :name i))
:content
((action (agent-identifier :name i)
(move policeman))
:ontology Rescuing ontology)

 Agent Service

We will not using agent service in this case because the agents are not
doing a service because the agent doesn’t have the ability to reject doing
his work. We can replace the using of service by using the ACL from
the agent itself. But in this case we must use one common type of
content language.

 Agent Class Relationships

o Inheritance (parent, child)
Inheritance (Police Force agent, policeman1)

o Play (Role, Agent)

Play (policeman, policeman1)
Play (rescuer, policeman1)
Play (negotiator, policeman1)

o Control (controller, controlled)
Control (policeman-agent1, policeman-agent2)

o Dependency (client, supplier)

There is no need for this relationship type in this case.

o Aggregation (aggregator, part)

There is no need for this relationship type in this case.

 Role Class relationships
o Inheritance (parent, child)

Inheritance (Police Force Agent, policeman)

o Leading (leader, subordinator)

Leading (policeman1, policeman2)

CHAPTER 5

THE EVALUATION

69

5.1. Introduction

The practical evaluation of the proposed model may necessitate the implementation of a

multiagent system application based on this approach and evaluating its effectiveness.

However:

• This requires a team work over a large period of time, because it needs:

 For each agent class we should build a knowledge base [6, 24],

 For each agent class we should build an ontology for the entire System [11],

[14], [19, 20, 21], [26], [27],

 For each agent class we have to implement the Agent Interaction Protocols

“AIP” for communication [19, 20],

 For each role class we must design at least one plan tree with set of actions,

 For each agent we should build at least one Mental Reasoning method.

 We should build at least one organization in one environment.

 At least we should build two agents to make a community.

• Research works in this area are mainly theoretical rather than practical [13, 16,

18, 19, 26],

• Not availability of data on real multiagent system applications, nor evaluation

criteria [16, 18, 19].

This leads us to a comparative evaluation with other approaches based on some

evaluation criteria.

However, a graphical environment supporting the development of Agent Class

Diagram according to our proposal is developed by extending the Unified Modeling

Language Class Diagram tool provided by Rational Rose.

The semantics research in Unified Modeling Language semantics have not been

admitted yet, and the semantics of AUML is far to be established. So, this work is not

concerned on any formal semantics definitions of the proposed concepts, but it is

interested in their practical identifications and their informal definitions.

70

5.2. Comparison with similar works

We defined a set of evaluation criteria used to evaluate Agent Structure; these criteria
are based on the completeness of Agent structure and the representation of its mental
state. Also we enter the case study, from chapter 2, to make the evaluation more
richness.

5.2.1 Multiagent System structural requirements

• Agent Mental State

In Toward Agent-Oriented Conceptualization and Implementation [26] as it is

in MOBMAS [27], Agent Mental State is represented by Knowledge Base and

belief compartments, this compartment doesn’t contain agent previous

experiences or expertise it contains only the basic underlying knowledge for the

agent. In our case study, there are several problems arises when using this

minimum level of knowledge representation. One of these problems is that

agent couldn’t learn from its previous experiences or expertise. The second

problem is that the agent couldn’t derive new solutions from its knowledge,

because it is limited and couldn’t be rise in the agent lifetime. For example

when the fireman agent doing something wrong while rescuing a civilian from a

burning building, in [26, 27], the agent couldn’t have the ability to learn from

his previous experiences, and when facing the same situation in the future he

will fall in the same mistake again and again.

In Jadex [14], it is illustrated by Beliefs compartment; which is represented by

objects, that means reasoning, in this agent, is done in objects state “attributes”;

and that is insufficient for an agent to build a good decision. In our case study,

agent must have the ability to learn from its previous experiences and deriving a

new solutions based on its experiences and its underlying knowledge. For

example the policeman agent, in our case study, should have an underlying

knowledge about the environment “burning building environment” and he

should have knowledge about his old experiences, which makes him qualified

while facing problems in the environment. In [14], the agent has only the

underlying knowledge about the environment, but doesn’t have the ability to

learn from his previous experiences, because he doesn’t save his experiences in

the knowledge base, that means he will fail each time to solve any simple

reasoning problem.

71

In Developing Role-Based Open Multi-Agent Software Systems [11], it is

represented by a Knowledge compartment, which contains knowledge about the

agent itself and the environment around that agent. This is the best agent mental

state modeling for two reasons, agent can make its decisions based on reasoning

process which is done upon the knowledge, and second reason is that the agent

can handle internal and external knowledge. As an example from our case

study, when the fireman agent doing something wrong while rescuing a civilian

from a burning building, the agent have the ability to learn from his previous

experiences by save this experience into his knowledge, and when facing the

same situation in the future he will try to solve the problem by using another

solution.

In AUML [19, 20, 21], it is represented by State Description “attributes”, only

about the agent internal state; which states that the agent doesn’t have a

knowledge about its environment, and it doesn’t have the ability to make a

rational decisions using some reasoning process. That means, and by using the

previous example, the fireman agent will not be able to know that his solution is

a good solution or a bad one; furthermore, when facing the same situation in the

future he will fall in the same mistake.

Here, in our approach, we replace the AUML State Description compartment

with Agent Belief which contains a knowledge base; that contains mainly of

knowledge about agent environment, other agent’s reactions, and his previous

decisions and reactions. That means, by using the previous example, the fireman

agent will have a knowledge that contains all information about his organization

as “Fire Brigade Agent”, environments “Burning Building, fire station, and

street”, surrounding agents, resources and experience, in other words, the agent

will have a complete set of knowledge about everything surrounding him. This

complete set of knowledge, allows the agent to make decisions based on good

underlying knowledge. In our previous example, the agent will be able to know

that his solution is a good solution or a bad one; furthermore, when facing the

same situation in the future he will not fall in the same mistakes.

• Agent Mental Behavior

In Toward Agent-Oriented Conceptualization and Implementation [26], agent

mental behavior is indicated by Capabilities compartment; that represents all

72

agents intelligent functionalities; in this model, as it is in MOBMAS [27], an

agent doesn’t have the ability to act based on plans which destroy one of the

main agent requirements, which is Multi-agent planning. Furthermore, in [27],

agent doesn’t have the capability to make a decision based on its opinion, while

it doesn’t have any intelligent functional behavior like reasoning, negotiation,

and automated mobility. When applying [26, 27], in our case study, the fireman

agent couldn’t have plans for going to the burning building or to extinguishing

them; which means the agent will not be able to perform his jobs unless there is

a supervisor who controlling all agents moves.

In Jadex [14], it is represented by Means-end Reasoning, which is responsible

for selecting the appropriate plan based on the occurrence of internal or external

event; this reveals that the agent doesn’t have the capability to make a decision

based on its opinion, it is only select a plan based on event, and it couldn’t reject

to do any event. If we model our case study using [14], the fireman agent will

not be able to execute a plan in the middle of executing another one; that means

when the fireman agent executing the plan “extinguishing burning building” and

after the fireman agent entering the burning building, he founds a civilian inside

the building, in this case, the fireman agent should terminate the “extinguishing

burning building” plan and starting the “rescuing injured civilians” plan, which

is not allowed using this model language.

In Developing Role-Based Open Multi-Agent Software Systems [11], it is

represented by Reasoning Mechanism, Role Matching Mechanism, in agent

class, and Role Class; which is used to select the appropriate role class based on

the occurred event; in this structure the Agent couldn’t negotiate, predict, and

reason, because it doesn’t have a knowledge base, so it can't make decisions in

rational way. In our case study, the policeman agent or fireman agent couldn’t

establishing a negotiation; that means all agents working alone, there is no

cooperation between fireman agents to achieve a common goal which is

“extinguishing burning building”, and the same thing for policeman agents, they

couldn’t cooperate together to portion streets between them.

In AUML [19, 20, 21], it is indicated by Agent-Head-Automata; this automata

is responsible of the reactive behaviors of the agent; that is related to the

incoming messages with the internal state, and the result will be the outgoing

messages, this automata is predefined in the agent body, so, the agent decisions

73

will be based on a predefined behavior that is opposite of basic agent behavior.

In our case study, the fireman agent may facing an unpredictable and un-

implemented problem, such as, when the fireman brigades entering a burning

building, and after a while, the burning building collapsed slowly, in this case

the agent will not be able to make an unpredictable behavior to survive.

In our approach, we changed the previous Agent-Head-Automata by Automata-

Reasoning Mechanism, Mental Reasoning methods, Inference engine, and

Agent Role; by using our approach the agent can act rationally based on its

decisions (using a knowledge base), using its plans (by playing roles), and

communicate or negotiation to reach its goals. By using the previous example,

the fireman agent could make an unpredictable behavior to survive from the

collapsed burning building; moreover, the fireman agent can make a negotiation

with other fireman agents to rescuing him using the communication protocols,

or the fireman agent may run some surviving plan to rescuing himself.

• Dealing with Events

In Toward Agent-Oriented Conceptualization and Implementation [26], agents

do not deal with events “neither internal nor external”; in other words an agent

will not be applicable to act based on what happened around it, in this case

agent autonomy will be so weak. In our case study the fireman agent or the

policeman agent will not be able to see any injured civilians or burning

buildings; that means they are useless.

In MOBMAS [27], and AUML[19, 20, 21], events are classified only as

environmental external events, same as in Role Design is in Developing Role-

Based Open Multi-Agent Software Systems [11], which contain internal sensors

for watching environment events; which means, agents couldn’t send an

announcement to any other agents or to the environment. In our case study, the

fireman agent may need to ask for help from any surrounding agents; that

means it should send a broadcasting event to all surrounding agents calling for

help. In this modeling language the agent is capable only for sending messages;

which mean it should send messages to all agents, one by one, calling for help,

and this takes a long time.

In Jadex [14], events are classified as message events “comes from outside

agents” and internal events, which is a good classification but it lacks the

74

dealing with events that might become from the environment itself, or from

human users via their inputs to the system, or from outside sensors. In this case,

the policeman agent or the fireman agent will not be able to see any injured

civilians or burning buildings; that means they are useless.

In our approach, we extend the old AUML events by classifying events as agent

internal generated events “internal and external”, agent received events, and role

generated events; by using these kinds of events we can cover all kind of events

that might be generated by agents or by roles, either internal or external. In our

case study, the fireman agent may need to ask for help from any surrounding

agents; that means it should send a broadcasting event to all surrounding agents

calling for help; that means the agent should generate external event for that;

which is resides in the agents events compartment. In the second case, the

policeman agent or the fireman agent should be able to see injured civilians or

burning buildings; for this case, there is an agent received events; which is

responsible for receiving any external events, either from environment or

agents.

• Dealing with Roles

In Toward Agent-Oriented Conceptualization and Implementation [26], there

are no roles; which means we can define each agent to play one role. For

example, each role in the fireman agent (fireman, rescuer, and negotiator) will

be implemented as a separate agent, which is so weak.

In Jadex [14], MOBMAS [27], and AUML [19, 20, 21]; they use role on their

agent structure as an attribute only; which means that all plans will be placed

inside the agent itself; and that leads the agent to be more complex and its

functionality will be confected by each other. For example, each role in the

fireman agent (fireman, rescuer, and negotiator) will be implemented inside the

agent himself, which means that the agent will not be able to use them in

parallel in an efficient way.

The most complex Role Design is in Developing Role-Based Open Multi-Agent

Software Systems [11], roles are composed of all the domain mental state,

plans, actions, permissions, and goals; which states that all role knowledge,

actions plans, and goals are not based on its decision neither than its plan nor its

goals, this design will wok efficiently in our case study.

75

In, our approach, Role Class is changed from the previous AUML roles, which

contain only role names, by adding a new role class that contains role tasks,

plans, plan selector, events, and actions; which indicates that the agent can

execute its plans based on the played role. For example, when the fireman agent

wants to go to the burning building from his fire station, he should use a

fireman-transport role; which contains all needed data for fireman

transportation.

• Dealing with Goals

In all agent modeling languages, Toward Agent-Oriented Conceptualization and

Implementation [26], Jadex [14], MOBMAS [27], and Developing Role-Based

Open Multi-Agent Software Systems [11], agent has to define at least one goal;

and this idea is not proposed in AUML [19, 20, 21]; which means that an agent

in AUML doesn’t act depending on its goals, but acting only on the basis of its

incoming messages and on its internal state.

In our approach, agent has a set of goals; which indicates that an agent will act

not only based on the incoming messages, but also on its goals.

• Middle Agents

Non of all agent modeling languages, Jadex [14], MOBMAS [27], Toward

Agent-Oriented Conceptualization and Implementation [26], Developing Role-

Based Open Multi-Agent Software Systems [11], and AUML [19, 20, 21], use

middle Agents; which is used to register the agents' services, so when an

external agent wants to request a service; it asks the middle agent about the

appropriate agent, after that it connects to that agent and asks it for that service.

In our approach when an agent registers itself in an organization, it should

register its services in the middle agents.

In our case study there is no need for middle-agents between agents.

5.3 Model Coherence
By our case study, applied to our model, we stated the coherence and consistency

of the all proposed compartments integrated together.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

77

6.1. Conclusions
In this research, we build a complete and coherent agent structure that gathered from

several research works, then enhancing the AUML Class Diagram by new techniques

or by adapting its old model to reach the complete and coherent agent structure.

AUML Enhancements

6.1.1. Adaptation of

• State Description by represent it using a knowledge base,

• Events, by adding external events.

6.1.2. Introducing a set of new compartments

• Replacing Agent-Head-Automata that represent the agent mental

behavior, with Automata Reasoning Mechanism, Inference engine,

Mental Reasoning methods, and Role Class.

• Middle Agents,

• Configurations,

• Environment resources,

• Intentions,

• Destination.

6.2. Future Work
Till now, AUML has extended a small set of UML diagrams (Communication

Diagram, Interaction Overview Diagram, Sequence Diagram, and Class Diagram);

these diagrams were produced for first draft at the beginning of 2004 and till now there

are no any extensions, and because the differences between Agent and Object, there

may be some necessity to remodel these diagrams to comply with agent characteristics.

In the case of AUML Class Diagram, there are a set of problems that still not solved yet

by our approach, these problems are:

6.2.1. Semantics

The main problem in AUML that still exists in our approach, that it doesn’t have a

formal semantics.

6.2.2. Deliberative

The agent should have the ability to change its plans based on its experience. In our

approach we have a set of predefined fixed plans.

REFERENCES

79

1. Bernhard Bauer, James Odell. UML 2.0 and agents: how to build agent-based

systems with the new UML standard. Journal of Engineering Applications of

Artificial Intelligence. Volume 18, Issue 2, pp 141-157, 2005.

2. Wooldridge, M., Jennings, N. R., & Kinny, D. Methodology for agent-oriented

analysis and design. Proceedings of the 3rd International conference on

Autonomous Agents. Volume 9, Issue 3, 1999

3. Bernhard Bauer. UML Class Diagrams Revisited in the Context of Agent-Based

Systems, in Proceedings of the Second International Workshop on Agent Oriented

Software Engineering, Montreal Canada, pp 1–8, 2001.

4. Cossentino, M., and Potts, V. A CASE tool supported methodology for the design

of multi-agent systems. Proceedings of International Conference on Software

Engineering Research and Practice, Las Vegas, pp 315-321, 2002.

5. Dan Pilone, and Neil Pitman, UML 2.0 in a Nutshell, O'Reilly, 2005.

6. DeLoach, S. A., Wood, M. F., and Sparkman, C. H. Multi-agent systems

engineering. The International Journal of Software Engineering and Knowledge

Engineering, Volume 11, Issue 3, pp 303-328, 2001.

7. Devedzic, Vladan, Dragan Djuric, and Dragan Gasevic, Model Driven Architecture

and Ontology Development. New York, Springer, 2006.

8. Garcia, A. Agents in Object-Oriented Software Engineering, in Software, Practice

and Experience, Volume 34, Issue 5, pp 489-521, 2004.

9. Giunchiglia, F., Mylopoulos, J., and Perini, A. The Tropos software development

methodology: Processes, models and diagrams. Proceedings of AOSE Workshop,

Volume 2585, pp 162-173, 2003.

10. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling

Language User Guide, Addison Wesley Professional, 2005.

11. Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Patel, Developing Role-Based Open

Multi-Agent Software Systems. International Journal of Computational Intelligence

Theory and Practice Volume 2, Issue 1, pp 39-56, 2007.

12. Iglesias, C., Garijo, M., González, J., Velasco, J. Analysis and design of multiagent

systems, Verlag, 1997.

13. S. Kirn and O. Herzog and P. Lockemann and O. Spaniol. Multiagent Engineering -

Theory and Applications in Enterprises, International Handbooks on Information

Systems, Springer, 2006.

80

14. Jadex BDI Agent System - Online Documentation, http://vsis-www.informatik.uni-

hamburg.de/projects /jadex/jadex-0.96x/doc_overview.php, 2007.

15. James Odell, Objects and Agents Compared, Journal of Object Technology,

Volume 1, Issue 1, pp 42-53, 2002.

16. James Odell, Agent Technology: What is it and why do we care?, Enterprise

Architecture, Volume 10, Issue 3, pp 1-25, 2007.

17. James Odell, Van Parunak, Mitch Fleischer, and Sven Breuckner. Modeling Agents

and their Environment, Agent-Oriented Software Engineering Volume 2585, pp 16-

31, 2002.

18. Jin, Xiaolong, Jiming Liu, and Kwok Ching Tsui, Autonomy Oriented Computing:

From Problem Solving to Complex Systems Modeling (Multiagent Systems,

Artificial Societies, and Simulated Organizations), Springer, New York, 2004.

19. Marc-Philippe Huget. Agent UML Class Diagrams Revisited, in Proceedings of

Agent Technology and Software Engineering, 2002.

20. Marc-Philippe Huget, Agent UML Notation for Multiagent System Design. IEEE

Internet Computing, IEEE, 2004.

21. Marc-Philippe Huget and James Odell and Bernhard Bauer. The AUML Approach.

In Methodologies and Software Engineering for Agent Systems, 2004.

22. Marc-Philippe Huget, An Application of Agent UML to Supply Chain Management

Proceedings of Agent Oriented Information System, Bologna, Italy, 2002.

23. Michael Jesse Chonoles and James. UML 2 for Dummies, Hungry Minds, 2003.

24. N. Glaser, Contribution to Knowledge Modeling in a Multi-agent Framework. PhD

thesis, not published, University of Henry Poincare, France, 1996.

25. Padgham, L., & Winikoff, M, Prometheus: A methodology for developing

intelligent agents. Proceedings of the 3rd AOSE Workshop, Bologna, Italy, 2002.

26. Patrik K. Biswas. Architectural Design of Multi-Agent Systems: Technologies and

Techniques, IGI Global, 2007.

27. Quynh Nuh Tran, MOBMAS - A methodology for Ontology Based Multi-Agent

Systems Development. PhD thesis, not Published, University of New South Wales,

Australia, 2005.

28. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.

Multi-Agent Programming: Languages Platforms and Applications (Multiagent

Systems, Artificial Societies, and Simulated Organizations). Springer. Volume 15,

pp. 125–147, 2005.

81

29. Salaheddin J. Juneidi and George A. Vouros, Evaluation of Agent Oriented

Software Engineering Main Approaches. Proceedings of the IASTED International

Conference on, Software Engineering, Austria, 2004.

30. Silaghi Gheorghe Cosmin. Software Engineering Approaches for Design of Multi-

agent Systems, Economy Informatics, Volume 5, 2005.

31. Silva Garcia, Anarosa Brandao, Christina Chavez, Carlos Lucena, Paulo Alencar.

Taming Agents and Objects in Software Engineering, Software Engineering for

Large-Scale Multi-Agent Systems, Springer, Volume LNCS 2603, pp 1-25, 2003.

32. Simon Kendal, Malcolm Creen. An Introduction to Knowledge Engineering,

Springer, 2006.

33. Stefan Kirn, Otthein Herzog, Peter Lockemann, and Otto Spaniol. Multiagent

Engineering: Theory and Applications in Enterprises (International Handbooks on

Information Systems). New York, Springer, 2006.

34. Zafar Habibi, Mazda Ahmadi, Ali Nouri, Mayssam Sayyadian, Mayssam M. Nevisi,

Implementing Heterogeneous Agents in Dynamic Environments, a Case Study in

RoboCupRescue, Lecture Notes in Computer Science, Springer Berlin, Volume

2831, 2004

 الخلاصة

مѧѧن الأنظمѧѧة الحديثѧѧة فѧѧي مجѧѧال علѧѧم (Multi-agent systems) الأنظمѧѧة متعѧѧددة الѧѧوآلاء بѧѧر تعت

. الآلѧي والتشѧغيل ذآاء الإصѧطناعي الѧ من نوعا تستخدم التي الانظمه فيحيث أنها تستخدم , الحاسوب

 الشѧهيرة اللغات أحدمن و. الأنظمة متعددة الوآلاء لنمذجه المستخدمة النمذجة لغات من الكثير هناك

التѧѧي ترتكѧѧز المشѧѧهورة و النمذجѧѧه لغѧѧاتتعتبѧѧر مѧѧن حيѧѧث , (AUML)هѧѧي لغѧѧةخدمة لѧѧذلك المسѧѧت

 يѧتم لѧم التѧى الموجѧودة و الضѧعف اوجѧه هذه الدراسة تتناول في طياتها . (UML 2.0)ساس على بالأ

و . (Agents)من حيث قدرتها على التعاطي مع آѧل متطلبѧات وذلك (AUML)في الآن حتى حلها

اسѧتخدام دمѧج بعѧض مكونѧات لغѧات نمذجѧة مختلفѧة و عѧن طريѧق وذلѧك ءهاثم محاولة تحسين أدا من

 .(AUML)تصميم بحاولة الإرتقاء لمهذه اللغات من بعض أوجه القوة

)AUML(نمذجة لغة ال و تطوير تحسين

 من قبل

 براهيم صوالحةإمحمود عدنان

 باشراف

 سعيد غول. د

 قدمت هذه الرسالة استكمالا لمتطلبات

 ماجستير في علم الحاسوبالحصول على درجة ال

 عمادة البحث العلمي و الدراسات العليا

 جامعة فيلادلفيا

 ٢٠٠٨ /شباط

