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ABSTRACT 
 

CloudMDE is considered as one of the most significant research areas in software 

development nowadays. It has attracted an increasing attention from the research 

community. CloudMDE aims at identifying opportunities for making Cloud Computing 

benefits from model-driven engineering techniques and vice versa. Cloud# language has 

been proposed as a way for using model-driven engineering techniques to support Cloud 

Computing. It is a domain-specific modeling language for modeling the infrastructure of 

the cloud. Cloud# is an imperative language with a textual concrete syntax. It 

manipulates the cloud infrastructure components as first class citizens. Furthermore, it 

supports concurrency and event-driven actions. Until now a BNF abstract syntax, a 

concrete syntax and an informal semantics description for Cloud# language are available. 

However, this language lacks a formal semantics definition. In this thesis, we have 

defined a formal denotational semantics for Cloud# language. Object-Z language has 

been used as a meta-language for defining the formal semantics of Cloud# in a single 

unified framework. That is, the abstract syntax, static and dynamic semantics of a single 

language construct are specified in one Object-Z class. Not only does this help the 

readability of the semantic, but if the language is enhanced or evolved, the required 

modifications can be done by minimal disruption to the existing semantics. Also it is 

possible to use some parts of semantics definition of one language to define another. On 

the other hand, the consistency checking for Cloud# language has been done using an 

Object-Z type-checker tool. A sample Cloud# model has been converted to the Object-Z 

specifications and then applied along with the existing formal denotational semantics to 

the type-checker. No typing errors have been found which indicates the consistency of 

Cloud# language. 
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Chapter One: Introduction 
 

1.1 Research Context 

Cloud computing and model-driven engineering (MDE) are two of the most dominant 

software engineering paradigms nowadays. Currently, there is a new trend to combine 

MDE and Cloud Computing so that they benefit from each other. The combination of 

these two paradigms has come up with a new research domain called CloudMDE. The 

first international workshop on CloudMDE happened lately in July, 2012. The aim of 

CloudMDE is to identify opportunities for using MDE to support the development of 

Cloud Computing (MDE for the Cloud) (e.g. Cloud# language (Liu and Zic, 2011), 

CloudML language (Goncalves et al, 2011), etc), as well as opportunities for using cloud 

infrastructure to enable MDE in new and novel ways (MDE in the Cloud) (e.g. Model as 

a Service (Maas) (Bruneli et al, 2010)). This research work is concerned with MDE for 

the Cloud. 

1.2 Introduction to Cloud# Language 

Cloud# is a domain-specific modeling language that has been designed to model the 

infrastructure of the Cloud. It is an imperative language with a textual concrete syntax.  

Cloud# manipulates the cloud infrastructure components as first class citizens. 

Furthermore, it supports concurrency and event-driven actions (Liu and Zic, 2011).   

Cloud# can be viewed as an approximate form of very high-level programming 

languages, that is, a language above the current high-level general-purpose programming 

languages (GPLs). The term approximate form is used because we do not consider that 

languages like Cloud# can completely replace or mask out GPLs. There may be 

algorithmic elements that should not be modelled in a more abstract way like statements 

in GPLs.  

The term very high-level is used to reflect our view that models are more abstract and 

compact than implementations expressed in a GPL. For instance, technical details related 

to efficient implementations of complex data structures (i.e. Computation unit, Resource, 
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Configuration, etc) and domain-specific functionality (i.e. event-driven actions) can be 

added through intelligent code generators and therefore need not be present in the model 

used to generate the code (Rumpe and France, 2011). 

The Cloud# language has several special syntactic features for modeling the cloud 

infrastructure. First, the main syntactic construct in Cloud# is the computation unit, 

which represent either virtual machines or the cloud itself. Virtual machines can even 

model a composed cloud by defining a cloud that contains other clouds as sub 

computation units. Second, Cloud# can express different privilege levels of 

computations. This feature is necessary since the software comprising a cloud (i.e. virtual 

machine monitors, operating systems in virtual machines) always runs in different 

privilege levels (or CPU rings (Barham et al, 2003)).  

Third, Cloud# allows different directions of control and data transfer between 

computation units of different privileges. In one direction, a low privileged unit can pass 

control and data to a high privileged unit by invoking a set of calls (i.e. hypercalls) 

defined in the high privileged unit. In the other direction, a high privileged unit can 

communicate with a lower one by running it directly (when scheduling), or accessing its 

state configuration or resources directly. Forth, there are no fixed resources in Cloud#. 

This feature is useful since different clouds may provide different resources (Liu and Zic, 

2011). 

1.3 Research Problem 

Domain-specific modeling languages (DSMLs) play a cornerstone role in model-driven 

software development. They offer, through appropriate notations and abstractions, 

expressive power focused on, and usually restricted to a particular problem domain. 

DSMLs are usually defined in terms of their abstract and concrete syntax. This allows the 

rapid development of the language and some associated tools (i.e. editors), but does not 

allow the representation of their behavioral semantics (Andova et al, 2011).  

Current domain-specific modeling (DSM) approaches have mainly focused on the 

syntactic (i.e. structural) aspects of DSMLs. Explicit and precise specification of the 

behavioral semantics of models has not received much attention by the DSM community 
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until recently, despite the fact that this creates a possibility for semantic mismatch 

between design models and modeling languages of analysis tools (Bryant et al, 2011). 

This research work focuses on Cloud# language which is a recent domain specific 

language for modeling the infrastructure of the cloud. Until now a BNF syntax, a 

concrete syntax and an informal description of the semantics of Cloud# language are 

available. However this language lacks a formal semantics definition (Liu and Zic, 2011).  

1.4 Motivations  

Much of the success of MDE is dependent on the descriptive power of domain-specific 

modeling languages (DSMLs). One of the current challenges of adopting a DSML is the 

lack of a precise description of its semantics (Bryant et al, 2011). A DSML must have a 

precise meaning to be considered trustworthy. Without a precise specification of a 

language, it is hard to rigorously validate a model against the system being modeled, or to 

state precisely what a given analysis result really means. The design of the modelling 

language itself will be subjected to conceptual errors and irregularities. There will be no 

sound basis for developing tools (i.e. compilers, analyzers, etc) for the language, for 

verifying a software implementation of the DSML or for developing accurate user 

documentation (Wang et al, 2012). 

Cloud# Modelers have had to rely heavily on English-language documentation (the 

informal description of the language semantics) to understand the language and interpret 

its models. However, this use of natural language is ambiguous and it also may have 

redundancy and sometimes contradictions in the information provided. To support a 

common understanding, and facilitate standardization for Cloud#, a formal semantics of 

its language is highly recommended.  

1.5 Research Contributions 

The research Contributions are listed below. A description of each contribution is given. 

� Provide Cloud# language with static and dynamic formal semantics: the Object-

Z approach is used to define the abstract syntax and static and dynamic semantics of 

the Cloud# language in a single unified framework. A consequence is that the 
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semantics of a language can be readily extended when the language is enhanced. 

Furthermore, it is also possible with this approach to reuse parts of the semantics 

specification of one language to define another. 

 
� Check the soundness of the Cloud# language by adopting usual techniques for 

reasoning and verifications: an example model of Cloud# language has been first 

modeled in Object-Z language and then loaded along with the formal semantics 

descriptions of Cloud# into the Community Zed Tool (CZT) type checker. Type 

checking has been done to check to consistency of the language. 

1.6 Research Methodology  

An analytical research methodology based on mathematics and proof techniques has been 

adopted to conduct this research work. Our starting point is the BNF abstract syntax of 

Cloud# language, the informal semantics definition written in natural language and some 

example models that represent the actual concrete syntax of the language. The ultimate 

goal of this research work is to define a formal static and dynamic semantics definition 

for Cloud# language. Furthermore, this research work aims at checking the soundness of 

Cloud#. The research methodology can be summarized in the following steps: 

� Be sure that the authors of the Cloud# language in (Liu and Zic, 2011) have 

completely described the Cloud# BNF abstract syntax by checking the agreement 

between the abstract and concrete syntax of Cloud# (through example models). 

Some additions/modifications to the abstract syntax have been suggested in this 

step. 

 

� Select an appropriate approach for defining the denotational semantics of Cloud# 
language based on a set of suitable criteria. 
 

� Define the static and dynamic semantics for Cloud# respectively using Object-Z 
formal language. 
 

� Check the soundness of Cloud# language by adopting usual techniques for 
reasoning and verification. 

 
� Evaluate and conclude our work. 
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1.7 Thesis Plan 

The organization of this thesis proceeds as follows: chapter 2 presents an overview on the 

state of art research in modeling languages and formal semantics to develop a deep 

understanding of the key concepts in modeling languages and formal semantics 

techniques. Chapter 3 presents the Object-Z approach for formal semantics definition. It 

also highlights the main motivations for using this approach to define the formal 

semantics of the Cloud# language. Chapter 4 presents the abstract syntax of Cloud# as a 

BNF- based syntax and also as an Object-Z metamodel based syntax. It also presents the 

main modifications that should be made to the syntax of Cloud# to make it ready for 

formal semantics definition. Chapter 5 and 6 investigate the formalization of the static 

and dynamic semantics of Cloud# language respectively. Chapter 7 presents how we 

evaluate our work. And finally, Chapter 8 presents the conclusions and our future work. 
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Chapter Two: Literature Review 
 

2.1 Introduction 

This chapter presents an overview of the state of art research in modeling languages and 

formal semantics. The purpose of the survey is to develop a deep understanding of the 

key concepts in modeling languages and formal semantics techniques. It also presents 

two comparative studies on different techniques for defining formal semantics of 

modeling languages. These comparisons help in selecting the appropriate approach to 

conduct this research work.  

The first part of this chapter presents a Background on modeling languages in terms of 

their classifications and their main concepts. The last part presents the main concepts in 

formal semantics and different techniques for defining semantics of modeling languages. 

2.2 Background on Modeling Languages 

Modeling languages have become an effective approach to address the increasing 

complexity of software system by raising the level of abstraction from programming 

languages. They are used to describe the system architecture, specify the structure and 

behaviour of the system, and document the system (Cho et al, 2011).  The main purpose 

of modeling languages is to describe and represent knowledge or information in a high 

level of abstraction and in a structured way. They are used to describe different systems 

and domains, ranging from Software Engineering (Ji et al, 2011), to Computer 

Engineering (Kos et al, 2011), to Telecommunications (Adamis et al, 2005), through 

Business World (Rodríguez et al, 2011), among others. For instance, in software 

engineering, they can be used to describe system requirements (Requirement languages), 

system architectures (Architecture Description languages), and system implementations 

(Programming languages). 

This section introduces different classifications of modeling languages according to some 

criteria and finally discusses the main concepts (i.e. modeling and metamodeling) that 

play a cornerstone in modeling languages. 
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2.2.1 Classifications of Modeling Languages 

Modeling languages can be classified with respect to their purposes as General-Purpose 

Modeling Languages (GPMLs) and Domain-Specific Modeling Languages (DSMLs) 

(Cho et al, 2011), to their execution styles as Declarative Modeling Languages and 

Imperative Modeling Languages (Pichler et al, 2012), or to their concrete syntax as 

textual modeling languages and graphical modeling languages (Engelen and van den 

Brand, 2010). This section discusses these different classifications and comments them 

briefly. 

� General-Purpose Modeling Languages (GPMLs) 

GPMLs are one type of modeling languages that are used for a wide variety of purposes 

across a broad range of domains. For instance, UML (Unified Modeling Language), as a 

GPML, may be used for modeling Business processes (Rodríguez et al, 2011), database 

design (Ma et al, 2012), and software engineering (Ji et al, 2011).  

The major disadvantage of GPMLs is their complexity (Cho et al, 2011). They offer 

many constructs and some of them may be hard to be understood or used by non-

specialists. They also don’t allow describing some specific domain needs in an accurate 

way.   

� Domain-Specific Modeling Languages (DSMLs) 

A DSML is a language that offers, through appropriate notations and abstractions, 

expressive power focused on, and usually restricted to a particular problem domain 

(Andova et al, 2011). It enables domain experts to develop accurate models using 

concepts in their own domain, rather than concepts provided by existing formalisms, 

which typically do not provide the required or correct abstractions. Domain-specific 

modeling has become a new trend in software development because it assists domain 

experts in focusing on the level of abstraction relevant to their problem space (Engine et 

al, 2010).  

� Imperative and Declarative Modeling Languages 

The difference between imperative and declarative languages also appears in computer 

programming. Imperative programming implies “say how to do something” (Pichler et al, 
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2012), whereas declarative programming implies to “say what is required and let the 

system determine how to achieve it” (Pichler et al, 2012). 

Similar to imperative programming, imperative modeling languages implies “inside-to-

outside” (Pichler et al, 2012) approach. Primarily, this consists in specifying the 

procedure of how the work has to be done. In contrast to Imperative languages, 

Declarative modeling is referred to as an “outside-to-inside” (Pichler et al, 2012), This 

mean that declarative languages do not specify the procedure in advance, instead of 

determining how the process has to work exactly, only its essential characteristics are 

described. 

� Textual and graphical modeling languages 

The appearance of a language is defined by means of its syntax. In the language driven 

approach, the constructs of the language are related to the concepts that have been 

identified in the domain space. With respect to the syntax, a language, in general, can be 

classified as a textual language, a graphical language, or a combination of the two 

approaches (Engelen and van den Brand, 2010).  

Graphical or visual languages became more and more popular with the advent of model 

driven engineering techniques. They have several benefits over textual language, such as 

the ability to express complex relations in a more intuitive fashion. Graphical syntax may 

seem capable of expressing more than the textual syntax. They are mostly convenient of 

documenting specification and communicating solutions to various interest groups. 

However, editing graphical representations can be cumbersome (Kiel and Schneider, 

2011). 

 Research has shown that graphical languages are not superior to textual languages and 

the both type of languages have their benefits. For instance there are cases where textual 

languages are more appropriate because of their clear structure (reading from left to right, 

from top to bottom) and the tools that can handle textual artifacts are widely spread and 

very mature. Further reasons for preferring textual languages to graphical ones are the 

speed of creation and suitability for editing and versioning (Kiel and Schneider, 2011). 
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2.2.2 The Basic Concepts in Modeling Languages: Model & Metamodel 

A model is an abstraction of a part of the reality for a specific purpose, and is expressed 

in a modeling language. The structure of the modeling language itself (i.e. the abstract 

syntax) is given by another model called metamodel. So, the metamodel is a model about 

models and any model written in a language must conforms to the metamodel (i.e. the 

Abstract syntax) of that language. For instance, Java program conforms to the Java 

grammar. Models and metamodels can be placed in layers, in MDE convention the reality 

is in layer M0, models that represent the reality are in layer M1 and the metamodels of 

those models are in layer M2 as shown in figure (2.1) below (Wolterink, 2009). 

 

Figure 2.1: Models and Metamodels in MDE Convention 

Many different definitions of metamodel may be found, but in the context of this thesis, 

we will consider metamodels as the specification of the abstract syntax of a modeling 

language (i.e. language concepts, properties on those concepts, and the existing relations 

between these concepts). 

2.3 Formal Semantics of Languages 

Language definition deals with defining the structure of the language. However, the 

meaning of those structures must also be defined. This meaning is defined by the 

semantics of the language. The semantics of a language can be defined in different ways. 

This section explains what the semantics are, and we take a look at different styles for 
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specifying dynamic semantics. Also two comparisons on different approaches for 

defining the semantics of modeling languages will be presented. 

2.3.1 A Brief Description on Formal Language Definition 

A language can be formally defined as a 5-tuple L = < C, A, S, MS, MC > as shown 

below, where (C) is the Concrete syntax, (A) is the abstract syntax, (MS) is the semantics 

mapping, and (MC) is the syntactic mapping. The syntax of a language consists of three 

parts: a concrete syntax which defines the specific constructs and notations that are used 

to express models; these models can be represented as graphical, textual, or mixed. An 

abstract syntax which defines the language concepts, their relationships and well-

formedness rules in the language, and a syntactic mapping    MC : C → A, which relates 

the syntactic constructs into the elements in the abstract syntax.  

 On the other hand, language’s semantics consist of two parts: a Semantic Domain (S) 

which explains the meaning of the language models in some formal, mathematical 

framework, and a Semantic Mapping MS: A → S which relates the syntactic concepts to 

their meaning in the semantics domain (Chen et al, 2005).  

 

Figure 2.2: Formal Language Specification 
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The semantic domain invariably distinguishes between two fundamental features: static 

semantics which express some language constraints that are hard to be defined with BNF 

syntax and dynamic semantics which are used to describe the meaning and behavior of 

the language constructs (Wang et al, 2012). 

2.3.2 Dynamic Semantics Styles 

There are several styles for specifying dynamic semantics. Some of these styles are 

axiomatic semantics, denotational semantics, and operational semantics. These styles are 

discussed briefly below. 

Denotational semantics: The meanings are modeled by mathematical functions that 

represent the effect of executing the constructs. Thus, only the effect is of interest, not 

how it is obtained. Denotational semantics is also called extensional semantics, because 

only the “extension”—the visible relation between input and output data—matters. For 

example, two differently coded programs that both compute factorial have the same 

denotational semantics (Schmidt, 2012).  

 

Operational semantics: The meaning of a construct is specified by the sequences of 

computation steps that result when the construct is executed on a machine.  In particular, 

it is of interest how the effect of a computation is produced. Operational semantics is also 

called intensional semantics, because the sequence of internal computation steps (the 

“intension”) is most important. Thus, two differently coded programs of factorial have 

different operational semantics (Schmidt, 2012). 

 

Axiomatic semantics: specific properties of the effect of executing the constructs are 

expressed as assertions or logical propositions. Thus there may be aspects of the 

execution that are ignored (Schmidt, 2012). 

 

However, it should be noted that these three styles of semantics are not rival, but are 

different techniques appropriate for different purposes (i.e. operational semantics are used 

when implementing compilers for languages, denotational semantics are used for 

analogous reasoning of languages (easier to understand and reason about the 



12 

 

 

 

mathematical representation of a language rather than the languages' constructions 

themselves (Naumenko et al, 2003)), while axiomatic semantics are used to prove 

properties of programs rather than their meanings). In fact, they are complementary and 

highly dependent on each other (Lester et al, 2011). 

2.3.3 A Comparison on General Denotational Semantics Approaches  

The problem of defining the denotational semantics of a modeling language is not new. 

Some considerable amount of research has already been done. This has led to a number 

of approaches for defining the denotational semantics.  In all approaches there is a 

mapping from the modeling language to a semantic domain. However, this mapping is 

done in different ways. This section presents the main general approaches for defining the 

denotational semantics of modeling languages and investigates each of them according to 

some criteria. 

2.3.3.1   General Denotational Semantics Approaches of Modeling Languages 

There are two general approaches for defining the denotational semantics of modeling 

languages: the translational semantics approach (Bryant et al, 2011) and the traditional 

denotational semantics approach (Lester et al, 2011). This section investigates each 

approach with respect to some criteria and recommends the most appropriate one. 

 

� Translational Semantics Approach  

This approach consists in mapping the abstract syntax of a modeling language into the 

abstract syntax of an existing formal specification language with well-defined and 

understood semantics (Bryant et al, 2011). 

The main advantage of this approach is that the existing tools (i.e. model checker, test-

case generator, etc) of the target formal language may be reused (no need to build 

specific tools for the DSML language). However, it is very challenging to correctly map 

the constructs of the DSML into the constructs of the formal language, because there is 

no direct mapping between the source and target languages (different level of 

abstraction). 
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Another challenge is how to map the execution results (i.e. error messages, debugging 

traces) back into the DSML in a meaningful manner, so that the domain expert who uses 

the DSML understands these messages. 

However, Translational semantics approach supports different styles of dynamic 

semantics (i.e. denotational, operational and a mix-approach). The authors in (Wang et al, 

2012) have proposed a formal denotational semantics model using Object-Z language for 

the semantic web service ontology (WSMO). The work of (Hahn, 2008) uses the 

combination of Object-Z and timed-refinement calculus languages to give a consistent 

formal denotational and operational semantics model of a DSML for multiagent systems. 

Furthermore, the author in (Rusu, 2011) has proposed a formal operational semantics 

model using Maude language for a DSML language called xSPEM. Based on such a 

semantics definition, simulation, reachability and model-checking analysis tools can be 

generated. 

� Traditional Denotational Semantics Approach 

This approach consists in mapping each syntactic construct in a language directly into its 

mathematical meaning by using mathematical objects (i.e., Algebra, Functions, Sets, 

etc.). For instance, the effect of a sequence of statements separated by ‘;’ is the functional 

composition of the effects of the individual statement (Lester et al, 2011).  

The difference between this approach and translational semantics approach is that 

translational semantics approach maps target language constructs into a high-level formal 

constructs, classes, while this approach maps target language constructs into primitive 

formal constructs, sets and functions. As the language being specified grows larger 

(enhanced or evolved), it becomes very difficult to understand or extend these 

specifications, because of bad structuring (i.e., the abstract syntax, static and dynamic 

semantics are specified separately). Well, if the language is enhanced or evolved, the 

modification to the already existing semantic will be very costly. Furthermore, the 

traditional denotational semantics approach assumes that the modeler has a very strong 

mathematical background (Dong, 2005). 
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2.3.4 A Comparison on Different Approaches based on Translational 

Semantics  

Translational semantics approach is considered as the most common way for defining the 

semantics of modeling languages. Some considerable amount of research has already 

been done based on the translational semantics approach. This section presents the main 

approaches based on the translational semantics and investigates each of them according 

to some criteria.  

2.3.4.1    Different Approaches Based on Translational Semantics 

There are two main different approaches based on translational semantics: the approach 

that is based on a formal meta-modeling language (Wang et al, 2012), (Rusu, 2011), and 

the approach using Semantic unit (semantic anchoring) (Chen et al, 2005). This section 

investigates each approach with respect to its: modularity, applicability, reusability and 

extendibility. 

� Translational Semantics Based on a Formal Meta-modeling Language 

This approach maps the syntactic construct of the modeling language being defined into a 

formal meta-modeling language with well-defined and understood semantics. The 

meaning is given according to the semantics of the formal meta-modeling language. 

There are different languages that are used as meta-languages for defining the semantics 

of other languages. For instance, Object-Z (OZ) is used as a meta-language to provide a 

formal specification for all the aspects of a language (i.e. the abstract syntax, the static 

and dynamic semantics) in a single unified framework, so that the semantics of a 

language can be more consistently defined and revised as the language evolves (Wang et 

al, 2012). 

Object-Z is an extension of the Z formal specification language to accommodate object 

orientation and scale with large specifications. Object-Z is used as a modeling language 

and also as a meta-language. It has been used to define the denotational semantics for 

textual languages (Wang et al, 2012), graphical languages (Hahn, 2008) and also for 

languages that support mixed notations such as SOFL (Dong, 2005). 
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The main advantage of using OZ is modularity. That is, the abstract syntax, static 

semantics and dynamic semantics of an individual construct are typically defined in one 

object-z class. Not only does this help the readability of the semantics, but also if the 

language is enhanced or extended, the corresponding semantic modifications can be 

captured by minimal disruption of the existing semantics. Furthermore, it is also possible 

with this approach to reuse parts of the semantics specification of one language to define 

another (Wang et al, 2012). 

On the other hand, Maude which is a high level language that supports modularity and 

reusability is also used as a meta-language for defining the semantics of other languages. 

Maude is an efficient rewriting engine that integrates functional programming with 

rewriting logic and provides meta-language capabilities.  Because of the facilities and the 

capabilities of Maude, it is used as a notation and a semantic framework for specifying 

the semantics of modeling languages. Furthermore, the semantics rules defined by Maude 

can be modified easily without modifying the overall semantics rules (Rusu, 2011). 

Maude has been used to specify the semantics for textual and graphical languages (Rivera 

et al, 2009). The formal semantics of a DSML language are specified in Maude in terms 

of rewrite rules. The Maude rewrite rules are based on rewriting-theory and are specified 

in a textual form. 

� Translational Semantics Based on Semantic Unit 

This approach is also called semantic anchoring and it uses the well-known abstract state 

machines (ASM) formalism to define the semantics. It consists of specifying 

transformation rules between the abstract syntax of the main DSML language which was 

defined in a UML/OCL-based metamodel and that of a selected Semantic unit (SU) that 

has been defined in the Abstract State Machine Language (ASML) (Chen et al, 2005).   

Semantic anchoring approach is more applicable for graphical languages in which their 

abstract syntax and static semantics have been defined in UML/OCL-based metamodels. 

One advantage of this approach is that the already existing semantic units (USs) can be 

re-used to easily specify the semantics of other languages.  
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However, this is not always possible. For instance, in heterogeneous systems, the 

semantics is not always fully captured by a predefined SU, if the semantics is specified 

from scratch it is not only expensive but we lose the advantages of anchoring the 

semantics to a set of common and well-established SUs. This is not only losing 

reusability of previous efforts, but has negative consequences on our ability to relate 

semantics of DSMLs to each other and to guide language designers to use well 

understood and  safe behavioral and interaction semantic as well. 

Furthermore, semantic anchoring requires well understood and safe semantic units and it 

is not clear how to specify the language semantic from scratch when these semantic units 

do not yet exist (Gargantini et al, 2009). Also if the language is enhanced or extended, it 

is required to re-apply the semantic anchoring process once more which seems a bit 

costly.  

2.3.5   Conclusion  

Any language needs to be defined with different styles of dynamic semantics (i.e., 

denotational, operational, etc.). Each style of dynamic semantics has its applications. For 

instance, we prefer the denotational approach when reasoning about the language, while 

we may prefer the operational approach when implementing the language. Cloud# is a 

new language and still evolving. It has no ready tools, so the first step in defining the 

semantics of Cloud# language is to check if soundness of this language (i.e. has no 

conceptual or designing errors). Denotational semantics provide an environment for 

verification and validation.  

This thesis is concerned with defining the formal denotational semantics of Cloud# 

language. The denotational semantics approach with Object-Z language is used to define 

the semantics of Cloud# language over the other approaches. In the next few paragraphs 

we show our justification about this selection. 

Object-Z approach is one of the most interesting approaches in translational semantics. It 

provides a single, canonical and unambiguous specification of a language, which can be 

beneficial to the semantics of that language in many different ways. It provides a formal 

specification of all aspects of the language in a single unified framework, so that the 
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meaning of the language can be more consistently defined and revised as the language 

evolves. That is, the abstract syntax, static and dynamic semantics of a language are 

specified in the same Object-Z class. Not only does this help the readability of the 

semantics, but if the language is enhanced, the corresponding semantics modifications 

can be captured by minimal disruption to the existing semantics. It is also possible with 

this approach to reuse parts of the semantics specification of one language to define 

another (Wang et al, 2012). 

On the other hand, the semantics of Object-Z itself is well studied. It has a fully abstract 

semantics (Smith, 1995, a&b). The denotational semantics (Griffiths and Rose, 1995) and 

axiomatic semantics (Smith, 1995, a&b) of Object-Z are closely related to Z standard 

work (Woodcock and Brien, 1991). Also, Object-Z provides some useful constructs, such 

as Class-union (Dong and Duke, 1993) which can define the polymorphic nature of 

language constructs effectively. Furthermore, Object-Z also provides a range of tool (i.e. 

model checker) which can be beneficial to the language being specified especially if that 

language is new and still has no ready tools. Some considerable amounts of works have 

been done based on the Object-Z approach such as the work in (Wang et al, 2012), 

(Wang et al, 2007), (Hahn, 2008), (Dong, 2005), etc. 

Object-Z has been integrated with many different formal languages (i.e. timed-refinement 

calculus, Pi-Calculus, etc) which makes OZ promising to define all the aspects of a 

language (i.e. abstract syntax, static, operational and denotational semantics) in a 

consistent way. For instance, Object-Z has been integrated with timed-refinement 

calculus to provide a consistent approach that combines different styles of dynamic 

semantics (i.e. denotational and operational semantics) in a single unified framework 

(Hahn, 2008).  
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Chapter Three: Method 

 

3.1 Introduction 

This chapter aims to describe the selected approach that has been adopted to conduct our 

research work in details. So, in the first part of this chapter, we present the selected 

approach in more details and finally, in the second part of this chapter, we present some 

basic knowledge that is useful to understand the elaborated specifications.  

3.2 Method Description 

The Object-Z approach provides a formal specification for all the aspects of Cloud# 

language in a single unified framework, so that the semantics of Cloud# language can be 

more consistently defined and revised as the language evolves. Figure 3.1 below shows 

the general approach of the framework.  

 

Figure 3.1: The General Approach of the Framework 

The language constructs are specified as different Object-Z classes. The syntax of an 

individual language construct is captured by the attributes of an Object-Z class. The 

predicates are defined as class invariants used to capture the static semantics of the 

language. The class operations are used to define the denotational semantics of the 

language. 
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In this approach, a model/program in a language is modeled as an object which consists 

of a collection of objects. Different Object-Z classes are used to model the different 

language constructs. For instance, if Expressions are modeled by an Object-Z class, say 

Exp, and then any individual expression in a program is modeled as an instance of the 

Object-Z class Exp. In the next section we will present a brief description on the basic 

knowledge in Object-Z language that helps to understand the elaborated specifications. 

A formal denotational semantics model for Cloud# language will be presented in this 

thesis in an incremental way. That is, the abstract syntax of Cloud# will be presented in 

Chapter 4, the static and dynamic semantics of Cloud# will be presented in Chapter 5 and 

6 respectively. Because of the limitations in space, we only presented the formalization of 

the main syntactic constructs in Cloud# language. However, the rest of the formal 

description is available in the appendix at the end of this thesis. 

3.3 Object-Z Background 

Object-Z is an object-oriented formal specification language developed at the software 

verification research center at the University of Queensland. It is founded on the simple 

and easily understandable mathematical theory of typed sets. Object-Z is an extension of 

the Z formal specification language to accommodate object orientation. The main reason 

for this extension is to improve the clarity of large specifications through enhanced 

structuring (Smith, 1999). 

The essential extension to Z given by Object-Z is the class construct, which groups the 

definition of a state schema and the definitions of its associated operations. A class is a 

template of objects: for each object, its states are instances of the state schema of the 

class and its individual state transitions conform to individual operations of the class. An 

object is an instance of a class and evolves according to the definitions of its class (Smith 

and Winter, 2012). 

3.4 Aspects of Object-Z 

In this section, some aspects of Object-Z that have been used in this thesis, such as class 

union, and object containment will be explained briefly. 
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3.4.1 Class Union 

Class union enables the definition of a set comprising the object identities of a collection 

of classes. It is a more general form of polymorphism than that of the traditional 

polymorphism, since the classes need not be related by inheritance nor have any 

restrictions on their features. The expression constructs a set of object identities which is 

the union of the sets of identities of its constituent classes. Like set union, class union is 

commutative and associative. 

Expression ::= Expression ∪ ∪ ∪ ∪ Expression 

Each constituent expression of a class union is either a class union expression or a class 

name. We have adopted class union in this thesis, because it is a more general form of 

polymorphism. For more information about class union please refer to ( Dong and Duke, 

1993). 

3.4.2 Referencing Local Objects 

Typically, objects locally reference other objects in any object-oriented system. This 

facilitates the sending and receiving of messages. However, such referencing could result 

in a complex structure or in a cyclic pattern (i.e. inside an expression may be other 

expressions, but an expression cannot be inside itself).  

To solve this inconsistency, a condition must be added to ensure acyclic pattern. In 

Object-Z, the subscript ‘ ’ is added to some attributes in a class to ensure this 

condition implicitly (for more information on local objet reference read (Dong et al, 1997).  

3.4.3 Secondary attributes 

In Object-Z, there are two types of attributes that can be defined in a class, the primary 

and secondary attributes (semantic variables). Delta is used to separate these kinds of 

attributes. The values of the primary variables determine the state of an object. On the 

other hand, the values of secondary variables depends on the primary variables values.  

For instance, in the class below, the value of the secondary attribute sum depends on the 

values of the primary attributes a1 and a2. This means that the secondary attribute sum 
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stores run-time information about the Plus object (i.e. its value). For more information 

about secondary attributes read (Smith, 1999). 
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Chapter Four: An Abstract Syntax for Cloud# 

 

4.1 Introduction 

This chapter presents the abstract syntax of Cloud# language as a BNF based syntax and also as 

an Object-Z metamodel based syntax. The first part of this chapter presents the main 

modifications that have been made to the syntax of Cloud# to make this language ready for 

formal semantics definition. The second part of this chapter presents an Object-Z metamodel 

based syntax for Cloud#. And finally, a small conclusion is presented. 

4.2 A BNF based Syntax for Cloud# 

The abstract syntax of a language deals solely with the well-formedness rules that make 

up legal expressions in a language without any consideration given to their meaning. The 

meaning of a language is defined by mapping the syntactic domain into a semantic 

domain. So the abstract syntax must be specified precisely prior to semantics since 

meaning can be given only to correctly formed expressions in a language (Stuurman, 

2010). 

The first step in our research methodology is to make sure that the authors of Cloud# 

language in (Liu and Zic, 2011) have completely described the Cloud# BNF abstract 

syntax. This is done by studying the agreement or conformance between the abstract and 

concrete syntax of Cloud# language (through example models). After this study, we 

noticed that there are some missing parts in the syntax that must be explicitly defined so 

that the language becomes ready for formal semantics definition. Some modifications and 

additions have been proposed. Figure 4.1 below shows the only published version of 

Cloud# abstract syntax. 
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Figure 4.1: The Abstract Syntax of Cloud# 

This section presents the main modifications and additions that have been suggested to 

the syntax of Cloud# language. It mainly discusses five points about this language: the 

structure of computation unit (CUnit), the computation unit definition, the computation 

tasks, the type definition, and also a typing system for Cloud# language. Finally, an 

augmented and refined version of the abstract syntax is presented.  

4.2.1 The Structure of Computation Unit (CUnit) 

The current syntax of Cloud# defines the computation unit (CUnit) as a tuple of six 

components (Liu and Zic, 2011). These components are defined outside the borders of 

the CUnit, so it becomes difficult for the compiler to distinguish between the components 

of different CUnits or to state where a specific CUnit begins or ends. In this section, we 

propose a suitable structure for any computation unit that groups the declaration of CUnit 

and its components in a single structure. That is, any CUnit contains a declaration which 

identifies the signature of its components and a body which identifies the definitions of 

these components.  The production rules below ensure such requirements. 

CUnit : := CUnitDec   { TypeDefinitions   Components    CUnitDefinitions } 

   

CUnitDec : := (ID, Comp,[ CUnit1,..., CUnitn ], HCallDefs, Conf ,Res ) 

 

Components : := Res ‘;’   Conf  ‘;’   Processes   HCallDefs    
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4.2.2 Computation Unit Definition 

According to the concrete syntax of Cloud# language (Liu and Zic, 2011), any new 

computation unit (CUnit) must be defined before we can use it.  As shown below, there 

are two different Computation Units with the identities vm1, and vm2 respectively.  

 

If the modeler has the intention to use these Computation Units in other places (i.e. use 

them as sub-units in other Computation Units), then he must define them in advance as 

follows: 

 

After defining Computation Units, now it is possible for the modeler to use them in other 

places as follows: 

 

We have introduced a new BNF Production Rule for defining Computation Units as 

shown below: 

4.2.3 Computation Tasks (Comp) 

The current abstract syntax of Cloud# language defines the computation tasks as an 

action sequence or a parallel composition of different action sequences (Liu and Zic, 

2011). In fact, such description is very abstract and doesn’t perfectly match of what stated 

in the available concrete syntax. In the concrete syntax of Cloud#, a computation task can 

be a noop action to indicate that there are no computations, or it can be a parallel 

composition of different processes. On the other hand, A process can be atomic (i.e. has a 

unique identifier and is described by a parallel composition of different action sequences) 

or it can be composite (i.e. has a unique identifier and is described by a parallel 

composition of different processes). The following production rules ensure these 

requirements. 

 

CUnitDef : := ID ‘=’ CUnit 
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4.2.4 Type Definition 

Cloud# language gives the ability for its users to introduce new data-types depending on 

the already existing data-types. This allows modeling more complex structures and 

reusing these structures throughout Cloud# models. The type definition consists of an 

identity (id) and a specific type. Two production rules have been added to the abstract 

syntax of Cloud# language for type definition as follows: 

4.2.5 Typing System for Cloud# Language 

No clear typing system appears in the current syntax of Cloud# language. In this section 

we suggest a clear typing system which includes all the required data-types. These data-

types should be available to ensure well-typing models. 

Data-types can be classified as follows: 

� Pre-defined types:  integer, string and Boolean. 

� User-defined types: Base, Tuple, Record and List. 

� Void type:  this type is used for the operations that don’t return values (i.e. Write 

() is a hypercall that returns nothing). 

The BNF production rules bellow present the main types that should be available in 

Cloud#. 

 

Comp   : := noop  | ProcessExp 

   

ProcessExp : :=   ProcessId |    ProcessId ’|’  ProcessExp 

   

Process : := ProcessId ‘=‘ ProcessDescription 

 

ProcessDescription : := ProcBody | ProcessExp 

   

   

ProcBody : := ‘{‘  Actions  |  Actions‘|’ProcBody  ‘}‘ 

TypeDefinitions : := ϵ |TypeDef   ‘; ‘ TypeDefinitions 

   

TypeDef : := ID ‘=’ Type  
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Note:  Base-Type is a user-defined type and it can be anything the user defines (i.e. it can 

be IPAddress to mean the type of IP address). 

4.2.6 An augmented and refined Version of Cloud# Abstract Syntax 

T : := PreDefType |  UserDefType 

   

PreDefType : := integer | string | boolean| VoidType 

   

UserDefType : := BaseType | ’(‘  T1  ‘,’ ... ‘,’ Tn  ’)’  |  ‘[‘   T   ‘]’  |  ‘{‘  ID1  ’=’  T1  ‘,’… ‘,’  IDn  ‘=’  Tn  ’}’ 

 

CUnit : := CUnitDec   { TypeDefinitions   Components    CUnitDefinitions } 

   

CUnitDec : := (ID, Comp,[ CUnit1,..., CUnitn ], HCallDefs, Conf ,Res ) 

   

TypeDefinitions : := ϵ |TypeDef   ‘; ‘ TypeDefinitions 

   

TypeDef : := ID ‘=’ Type  

   

Components : := Res ‘;’   Conf  ‘;’   Processes   HCallDefs    

   

Conf,Res : := ’{‘  ID1  ‘=’   T1  ‘,’ ... ’,’  IDn  ‘=’  Tn   ‘}’ 

   

Processes : := ϵ | Process    Processes 

   

HcallDefs : := ID  ‘=’  ‘{‘  HCall1  ‘,’ ... ‘,’  HCalln ‘}’ 

   

CUnitDefinitions : := ϵ |  ID ‘=’ CUnit  ‘;’  CUnitDefinitions 

   

   

Comp   : := noop  | ProcessExp 

   

ProcessExp : :=   ProcessId |    ProcessId ’|’  ProcessExp 

   

Process : := ProcessId ‘=‘ ProcessDescription 

 

ProcessDescription : := ProcBody | ProcessExp 

   

   

ProcBody : := ‘{‘  Actions  |  Actions‘|’ProcBody  ‘}‘ 

   

   

Lbl , BaseType ,Var : := ID 
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Actions : :=  seqAction   

   

seqAction  : := ϵ| A  ‘;‘ seqAction 

   

   

A : := noop | Var  ‘:=‘  SymbolicVal | lbl ‘:‘ A | goto lbl | E ‘⇒⇒⇒⇒’ A |  if E then ‘{‘ Actions ‘}‘ 

else ‘{‘ Actions ‘}‘ | for Var in E do ‘{‘ Actions ‘}‘ | return E  ‘;‘ | ‘⟦⟦⟦⟦‘    CUnit ‘⟦⟦⟦⟦‘    | 

HCallStmt | ‘Update(‘ E  ’,’  E'  ‘,’  E"  ‘)’ | ‘append(‘  E  ‘,‘  E'  ‘)‘   

   

SymbolicVal : := Expression | HCallStmt 

   

HCallStmt : := ID  ‘(‘  Exp1  ‘,’ ... ‘,’  Expn   ‘)’ 

   

E : := Var | Con | self | UnaryExp | BinaryExp | DotExp  

   

UnaryExp : := ‘length(‘  E   ‘)’  |  ‘head(‘  E  ‘)‘ 

   

BinaryExp : := E1 OP E2 | ‘{‘  E  ’}’  E' | E  '[‘  i  ‘]‘ |     ‘LookUP(‘  E   ‘,’  E'   ‘)’ 

   

OP : := > | = | < | + | - 

   

DotExpression : := ID  ‘.’  ID | ID  ‘.’   DotExpression 

   

   

   

HCall : :=  ID  ‘(‘  Var1  ‘:’  T1  ‘,’ ... ‘,’  Varn  ‘:’   Tn   ’)  :’    T  ‘=’ {  Actions  } 

 

   

T : := PreDefType |  UserDefType 

 

PreDefType : := integer | string | boolean| VoidType 

   

UserDefType : := BaseType | ’(‘  T1  ‘,’ ... ‘,’ Tn  ’)’  |  ‘[‘   T   ‘]’  |  ‘{‘  ID1  ’=’  T1  ‘,’… ‘,’  IDn  ‘=’  Tn  ’}’ 

 

   

Con : := String of letters or digits 

   

ID : := Alphabet | Alphabet ID 

   

Alphabet : := 'a' | 'b' | 'c'|...|'z' 

   



28 

 

 

 

4.3 An Object-Z Metamodel based Syntax for Cloud# 

As mentioned in chapter 3, the Object-Z approach which is used for defining the formal 

semantics of Cloud# language is based on translational semantics. That is, the abstract 

syntax of Cloud# must be translated into the abstract syntax of Object-Z language prior 

semantics definition. So, every Cloud# language construct is modeled as a class in 

Object-Z language. The syntax of each individual construct is captured by the attributes 

of its class. The result will be an Object-Z metamodel based syntax for Cloud# language. 

This part describes the formalization of the abstract syntax of individual constructs in 

Cloud# language. The Abstract syntax for Cloud# Computation unit with its components, 

Actions, and expressions will be described respectively. 

4.3.1 Computation Unit (CUnit) 

 Computation Unit (CUnit) is the main syntactic construct in Cloud# language. It is 

dedicated to model clouds, virtual machines or operating systems, etc. A computation 

unit is represented with a declaration and the definitions of CUnit components (i.e. type 

definitions, processes, hypercall definitions, and CUnits definitions). These components 

are all modeled as attributes in an Object-Z class named CUnit as follows:

 

4.3.1.1    Computation Unit Declaration 

The declaration of CUnit is represented as a Tuple of six components: a unique identifier 

(id), a computation task (Comp), a list of sub computation units (Units), a Hypercall 

definition (HcallDefs), a configuration part (Configuration), and a resource part 

(Resource). The declaration can be modeled as follows: 
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4.3.1.2     Type Definition  

Syntactically, the type definition consists of an identity (id) and a specific type. This type 

can be a simple type (i.e. Boolean, integer, etc) or a composite type. It can be modeled as 

follows: 

 

4.3.1.3     Computation unit definition 

Syntactically, the Computation Unit definition consists of an identity (id) and a specific 

CUnit. It can be modeled in an Object-Z class named CUnitDef as follows: 

 

4.3.1.4     Hypercall Definition 

Hypercall definition is defined with an identify (id) and as a set of Hypercalls which are 

used by the sub-CUnits to handle privileged operations. It can be modeled as follows: 
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4.3.1.5     Hypercall 

A hypercall in Cloud# is a syntactic construct like a procedure in Pascal. Syntactically, a 

hypercall consists of an identity (id), a formal parameter list (formalpar), a body (body), 

and a return type (rType). It can be modeled as follows: 

 

4.3.1.6     Computation Tasks 

A computation task indicates the computations that a CUnit intends to perform, for 

instance, virtualization of resources and scheduling of computation tasks. It can be 

modeled in a class union as a noop action or a process expression. 

 

4.3.1.7     Process Expression 

A Process Expression represents a set of Process-identities which refer to some processes 

in Cloud model. It is defined as a total function that maps every process identity in that 

process expression to a specific process. It can be modeled as follows: 
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4.3.1.8     Process 

A process is defined with an identifier (id) and a process description (processDesc). It 

can be modeled as follows: 

  

4.3.1.9     Process Description 

Syntactically, a process description can be defined as a body (i.e. a parallel composition 

of different action sequences) or a process Expression (i.e. a parallel composition of 

different processes) and it is modeled in a class union as follows: 

 

4.3.1.10 Process Body 

Syntactically, the Process Body consists of a parallel composition of different action 

sequences. It can be modeled as follows: 

 

 

4.3.2 Cloud# Actions 

Cloud# action can be a simple noop action, an assignment-statement, an if-statement, a 

for-statement, an event-statement, a unit control-switch statement, an HCall-statement, a 

return-statement, a label-statement, an Append action, and an Update action or a goto-

statement. This is captured by the class-union as follows: 



32 

 

 

 

 

4.3.2.1     Action Sequence 

Action sequence represents a set of actions that are executing in a sequential manner. 

Syntactically, an action sequence is defined as a sequence of different actions. It can be 

modeled as follows: 

 

4.3.2.2     noop Action 

Syntactically, a noop action is defined as an Object-Z class with empty state schema as 

follows: 

 

 

4.3.2.3     Event Statement (E ⇒ A) 

Syntactically, an event statement is defined as an Object-Z class that has two attributes 

(expression and action) as follows: 
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4.3.2.4     Unit Control-Switch Statement ( ⟦CUnit⟦ ) 

Syntactically, a Unit Control-Switch Statement is defined as an Object-Z class that has 

one attribute of a CUnit type as follows: 

 

4.3.2.5     HCall Statement  

Syntactically, HCall Statement is like a procedure call, it consists of a hypercall (hcall) 

and an actual parameter list (actualpar). It can be modeled as follows: 

 

 

4.3.2.6     Append Action 

Syntactically, the Append Action is described below in the Object-Z class named 

Append. It includes two sub- expressions (e1 and e2). 

 

4.3.2.7     Update Action 

Syntactically, the Update Action is described below in the Object-Z class named Update. 

It includes three sub- expressions (e1, e2 and e3). 
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4.3.3 Cloud# Expressions 

In this section, Object-Z is used to specify the abstract syntax of expressions. Each 

expression is modeled as an object (Wang et al, 2012): a binary (unary) expression is 

modeled as an object with two (one) sub expressions. An expression can be a constant, 

variable, self-reference, unary expression, binary expression, or dot expression. On the 

other hand, constant can be any value except nil. Expressions can be modeled as follows: 

 

 

4.3.3.1     Unary Expressions 

Cloud# language includes two unary expressions: the Head and length expressions. 

Unary Expression can be modeled as Class Union as follows: 

 

� Head Expression 

Syntactically, the Head expression is shown below in the Object-Z class named Head. It 

includes one sub expression (e).   
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� Length Expression 

Syntactically, the length expression is shown below in the Object-Z class named Length. 

It includes one sub expression (e). 

 

4.3.3.2     Binary Expressions 

Cloud# language includes three binary expressions: arithmetic expression which includes 

arithmetic and logical operations (i.e. >, <, =, +, -), ReturnAt expression (E[i]) and 

LookUp expression. Binary expressions and arithmetic expressions can be modeled using 

class union as follows: 

 

� ReturnAt expression (E[i]) 

Syntactically, the ReturnAt expression is described below in the Object-Z class named 

ReturnAt. It includes two sub expressions (e1 and e2). 

 

 

� LookUp Expression 

Syntactically, the LookUp expression is described below in the Object-Z class named 

LookUp. It includes two sub- expressions: e1 which is used to locate the required 

element and a list e2.   
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4.4 Conclusion  

In the first part of this chapter, we have presented the main modifications that have been 

done to the syntax of Cloud# language. These modifications made Cloud# language 

ready for formal semantics definition. In the second part, we built an Object-Z based 

metamodel for Cloud# language by translating its abstract syntax into the abstract syntax 

of Object-Z Language. Because of the limitations in space, we only presented the 

formalization of the main syntactic constructs in Cloud# language. However, the rest of 

the formal description is available in the appendix at the end of this thesis. 
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Chapter Five: A Static Semantics Model for Cloud# 

 

5.1 Introduction 

This chapter investigates the formalization of the static semantics for individual 

constructs in Cloud# language. The first part of this chapter presents how the Object-Z 

approach is used to give formal static semantics for Cloud# syntactic constructs. The 

static semantics will be added to the Cloud# metamodel that has been accomplished in 

the previous chapter. The last part of this chapter presents a small conclusion. 

5.2 Formal Static Semantics Definition 

Static semantics definition is the first step in the semantic analysis which manages the 

identifiers that are defined in the source model. It aims at detecting static semantic errors 

such as the redefinition of an identifier in the same scope, as well as associating 

identifiers with appropriate types or values. Furthermore, static semantics also manages 

the types of all phrases in the language. It detects type-mismatch errors such as 

assignment to a constant value and associates syntactically well-formed phrases with 

appropriate phrase types (Fisher, 2010).   

 In the Object-Z approach, the static semantics of Cloud# syntactic constructs are 

captured by class predicates or invariants. Static semantics are based solely on the 

abstract syntax. That is, the static semantics will be added to the Cloud# metamodel that 

has been accomplished in the previous chapter.  

This section describes the formalization of the static semantics of individual constructs in 

Cloud# language. The static semantics for Cloud# Computation unit with its components, 

Actions, and expressions will be described respectively. 

5.2.1  Computation Unit (CUnit) 

 The static semantics for a CUnit can be defined as follows: 

[1] Every two different defined types in a CUnit must have different identities. 
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[2] Every two different defined CUnits within the borders of the same parent CUnit 

must have different identities. 

[3] The number of defined types, the number of defined CUnits and the number of 

processes equals or more than zero. On the other hand, the number of hypercall 

definitions is at most equal to one. 

 

5.2.1.1    Computation Unit Declaration 

The static semantics for a Computation Unit Declaration can be defined as follows: 

[1] Every two different sub-units must have different identities. 

[2] The number of sub-units within the same parent CUnit is equal or more than zero. 

 

5.2.1.2     Hypercall Definition 

The static semantics for a hypercall definition are defined as follows: 

[1] The number of Hypercalls within the same definition is equal or more than zero.  
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5.2.1.3     Hypercall 

The static semantics for a hypercall are defined as follows: 

[1] If the return-type of an HCall doesn’t belong to void type, then there is a return-

statement (s) such that s belongs to the body (body) of that HCall. 

[2] For all return-statements that belong to the body (body) of an HCall, their types 

should match the return-type of that HCall. 

 

Please refer to the appendix for more information about the function (type_of) and the 

classes (Variable, Type, and ReturnStmt). 

5.2.1.4     Process Expression 

The static semantics for a Process Expression are defined as follows: 

[1] Every two ProcessIds that appear in the Process Expression must be different. 

[2] There exists a CUnit such that all the referenced-processes in the Process 

Expression belong to that CUnit’ processes. 
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5.2.1.5     Process Body 

The static semantics for a process body are defined as follows: 

[1] The number of action sequences within the same body of a process is equal or 

more than one. 

[2] The return statement is not allowed to be in the body of a process (process does 

not return values). 

[3] The first action in the process body belongs to Event Statement, and the last 

action belongs to Goto statement. 

 

 

5.2.2 Cloud# Actions 

This section presents the formalization of the static semantics for Cloud# actions.     

5.2.2.1     Action Sequence 

The static semantics for an Action Sequence are defined as follows: 

[1] The number of actions should be equal or more than one. 
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5.2.2.2     Event Statement (E ⇒ A) 

The static semantics for an Event Statement are defined as follows: 

[1] The value of the expression (eExp) should be of a Boolean Type. 

 

5.2.2.3     Unit Control-Switch Statement (⟦CUnit⟦) 

The static semantics for a Unit Control-Switch Statement are defined as follows: 

[1] The CUnit that appears in Unit Control-Switch Statement must be one of the sub-

units of an existing computation unit (CUnit). 

 

5.2.2.4     HCall Statement  

The static semantics for an HCall statement are defined as follows: 



42 

 

 

 

[1] The number of actual parameters in the HCall statement should be equal to the 

number of parameters in the HCall header. 

[2] The type of each parameter in the HCall statement should be equal to the type of 

its correspondence in the HCall header. 

 

5.2.2.5     Append Action 

The static semantics for an Append action are defined as follows: 

[1] The type of the expression (e1) value should be of a list type. 

[2] The type of the expression (e2) value is the same type of the elements in the list 

(e1). 

 

5.2.2.6     Update Action 

The static semantics for an Update action are defined as follows: 

[1] The value of e1 can’t be nil. 

[2] The value of e3 can’t be nil. 

[3] The value of e2 should be of a list type.  

[4] The elements in e2 should be of a Tuple type. And for each Tuple in e2, the first 

and the second elements should have the same types of the values of e1 and e3 

respectively. 
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5.2.3 Cloud# Expressions 

This section presents the formalization of the static semantics for Cloud# expressions.     

5.2.3.1    Head Expression 

The static semantics of a Head expression are defined as follows: 

[1] The type of the expression (e) value should be of a list type. 

 

5.2.3.2     Length Expression 

The static semantics of a Length expression are defined as follows: 

[1] The type of the expression (e) value should be of a list type. 
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5.2.3.3     ReturnAt expression (E[i]) 

The static semantics for a ReturnAt expression are defined as follows: 

[1] The value of e1 should be of a list type. 

[2] The value of e2 should be of an integer type. 

[3] The values of e2 should be within e1 domain (i.e. ranging from 1 to the number of 

element in the list e1) to avoid referencing errors. 

 

5.2.3.4    LookUp Expression 

The static semantics for a LookUp expression are defined as follows: 

[1] The value of e2 should be of a list type. 

[2] The type of the elements in the list e2 should be of a Tuple type. 

[3] The type of e1 should be of the same type of the first element in the tuples that 

located in the range of the list e2. 
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5.3 Conclusion 

In this chapter, we have presented formal static semantics of individual constructs in 

Cloud# language. These static semantics have been added to the metamodel of Cloud# 

language as invariants or predicates in the Object-Z class for each Cloud# syntactic 

construct. Some of these constructs have no static semantics so they are not presented in 

this chapter. On the other hand, Because of the limitations in space, we only presented the 

formalization of the main syntactic constructs in Cloud# language. However, the rest of 

the formal description is available in the appendix at the end of this thesis. 
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Chapter Six: A Denotational Semantics Model for Cloud# 

 

6.1 Introduction 

This chapter investigates the formalization of the denotational semantics for individual 

constructs in Cloud# language. The first part of this chapter presents how the Object-Z 

approach is used to give formal denotational semantics for Cloud# syntactic constructs. 

The denotational semantics will be added to the Cloud# metamodel as class operations. 

The last part of this chapter presents a small conclusion. 

6.2 Formal Denotational Semantics Definition 

The denotational semantics method aims at mapping a language construct directly to its 

meaning, called its denotation. The denotation is usually a mathematical function. A 

denotational definition is more abstract than an operational definition, for it does not 

specify computation steps. Its high-level and modular structure makes it especially useful 

to language designers and users, because the individual parts of a language can be studied 

without having to examine the entire definition (Schmidt, 2012). 

The denotational semantics of Cloud# language are specified in terms of the operations of 

a hypothetical machine. The hypothetical machine is composed of: an event queue 

holding incoming events, an event dispatcher mechanism, and an event processor which 

processes dispatched event instances according to the semantics of Cloud# language. In 

the Object-Z approach, the denotational semantics of Cloud# syntactic constructs are 

captured by class operations.  

This section describes the formalization of the denotational semantics for individual 

constructs in Cloud# language. The denotational semantics for Cloud# Computation unit 

with its components, Actions, and expressions will be described respectively. 
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6.2.1 Computation Unit (CUnit) 

At run-time, a CUnit can have different states (i.e. blocked, ready, running and finished 

state) as shown in the figure below. Initially, any CUnit is in a ready state. When a CUnit 

is scheduled to execute its computation tasks, it takes the control and starts the execution. 

This time, its state must be changed from ready to running state.  

Furthermore, there are two reasons that a CUnit returns the control and stops the 

execution. The first reason is because that this CUnit has already finished the execution 

of its computation tasks. So, its state must be changed to the finished state indicating the 

completion of computations. The second reason is that this CUnit is waiting for I/O event 

or needs to perform a privileged operation and this is usually done by Hypercalls. This 

time, its state must be changed to a blocked state. However, at any given time, only one 

CUnit is allowed to be in the running state. 

 

Figure 6.1: The State-transition of a Computation Unit at run-time. 

The denotational semantics for a CUnit can be defined by introducing one semantic 

variable and five operations. The semantic variable (Status) is modeled as a free type in 

Object-Z language to indicate the different states of a given CUnit as follows: 

 



48 

 

 

 

[1] A CUnit finishes its execution and its state changes from running to finished state, 

if and only if all of its processes are finished and blocked. Also, all of its sub-units 

must be in the finished state. 

[2] A CUnit is considered to be blocked if and only if all of its processes and all of its 

sub-units are blocked. 

[3] A CUnit is considered to be running if and only if one of its processes or one of 

its sub-units is running. 

[4] The Number of running CUnits at any given time is equal to one. 

 

 
 

The following Object-Z operations show how the state is changed for a given CUnit at 

run-time: 

[1] Initially, any CUnit is in a ready state. 

[2] Acquire operation: this is only applied when the CUnit starts its execution 

normally from the beginning. Its state changes normally from ready to running. 
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[3] Release after finishing the execution operation (ReleaseF): this operation is only 

applied when the CUnit finishes its execution normally. Its state changes from 

running to finished state. 

[4] Acquire after being blocked operation (AcquireB): this operation is only applied 

when the control gets back to a CUnit after being blocked. Its state changes from 

blocked to ready. 

[5] Resume operation (Resume): when the control gets back to a CUnit after being 

blocked, this operation is applied so that the CUnit resumes its execution. So, its 

state changes from ready to running. 

[6] Release for executing a privileged operation (ReleaseB): this makes a CUnit to 

release the control to a high-privileged CUnit. Its state changes from running to 

blocked state. 

 

 

6.2.1.1     Hypercall 

A hypercall is a way for the low-privileged computation units (sub-units) to make the high-

privileged computation unit (CUnit) to handle privileged operations. The denotational semantics 

for a hypercall are defined simply by executing the body of the HCall as follows: 
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[1] Execute operation: it executes the actions in the body of an HCall sequentially. 

However, if some of these actions belong to a Return statement, it executes this 

action and terminates the execution of that HCall. 

 

. 

6.2.1.2    Interleaving Concurrency 

There are two different kinds of concurrency: non-interleaving and interleaving 

concurrency. The non-interleaving concurrency assumes that the execution of an action is 

non-interruptible. So the modeling of non-interleaving concurrency is very simple and 

requires no new concepts. On the other hand, modeling interleaving concurrency is more 

complicated. For instance, when two assignment-statements evaluate concurrently on the 

same store, the result is a set of possible output stores as shown in the example below.   

Example: Consider ⟦(X := X+2 ; X := X-1) || (X := 3)⟦, where || is a parallel operator 

with interleaving concurrency. Even if we consider that each assignment is atomic, there 

will be a set of possible interleaving of the statements that lead to different output store as 

follows. 

X:=X+2; X:=X-1; X:=3 
X:=X+2; X:=3; X:=X-1 
X:=3; X:=X+2; X:=X-1 
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This means that we need a form of denotational semantics for representing the 

operational aspects of concurrency in the semantics. In this thesis we follow the 

resumption denotational semantics that presented in (Schmidt, 1997). The resumption 

semantics approach assumes that each action or command is a sequence of steps called 

Evaluation Steps. Each action or command in a language has different evaluation steps, 

For example, the evaluation steps for the simple addition ⟦ X + Y⟦ involves the 

following steps: 

� Evaluate the left operand. 

� Evaluate the right operand. 

� Add. 

Consider A = ⟦⟦⟦⟦a1, a2, …, an⟦⟦⟦⟦,,,, B = ⟦⟦⟦⟦b1, b2,…, bn⟦⟦⟦⟦,,,,    and        P= A; B, where A and 

B are two different actions within the process P. The action A is supposed to be executed 

before the action B. In interleaving concurrency, there are two conditions that must hold 

for legal execution of a process: 

1. The sequence of actions within the same process must be preserved. That is, the 

action A must be executed before the action B. 

2. The sequence of evaluation steps with a single action must be preserved. That is, 

in the action A, for instance, the execution of its evaluation steps proceeds as 

follows: a1; a2; a3…. etc. 

In this section we show how the interleaving concurrency can be applied to Cloud# 

language.  

 

� Cloud# Action with Interleaving Concurrency 

As mentioned above, every action is composed of a sequence of evaluation steps. So, we 

have introduced a new class named BaseAction in which all the actions in Cloud# 

language are inherited from. This class has one attribute named steps which indicates a 

sequence of evaluation steps for an action. However, the formalization of the class 
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EvaluationStep is not mentioned in this thesis, because we assume that the number of 

evaluation steps for a specific action depends on the machine that executes such action. 

The denotational semantics for the class BaseAction are defined by introducing one 

semantic variable (executed) and one operation (Execute) as follows: 

[1] An evaluation step can be executed, if and only if its precedent evaluation step in 

the same action is executed. 

[2] An action is considered to be executed, if and only if all of its evaluation steps 

have been executed. 

[3] The Execute operation executes the evaluation steps for a specific action in a 

sequential manner. 

 

� Action Sequence 

The denotational semantics for an action sequence in Cloud# can be defined by 

introducing two semantics variables and five operations. The semantic variable 

(executed) refers to the completion of execution for an action sequence, while the 

semantics variable (status) refers to the different states (i.e. blocked, running, etc.) of an 

action sequence at run-time. The operations show how the state for an action sequence is 

changed as follows: 
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[1] An action can be executed, if and only if its precedent action in the same action 

sequence is executed. 

[2] An action sequence is considered to be executed, if and only if all of its actions 

have been executed. 

[3] Initially, an action sequence is in a ready state and not executed. 

[4] The Block operation blocks the execution of an action sequence and changes its 

state to blocked state. 

[5] The UnBlock operation changes the state of an action sequence to a ready state 

and makes it ready for execution. 

[6] The Resume operation changes the state of an action sequence to the running 

state and makes it start execution. 

[7] The Execute operation executes the actions within an action sequence in a 

sequential manner as the state of an action sequence is not blocked. On the other 

hand, if the action sequence reaches to the last action, its state is changed to the 

finished state. 
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� Process Expression 

The denotational semantics for a process expression are defined by one operation 

(Execute) as follows: 

[1] The Execute-operation executes all processes that are referred in the ProcessExp 

concurrently. 

 

� Process 

The denotational semantics for a Process are defined by introducing one semantic 

variable (status) and one operation (Execute). The semantic variable refers to the 

different states (i.e. running, blocked, etc) of a process at run-time as follows: 

[1] A process is considered to be finished, when all of its action sequences are 

finished. 

[2] A process is considered to be blocked, when all of its action sequences are 

blocked. 

[3] A process is considered to be running, if one of its action sequencing is running. 

[4] At any given time, only one process is allowed to be in the running state. 

[5] The Execute-operation executes the body of a process. 
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� Process Body 

The denotational semantics for a process body are defined by one operation (Execute) 

as follows: 

[1] The Execute-operation executes all action sequences that present in a process body 

concurrently. 

 

 

6.2.2 Cloud# Actions 

This section investigates the formalization of the denotational semantics for Cloud# actions. The 

meaning of an action can be modeled as a store transformation which is captured in class 

operations. 
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6.2.2.1     Unit Control-Switch Statement (⟦CUnit⟦) 

Cloud# language provides two directions of control and data transfer (i.e. from the high-

privileged computation units to the low-privileged computation units and vice versa). If 

the high-privileged computation unit wishes to run a low-privileged computation unit, the 

unit control-switch statement is used. That is, the high-privileged computation unit 

releases the control to the low-privileged computation unit which takes the control and 

starts execution of its computation tasks. The low-privileged computation unit only 

returns the control if it has already finished the execution of its computation tasks or if it 

is blocked (i.e. needs to perform a privileged operation and this is usually done with 

Hypercalls).  

In the dynamic semantics of the Unit Control-Switch statement, the control can be 

returned back to the high-privileged computation unit only and only if the low-privileged 

computation unit finishes the execution of its computation tasks. We do not care about 

returning the control when the low-privileged computation unit is blocked, because this 

can be handled in the Hypercall statement. The denotational semantics for Unit Control-

Switch action can be described by introducing one semantic variable and four operations. 

The semantic variable refers to a high-privileged CUnit that are executing the Unit 

Control-Switch statement. The Object-Z operations are described as follows: 

[1] In the TransferControl operation, the requester which is a high-privileged CUnit 

blocks itself and releases the control. On the other hand, the requested low-

privileged CUnit acquires the control and starts the execution of its computation 

tasks from the beginning. 

[2]  In the ReturnControl operation, the requested CUnit releases the control after 

finishing its computation tasks and the requester CUnit acquires the control after 

being blocked and resumes its execution. 

[3] In the ExecuteComputation, the requested CUnit keeps executing its 

computation tasks until the execution is finished and then it releases the control 

back to the high-privileged CUnit. 

[4] The Execute operation is used to preserve the sequence of operations.  
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6.2.2.2     HCall Statement  

HCall statement is used by a low-privileged CUnit for asking the high-privileged one to 

handle a privileged operation. The denotational semantics for an HCall statement are 

defined by introducing two semantics variables (caller and callee) and four operations. 

The semantics variables refer to two different Computation Units. The caller refers to the 

computation unit that wants to perform a privileged operation, while a callee refers to a 

high-privileged computation unit that supposed to perform such operation. The Object-Z 

operations are described as follows: 

[1] TransferControl operation: The caller blocks itself and transfer the control to the 

callee. 

[2] ValSubs operation: the values of the parameters in the HCall statement are 

assigned to the formal parameters in the HCall. 

[3] ReturnControl operation: the callee releases the control after executing the 

HCall. This time, the caller acquires the control again and resumes its execution. 

[4] Execute operation: it is used for executing the HCall and sequencing the 

operations. 
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6.2.2.3     Event Statement (E ⇒ A) 

The Event Statement (E ⇒ A) means that if the expression E evaluates to true, then the 

action A proceeded to execute; otherwise, the action is blocked until E becomes true. 

Event statement is useful for modeling event-driven systems. For instance, event 

statement is used to model a network driver, which responds only to the arrival of new 

network packets. The denotational semantics for an Event Statement can be defined by 

introducing one semantic variable (container) and one operation (Execute). The 

semantic variable refers to the container in which the event statement is located. The 

operation is described as follows. 

[1] Execute operation: if the value of the expression (eExp) evaluates to true and the 

container is not blocked, then the action proceeds to execute; otherwise the 

container blocks itself and waits for an event. Once the value of eExp becomes 

true, the container unblocks itself, resumes its execution and executes the action. 

 



59 

 

 

 

 

  

6.2.2.4    Append Action 

Append (e1, e2) is used to add the element (e2) on the top of the list (e1). The 

denotational semantics for an Append Action are defined by introducing one operation 

(Execute) as follows: 

[1] The Execute-operation adds the value of the expression (e2) to the top of the list (e1). 

 

Please refer to the appendix in the end of this thesis to see how the value is added or 

removed from a list value. 

 

 

6.2.2.5     Update Action 

Let e1, e3 are expressions and e2 is a list that contains elements of a tuple type. Update 

(e1, e2, e3) is used to change the second element of a tuple to e3, if the first element of 
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that tuple equals to e1. The denotational semantics for an Update Action are defined by 

introducing one operation (Execute) as follows: 

[1] The Execute-operation changes the value of the second element in a Tuple to e3, if 

the value of the first element in that Tuple equals to the value of the expression (e1). 

 

Please refer to the appendix in the end of this thesis to see how the value of a Tuple is 

changed. 

6.2.2.6     noop Action 

The noop action does nothing when executed and is usually used in the computation task 

component when it has nothing to do. The denotational semantics for the noop action 

are defined by introducing one operation (Execute) as follows: 

[1] The Execute-operation does nothing when executed. 
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6.2.3 Cloud# Expressions 
 

This section presents the denotational semantics for Cloud# Expressions. The 

denotational semantics for an expression are defined by the final value of that expression. 

6.2.3.1     Head Expression 

Head expression evaluates to the value of the first element in a list and removes the first 

element from that list. The denotational semantics for the Head expression are specified 

by introducing one variable (V) and two operations as follows: 

[1] The variable (V) is equal to the value of the first element in the list. 

[2] The Assign operation changes the value (V) of the Head Expression. 

[3] The SetVal operation assigns the value of the first element in the list (e) to the 

variable (V) and removes that element from the list.  
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6.2.3.2     Length Expression 

Length expression evaluates to the number of elements in a list. The denotational 

semantics for Length expression are defined by introducing one variable (V) as follows: 

[1] The variable (V) equals to the number of elements in the list (e). 

 

6.2.3.3     ReturnAt expression (E[i]) 

ReturnAt expression evaluates to the value of the ith element in a list. The denotational 

semantics for ReturnAt expression are specified by introducing one variable (V) as 

follows: 

 

[1] The variable (V) equals to the value of the element in the list (e1) which is 

indexed by the value of e2. 
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6.2.3.4     LookUp Expression 

Let e1 is an expression and e2 is a list that contains elements of a tuple type. LookUp 

(e1, e2) expression evaluates to the second element in a tuple, if the first element of that 

tuple equals to e1. The denotational semantics of LookUp expression are specified by 

introducing one variable (V) as follows: 

[1] The variable (V) equals to the value of the second element in a Tuple, if the value 

of e1 is equal to the value of the first element in that Tuple. 

 

 

6.3 Conclusion  

In this chapter, we have presented formal denotational semantics for individual constructs 

in Cloud# language. These semantics have been added to the metamodel of Cloud# 

language as class operations. Because of the limitations in space, we only presented the 

formalization of the main syntactic constructs in Cloud# language. However, the rest of 

the formal description is available in the appendix at the end of this thesis. 
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Chapter Seven: Evaluation 
 

7.1 Introduction 

This chapter presents an evaluation for the work that has been done in this thesis. It 

investigates the consistency of Cloud# language. The first part presents a background on 

the usual techniques for verification and validation that can be done depending on the 

denotational semantics of a language. The second part presents a case study which 

illustrates how to convert Cloud# models to OZ specifications. The consistency of 

Cloud# language is discussed in the last part of this chapter.  

7.2 Background on the Formal Verification and Validation Techniques 

Formal methods provide precise ways to specify modeling languages using formal 

notations with a well-defined syntax and precise semantics. These notations have a set of 

associated tools and inference rules which enable automated analysis, verification and 

validation (Coppit, 2003). 

There are two main techniques for verification and validation that can be done depending 

on the denotational semantics of a language: the consistency checking and proving 

interesting properties about language models. This section investigates each technique 

according to its usage and how it is handled. 

7.2.1    Checking the consistency of a language 

One of the most important issues that must be proved about any language is its 

consistency (Coppit, 2003). The consistency checking for any language mainly involves 

two steps. The first step is to ensure that the formal semantics definition truly expresses 

the right semantics for the language. This type of consistency checking requires working 

with the language designers, because they are the only ones who know the actual 

meaning of the available informal semantics definition. The second step is to ensure the 

soundness of the language by checking the agreement between the formal semantics 

definition and the available concrete syntax (i.e. type-checking). This is usually done 

using the current existing tools for formal validation (i.e. Z/EVES, CZT, etc). For 

instance, the authors in (Wang et al, 2012) applied an Object-Z type checker to check the 
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consistency of the WSMO language. They used Amazon Associates Web service model 

(A2S) as a case study. Amazon model was first transformed to Object-Z language and it 

was loaded with the formal semantics definition to an Object-Z type-checker to ensure if 

the language sound. Amazon has been chosen because it is one of the largest models that 

have been developed based on this language. In other words, a selected model must be 

large enough so that it can cover the most aspects of the language, otherwise the checking 

results won’t be accurate. In this thesis, we use the same approach that is used for WSMO 

to check the consistency of Cloud# language. 

7.2.2    Proving some important properties about language models 

The second step after checking the consistency of a language is to reason about some 

interesting properties that should be exist in the language models (i.e. liveness properties, 

safety properties, etc.). This is usually done using mathematical proof techniques (i.e. 

based on temporal logic). It mainly involves two steps: the first step is to state or write 

the desired property in an informal way (i.e. natural language) and then it is translated to 

a logical expression. Once the property is converted to a logical expression, the second 

step starts by applying one of the mathematical proof techniques (i.e. proof by induction) 

to check if such property holds or not. For instance, the authors in (Taguchi and Ciobanu, 

2004) used proof by induction to prove the liveness properties for concurrent Z 

specifications. 

7.3 A Case Study—Cloud# Basic Model 

In this section, we use the Cloud# basic model that appears in (Liu and Zic, 2011) as a 

case study to illustrate how it can be represented in Object-Z specifications. This model 

shows a cloud service which allows multiple virtual machines to run and share their 

storages and network resources. The features showed by this model are: a basic 

scheduler, the isolation of storage space for different clients and the virtualization of 

network devices. The basic Cloud# model is represented in Object-Z specifications 

depending on the formal semantics definition that we have defined in the previous 

chapters. That is, any concrete Cloud# element is modeled as an instance of the Object-Z 

class that represents its abstract syntax, static and dynamic semantics. Please refer to 
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(Smith, 1992) for more information about object instantiation in Object-Z language. 

Because of the limitations in space, we will only present the main parts of this model. 

7.3.1    The Part of Computation Units  

The main Computation Unit in the Cloud# basic model includes two virtual machines 

(VM1 and VM2) as shown below. The computation task in this model is a parallel 

composition of Scheduler and Network which performs scheduling and packet 

processing. 

 

This can be modeled in OZ as follows: 
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7.3.2    The Part of Processes 

The Cloud# basic model includes two main processes (Scheduler and Network) as shown 

below.  The Scheduler is represented as a set of actions that are executing in a sequential 

manner. On the other hand, the Network process is a composite process. It is represented 

as a parallel composition of two different processes (Send and Receive). 

 

This can be modeled in OZ as follows: 
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7.3.3    The Part of Hypercalls  

In the Cloud# basic model, there is a definition for two different Hypercalls (read and 

write) as shown below. These calls enable the virtual machines to access the physical 

storages, retrieve and update the data in the cloud infrastructure. 

 

This can be modeled in OZ as follows: 
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7.4 Conclusion 

We used the Object-Z version of the Cloud# basic model that has been discussed in the 

previous section to check the consistency of Cloud# language. The basic Cloud# model 

has been applied along with the existing formal denotational semantics definition of 

Cloud# language to the Zed Community Tool (CZT) type-checker. No typing errors have 

been found which indicates the consistency of Cloud# language. However, we can’t state 

precisely that Cloud# language is consistent, since the selected model is not large enough 

to cover the most aspects of the language. However, this model has been chosen due to 

the fact that Cloud# is still new and has not been used to model real and large cloud 

infrastructures. Well, a more complex and large model leads to a more accurate result. 

Now that this language has been provided with a formal denotational semantics 

definition, it is easy to use this language for modeling real and large Cloud infrastructures 

and check the consistency of Cloud# language in a more accurate way. 
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Chapter Eight: Conclusions and Future Works 

 

8.1     Conclusions  

In this thesis, we have presented a formal denotational semantics for Cloud# language 

which is a domain-specific modeling language for modeling the infrastructure of the 

Cloud. Object-Z language has been used as a meta-language for defining the formal 

semantics of Cloud#. The formal semantics definition with Object-Z language has been 

given as a single unified framework. That is, the abstract syntax, static and dynamic 

semantics of a single language construct is specified in one Object-Z class. Not only does 

this help the readability of the semantics, but if the language is enhanced or evolved, the 

required modifications can be done by the minimal disruption to the existing semantics. 

Also it is possible to use some parts of semantics definition of one language to define 

another. 

On the other hand, the consistency checking for Cloud# language has been done using an 

Object-Z type-checker tool. A sample Cloud# model has been converted to the Object-Z 

specifications and then applied along with the existing formal denotational semantics to a 

type-checker. No typing errors have been found which indicates the consistency of 

Cloud# language. However, it is not realistic to state precisely that Cloud# language is 

consistent, because the sample model is not large enough to cover the most aspects of the 

language and it doesn’t even represents a real cloud infrastructure. This model has been 

chosen due to the fact that Cloud# is still new and has not been used to model real and 

large cloud infrastructures. Well, a more complex and large model leads to a more 

accurate result. 
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8.2   Future works 

Defining the formal semantics of a modeling language can be beneficial to that language 

in many different ways (i.e. for reasoning about the language or for providing tool 

support). In this thesis, we have defined a formal denotational semantics for Cloud# 

language. This type of semantics facilitates reasoning about the language using the 

existing tools for verification and validation or by using mathematical proof techniques. 

In this thesis, we only used one of the existing tools to check the consistency of Cloud# 

language. However, in future, some mathematical proof techniques will be adopted to 

reason about Cloud# models and to check the existence of some interesting properties 

such as the liveness property as mentioned in chapter 7.  

On the other hand, the denotational semantics definition is not enough. Cloud# is like any 

other language, it also needs an operational semantics definition. The operational 

semantics definition will help in developing tools (i.e. Compiler, interpreter, etc) for 

Cloud# language. Without the operational semantics definition, the generation of these 

tools will be a very complex process. In our future work, we propose to provide Cloud# 

language with an operational semantics definition which is consistent to the already 

existing denotational semantics. This can be accomplished by using one of Object-Z 

language extensions with a process-based language (i.e. pi-calculus, CSP, etc). That is, all 

the aspects of the language will be defined in a single unified framework. Similar work 

for defining all the aspects of the language in a single framework appears in (Hahn, 

2008). 
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Appendix 1: Formal Semantics Description of Cloud# 
 

 

o Cloud# Types 

 

 

The subscript ‘ ’ on IntType specifies that there is only one instance of Integer type. It 

is a syntactic sugar for a system constraint: #IntType=1. Similarly, there is only one 

instance of Boolean type, String type, and  Void type. 
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o Cloud# Values  

 

 

 

 

 

 

 

 

Each instance of the class IntVal, BoolVal, StrVal or BaseVal models a particular value of 

its type. As represented in (Dong, 2005) the one-to-one correspondence relationship is 
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captured by the subscript ‘ ’ on the type of Val. Which is a syntactic sugar for a 

system constraint (e.g. for IntVal): 

 

 

 

 

1 1 
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The subscript ‘©’ on the type Variable or TupleRef refers to the non-shared object 

containment. 

o Mapping Function 

 

o The Variable Reference 
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o The Arithmetic Expressions 
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o The Dot Expression 

 

o The Assignment Statement 
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o  Label Statement 

 

o IF Statement 
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o FOR Statement 

 

o Return Statement 

 

 

o Goto Statement 
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o Cloud# Identities 

 

 

 



 

 

 

 

  الملخص
 

واحد من أھم المجا'ت البحثية في مجال تطوير البرمجيات في الوقت الحاضر. فقد  (CloudMDE) يعتبر

فرص تمكن ا'نظمة المبنية على  ايجاد يھدف إلى  .(CloudMDE) استقطب اھتماما متزايدا من المجتمع البحثي

 (#Cloud)جة و العكس بالعكس. وقد تم اقتراح لغة الحوسبة السحابية من ا'ستفادة من التقنيات الھندسية في النمذ

ھي  #Cloud) (استخدام تقنيات الھندسة في النمذجة لدعم البنية التحتية =نظمة الحوسبة السحابية.كتطبيق على 

  (Imperative)لغة من نوع  ھي (#Cloud)لغة نمذجة مختصة في وصف البنية التحتية ل?نظمة السحابية. 

مكن ھذه اللغة القدرة على التعامل مع المكونات ا'ساسية في البنية التحتية ل?نظمة السحابية وذات شكل نصي. ت

عGوة على ذلك،ھذه اللغة تدعم  التزامن وا'ستجابة للمؤثرات بشكل مباشر على اعتبارھم اجزاء اساسية من اللغة. 

مجردة (المفردات) و الضوابط التي يجب اتباعھا  ةالخارجية. حتى اIن يتوفر لھذه اللغة الوحدات البنائية لبناء جمل

للوحدات البنائية في ھذه اللغة. ومع ذلك، ھذه  الوظيفيلكتابة جمل صحيحة في اللغة با'ضافة الى وصف للمعنى 

للوحدات  الوظيفيبشكل رياضي. في ھذه ا=طروحة، تم وصف المعنى  الوظيفياللغة تفتقر إلى تعريف المعنى 

. لقد تم (#Cloud)لوصف لغة  (Object-Z)اللغة بشكل رياضي. وقد تم استخدام اللغة الرياضية البنائية في 

وصف مفردات اللغة في اطار واحد وموحد بحيث ان وصف المفردات والضوابط لكتابة جمل صحيحة با'ضافة 

وھذا يساعد على سھولة قراءة الوصف، بل و يساعد ايضا للمفردات تم وضعة في وحدة واحدة  الوظيفيالى المعنى 

على اجراء التعديGت على الوصف الرياضي بطريقة سھلة في حالة تطوير او تحديث اللغة. ايضا مثل ھذا الوصف 

عدم وجود اي يمكن من اعادة استخادم بعض اجزاءه لتعريف لغات اخرى.  من ناحية أخرى، تم التحقق من 

. حيث تم اخذ أحد   (Object-Z)م احد ادوات التحقق في لغة او ذلك باستخد  (#Cloud)تناقضات في لغة 

وتم تحميله مع التعريف الرياضي الذي تم انجازه في ھذه ا'طروحة الى أحد أدوات لغة  (#Cloud)نماذج لغة 

(Object-Z)  سليمة وخالية من النتائج اي تناقضات في ھذه اللغة مما يدل على ان ھذه اللغة  تظھرحيث لم

   ا'خطاء التصميمية.
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