

Denotational Semantics for Cloud# Language

By

Yehia Moustafa Abd AL-Rahman

Supervisor

Dr. Mourad Maouche

This Thesis was submitted in Partial Fulfillment of the Requirements for the
Master's Degree in Computer Science.

Deanship of Academic Research and Graduates Studies

Philadelphia University

January, 2013

 يحيى مصطفى عبدالرحمن

٧/١/٢٠١٣

Yehia Moustafa Abd AL-Rahman

7/1/2013

 جامعة في5دلفيا

 نموذج التفويض

، أفوض جامعة في5دلفيا بتزويد نسخ من رسالتي للمكتبات أو المؤسسات ...أنا
 أو الھيئات أو ا[شخاص عند طلبھا .

. :التوقيع

. :التاريخ

Philadelphia University

Authorization Form

I, …..……..., authorize Philadelphia University to supply

copies of my Thesis to libraries or establishments or individuals upon request.

Signature: ……..............

Date: ……..............

Denotational Semantics for Cloud# Language

By

Yehia Moustafa Abd AL-Rahman

Supervisor

Dr. Mourad Maouche

This Thesis was submitted in Partial Fulfillment of the Requirements for the
Master's Degree in Computer Science.

Deanship of Academic Research and Graduates Studies

Philadelphia University

January, 2013

ii

Committee Decision

iii

DEDICATION

Only until you have climbed a mountain can you look behind and see the

vast distance you’ve covered, and remember those you’ve met along the way

who made your trek a little easier. Now that this thesis is finally finished,

after the many miles of weary travel, I look back to those who helped me

turn it into reality and offer my heartfelt thanks.

Dedicated to my Mother, for her tireless support and encouragement of my

Work, to my father and my sister Fatima. May their souls rest in peace.

Dedicated to my people in my homeland Syria who are struggling in their

quest for freedom and might not have had the same opportunities that I had.

Eng.Yehia.M EL-Rahman

iv

ACKNOWLEDGEMENT

Thanks go out to everyone along the way who made this work possible,

especially my supervisor, Dr. Mourad Maouche for his tireless support and

encouragement of my Work. Without You Dr.Mourad, nothing would have

been done.

A special thank goes to Professor Dongxi Liu from CSIRO ICT Centre,

Australia, to Professor Graeme Smith from the University of Queensland,

Australia. Your comments were very helpful.

Also I would like to thank my brother and my sisters, Mohammed, Khadejah,

Bayan and Fadia. Special thanks go to my friends and colleagues who have

inspired me along the way.

Eng.Yehia.M EL-Rahman

v

List of Contents

Subject

Page

Committee Decision ii

DEDICATION iii

ACKNOWLEDGEMENT iv

List of Contents v

List of Figures xi

List of Abbreviations xii

List of Appendices xiii

ABSTRACT xiv

Part 1: Research Problem Definition

Chapter One: Introduction 1

 1.1 Research Context 1

 1.2 Introduction to Cloud# Language 1

 1.3 Research Problem 2

 1.4 Motivations 3

 1.5 Research Contributions 3

 1.6 Research Methodology 4

 1.7 Thesis Plan 5

Chapter Two: Literature Review 6

 2.1 Introduction 6

 2.2 Background on Modeling Languages 6

 2.2.1 Classifications of Modeling Languages 7

 2.2.2 The Basic Concepts in Modeling Languages: Model & Metamodel 9

vi

 2.3 Formal Semantics of Languages 9

 2.3.1 A Brief Description on Formal Language Definition 10

 2.3.2 Dynamic Semantics Styles 11

 2.3.3 A Comparison on General Denotational Semantics Approaches 12

 2.3.3.1 General Denotational Semantics Approaches of Modeling Languages 12

 2.3.4 A Comparison on Different Approaches based on Translational Semantics 14

 2.3.4.1 Different Approaches Based on Translational Semantics 14

 2.3.5 Conclusion 16

Chapter Three: Method 18

 3.1 Introduction 18

 3.2 Method Description 18

 3.3 Object-Z Background 19

 3.4 Aspects of Object-Z 19

 3.4.1 Class Union 20

 3.4.2 Referencing Local Objects 20

 3.4.3 Secondary attributes 20

Part 2: Research Contributions

Chapter Four: An Abstract Syntax for Cloud# 22

 4.1 Introduction 22

 4.2 A BNF based Syntax for Cloud# 22

 4.2.1 The Structure of Computation Unit (CUnit) 23

 4.2.2 Computation Unit Definition 24

 4.2.3 Computation Tasks (Comp) 24

 4.2.4 Type Definition 25

 4.2.5 Typing System for Cloud# Language 25

vii

 4.2.6 An Augmented and Refined Version of Cloud# Abstract Syntax 26

 4.3 An Object-Z Metamodel based Syntax for Cloud# 28

 4.3.1 Computation Unit (CUnit) 28

 4.3.1.1 Computation Unit Declaration 28

 4.3.1.2 Type Definition 29

 4.3.1.3 Computation unit definition 29

 4.3.1.4 Hypercall Definition 29

 4.3.1.5 Hypercall 30

 4.3.1.6 Computation Tasks 30

 4.3.1.7 Process Expression 30

 4.3.1.8 Process 31

 4.3.1.9 Process Description 31

 4.3.1.10 Process Body 31

 4.3.2 Cloud# Actions 31

 4.3.2.1 Action Sequence 32

 4.3.2.2 noop Action 32

 4.3.2.3 Event Statement (E ⇒ A) 32

 4.3.2.4 Unit Control-Switch Statement (⟦CUnit⟧) 33

 4.3.2.5 HCall Statement 33

 4.3.2.6 Append Action 33

 4.3.2.7 Update Action 33

 4.3.3 Cloud# Expressions 34

 4.3.3.1 Unary Expressions 34

 4.3.3.2 Binary Expressions 35

 4.4 Conclusion 36

viii

Chapter Five: A Static Semantics Model for Cloud# 37

 5.1 Introduction 37

 5.2 Formal Static Semantics Definition 37

 5.2.1 Computation Unit (CUnit) 37

 5.2.1.1 Computation Unit Declaration 38

 5.2.1.2 Hypercall Definition 38

 5.2.1.3 Hypercall 39

 5.2.1.4 Process Expression 39

 5.2.1.5 Process Body 40

 5.2.2 Cloud# Actions 40

 5.2.2.1 Action Sequence 40

 5.2.2.2 Event Statement (E ⇒ A) 41

 5.2.2.3 Unit Control-Switch Statement (⟦CUnit⟧) 41

 5.2.2.4 HCall Statement 41

 5.2.2.5 Append Action 42

 5.2.2.6 Update Action 42

 5.2.3 Cloud# Expressions 43

 5.2.3.1 Head Expression 43

 5.2.3.2 Length Expression 43

 5.2.3.3 ReturnAt Expression (E[i]) 44

 5.2.3.4 LookUp Expression 44

 5.3 Conclusion 45

Chapter Six: A Denotational Semantics Model for Cloud# 46

 6.1 Introduction 46

 6.2 Formal Denotational Semantics Definition 46

ix

 6.2.1 Computation Unit (CUnit) 47

 6.2.1.1 Hypercall 49

 6.2.1.2 Interleaving Concurrency 50

 6.2.2 Cloud# Actions 55

 6.2.2.1 Unit Control-Switch Statement (⟦CUnit⟧) 56

 6.2.2.2 HCall Statement 57

 6.2.2.3 Event Statement (E ⇒ A) 58

 6.2.2.4 Append Action 59

 6.2.2.5 Update Action 59

 6.2.2.6 noop Action 60

 6.2.3 Cloud# Expressions 61

 6.2.3.1 Head Expression 61

 6.2.3.2 Length Expression 62

 6.2.3.3 ReturnAt expression (E[i]) 62

 6.2.3.4 LookUp Expression 63

 6.3 Conclusion 63

Chapter Seven: Evaluation 64

 7.1 Introduction 64

 7.2 Background on the Formal Verification and Validation Techniques 64

 7.2.1 Checking the consistency of a language 64

 7.2.2 Proving some important properties about language models 65

 7.3 A Case Study—Cloud# Basic Model 65

 7.3.1 The Part of Computation Units 66

 7.3.2 The Part of Processes 67

 7.3.3 The Part of Hypercalls 68

x

 7.4 Conclusion 69

Chapter Eight: Conclusions and Future Works 70

 8.1 Conclusions 70

 8.2 Future works 71

REFERENCES 72

Appendix 1: Formal Semantics Description of Cloud# 77

 86 الملخص

xi

List of Figures

Figure number Figure Title Page

Figure 2.1 Models and Metamodels in MDE Convention 9
Figure 2.2 Formal Language Specification 10
Figure 3.1 The General Approach of the Framework 18
Figure 4.1 The Abstract Syntax of Cloud# 23
Figure 6.1 The State-transition of a Computation Unit at run-time 47

xii

List of Abbreviations

Acronym/Synonym Meaning

A2S Amazon Associates Web service

ASML Abstract State Machine Language

BNF Backus Naur Form

Comp Computation Tasks

CPU Central Processing Unit

CUnit Computation Unit

CZT Community Zed Tools

dom Domain

DSM Domain-Specific Modeling

DSMLs Domain-Specific Modeling Languages

GPLs General-Purpose Languages

GPMLs General-Purpose Modeling Languages

HCall Hypercall

I/O Input/Output

Id Identity

IP Internet Protocol

MDE Model-Driven Engineering

OCL Object-Constraints Language

OZ Object-Z

ran Range

SOFL Structured-Object-based-Formal Language

SU Semantic Unit

UML Unified Modeling Language

WSMO Web Service Modeling Ontology

xiii

List of Appendices

Appendix Number Appendix Name

Appendix 1 Formal Semantics Description of Cloud#

xiv

ABSTRACT

CloudMDE is considered as one of the most significant research areas in software

development nowadays. It has attracted an increasing attention from the research

community. CloudMDE aims at identifying opportunities for making Cloud Computing

benefits from model-driven engineering techniques and vice versa. Cloud# language has

been proposed as a way for using model-driven engineering techniques to support Cloud

Computing. It is a domain-specific modeling language for modeling the infrastructure of

the cloud. Cloud# is an imperative language with a textual concrete syntax. It

manipulates the cloud infrastructure components as first class citizens. Furthermore, it

supports concurrency and event-driven actions. Until now a BNF abstract syntax, a

concrete syntax and an informal semantics description for Cloud# language are available.

However, this language lacks a formal semantics definition. In this thesis, we have

defined a formal denotational semantics for Cloud# language. Object-Z language has

been used as a meta-language for defining the formal semantics of Cloud# in a single

unified framework. That is, the abstract syntax, static and dynamic semantics of a single

language construct are specified in one Object-Z class. Not only does this help the

readability of the semantic, but if the language is enhanced or evolved, the required

modifications can be done by minimal disruption to the existing semantics. Also it is

possible to use some parts of semantics definition of one language to define another. On

the other hand, the consistency checking for Cloud# language has been done using an

Object-Z type-checker tool. A sample Cloud# model has been converted to the Object-Z

specifications and then applied along with the existing formal denotational semantics to

the type-checker. No typing errors have been found which indicates the consistency of

Cloud# language.

1

Chapter One: Introduction

1.1 Research Context

Cloud computing and model-driven engineering (MDE) are two of the most dominant

software engineering paradigms nowadays. Currently, there is a new trend to combine

MDE and Cloud Computing so that they benefit from each other. The combination of

these two paradigms has come up with a new research domain called CloudMDE. The

first international workshop on CloudMDE happened lately in July, 2012. The aim of

CloudMDE is to identify opportunities for using MDE to support the development of

Cloud Computing (MDE for the Cloud) (e.g. Cloud# language (Liu and Zic, 2011),

CloudML language (Goncalves et al, 2011), etc), as well as opportunities for using cloud

infrastructure to enable MDE in new and novel ways (MDE in the Cloud) (e.g. Model as

a Service (Maas) (Bruneli et al, 2010)). This research work is concerned with MDE for

the Cloud.

1.2 Introduction to Cloud# Language

Cloud# is a domain-specific modeling language that has been designed to model the

infrastructure of the Cloud. It is an imperative language with a textual concrete syntax.

Cloud# manipulates the cloud infrastructure components as first class citizens.

Furthermore, it supports concurrency and event-driven actions (Liu and Zic, 2011).

Cloud# can be viewed as an approximate form of very high-level programming

languages, that is, a language above the current high-level general-purpose programming

languages (GPLs). The term approximate form is used because we do not consider that

languages like Cloud# can completely replace or mask out GPLs. There may be

algorithmic elements that should not be modelled in a more abstract way like statements

in GPLs.

The term very high-level is used to reflect our view that models are more abstract and

compact than implementations expressed in a GPL. For instance, technical details related

to efficient implementations of complex data structures (i.e. Computation unit, Resource,

2

Configuration, etc) and domain-specific functionality (i.e. event-driven actions) can be

added through intelligent code generators and therefore need not be present in the model

used to generate the code (Rumpe and France, 2011).

The Cloud# language has several special syntactic features for modeling the cloud

infrastructure. First, the main syntactic construct in Cloud# is the computation unit,

which represent either virtual machines or the cloud itself. Virtual machines can even

model a composed cloud by defining a cloud that contains other clouds as sub

computation units. Second, Cloud# can express different privilege levels of

computations. This feature is necessary since the software comprising a cloud (i.e. virtual

machine monitors, operating systems in virtual machines) always runs in different

privilege levels (or CPU rings (Barham et al, 2003)).

Third, Cloud# allows different directions of control and data transfer between

computation units of different privileges. In one direction, a low privileged unit can pass

control and data to a high privileged unit by invoking a set of calls (i.e. hypercalls)

defined in the high privileged unit. In the other direction, a high privileged unit can

communicate with a lower one by running it directly (when scheduling), or accessing its

state configuration or resources directly. Forth, there are no fixed resources in Cloud#.

This feature is useful since different clouds may provide different resources (Liu and Zic,

2011).

1.3 Research Problem

Domain-specific modeling languages (DSMLs) play a cornerstone role in model-driven

software development. They offer, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to a particular problem domain.

DSMLs are usually defined in terms of their abstract and concrete syntax. This allows the

rapid development of the language and some associated tools (i.e. editors), but does not

allow the representation of their behavioral semantics (Andova et al, 2011).

Current domain-specific modeling (DSM) approaches have mainly focused on the

syntactic (i.e. structural) aspects of DSMLs. Explicit and precise specification of the

behavioral semantics of models has not received much attention by the DSM community

3

until recently, despite the fact that this creates a possibility for semantic mismatch

between design models and modeling languages of analysis tools (Bryant et al, 2011).

This research work focuses on Cloud# language which is a recent domain specific

language for modeling the infrastructure of the cloud. Until now a BNF syntax, a

concrete syntax and an informal description of the semantics of Cloud# language are

available. However this language lacks a formal semantics definition (Liu and Zic, 2011).

1.4 Motivations

Much of the success of MDE is dependent on the descriptive power of domain-specific

modeling languages (DSMLs). One of the current challenges of adopting a DSML is the

lack of a precise description of its semantics (Bryant et al, 2011). A DSML must have a

precise meaning to be considered trustworthy. Without a precise specification of a

language, it is hard to rigorously validate a model against the system being modeled, or to

state precisely what a given analysis result really means. The design of the modelling

language itself will be subjected to conceptual errors and irregularities. There will be no

sound basis for developing tools (i.e. compilers, analyzers, etc) for the language, for

verifying a software implementation of the DSML or for developing accurate user

documentation (Wang et al, 2012).

Cloud# Modelers have had to rely heavily on English-language documentation (the

informal description of the language semantics) to understand the language and interpret

its models. However, this use of natural language is ambiguous and it also may have

redundancy and sometimes contradictions in the information provided. To support a

common understanding, and facilitate standardization for Cloud#, a formal semantics of

its language is highly recommended.

1.5 Research Contributions

The research Contributions are listed below. A description of each contribution is given.

� Provide Cloud# language with static and dynamic formal semantics: the Object-

Z approach is used to define the abstract syntax and static and dynamic semantics of

the Cloud# language in a single unified framework. A consequence is that the

4

semantics of a language can be readily extended when the language is enhanced.

Furthermore, it is also possible with this approach to reuse parts of the semantics

specification of one language to define another.

� Check the soundness of the Cloud# language by adopting usual techniques for

reasoning and verifications: an example model of Cloud# language has been first

modeled in Object-Z language and then loaded along with the formal semantics

descriptions of Cloud# into the Community Zed Tool (CZT) type checker. Type

checking has been done to check to consistency of the language.

1.6 Research Methodology

An analytical research methodology based on mathematics and proof techniques has been

adopted to conduct this research work. Our starting point is the BNF abstract syntax of

Cloud# language, the informal semantics definition written in natural language and some

example models that represent the actual concrete syntax of the language. The ultimate

goal of this research work is to define a formal static and dynamic semantics definition

for Cloud# language. Furthermore, this research work aims at checking the soundness of

Cloud#. The research methodology can be summarized in the following steps:

� Be sure that the authors of the Cloud# language in (Liu and Zic, 2011) have

completely described the Cloud# BNF abstract syntax by checking the agreement

between the abstract and concrete syntax of Cloud# (through example models).

Some additions/modifications to the abstract syntax have been suggested in this

step.

� Select an appropriate approach for defining the denotational semantics of Cloud#
language based on a set of suitable criteria.

� Define the static and dynamic semantics for Cloud# respectively using Object-Z
formal language.

� Check the soundness of Cloud# language by adopting usual techniques for
reasoning and verification.

� Evaluate and conclude our work.

5

1.7 Thesis Plan

The organization of this thesis proceeds as follows: chapter 2 presents an overview on the

state of art research in modeling languages and formal semantics to develop a deep

understanding of the key concepts in modeling languages and formal semantics

techniques. Chapter 3 presents the Object-Z approach for formal semantics definition. It

also highlights the main motivations for using this approach to define the formal

semantics of the Cloud# language. Chapter 4 presents the abstract syntax of Cloud# as a

BNF- based syntax and also as an Object-Z metamodel based syntax. It also presents the

main modifications that should be made to the syntax of Cloud# to make it ready for

formal semantics definition. Chapter 5 and 6 investigate the formalization of the static

and dynamic semantics of Cloud# language respectively. Chapter 7 presents how we

evaluate our work. And finally, Chapter 8 presents the conclusions and our future work.

6

Chapter Two: Literature Review

2.1 Introduction

This chapter presents an overview of the state of art research in modeling languages and

formal semantics. The purpose of the survey is to develop a deep understanding of the

key concepts in modeling languages and formal semantics techniques. It also presents

two comparative studies on different techniques for defining formal semantics of

modeling languages. These comparisons help in selecting the appropriate approach to

conduct this research work.

The first part of this chapter presents a Background on modeling languages in terms of

their classifications and their main concepts. The last part presents the main concepts in

formal semantics and different techniques for defining semantics of modeling languages.

2.2 Background on Modeling Languages

Modeling languages have become an effective approach to address the increasing

complexity of software system by raising the level of abstraction from programming

languages. They are used to describe the system architecture, specify the structure and

behaviour of the system, and document the system (Cho et al, 2011). The main purpose

of modeling languages is to describe and represent knowledge or information in a high

level of abstraction and in a structured way. They are used to describe different systems

and domains, ranging from Software Engineering (Ji et al, 2011), to Computer

Engineering (Kos et al, 2011), to Telecommunications (Adamis et al, 2005), through

Business World (Rodríguez et al, 2011), among others. For instance, in software

engineering, they can be used to describe system requirements (Requirement languages),

system architectures (Architecture Description languages), and system implementations

(Programming languages).

This section introduces different classifications of modeling languages according to some

criteria and finally discusses the main concepts (i.e. modeling and metamodeling) that

play a cornerstone in modeling languages.

7

2.2.1 Classifications of Modeling Languages

Modeling languages can be classified with respect to their purposes as General-Purpose

Modeling Languages (GPMLs) and Domain-Specific Modeling Languages (DSMLs)

(Cho et al, 2011), to their execution styles as Declarative Modeling Languages and

Imperative Modeling Languages (Pichler et al, 2012), or to their concrete syntax as

textual modeling languages and graphical modeling languages (Engelen and van den

Brand, 2010). This section discusses these different classifications and comments them

briefly.

� General-Purpose Modeling Languages (GPMLs)

GPMLs are one type of modeling languages that are used for a wide variety of purposes

across a broad range of domains. For instance, UML (Unified Modeling Language), as a

GPML, may be used for modeling Business processes (Rodríguez et al, 2011), database

design (Ma et al, 2012), and software engineering (Ji et al, 2011).

The major disadvantage of GPMLs is their complexity (Cho et al, 2011). They offer

many constructs and some of them may be hard to be understood or used by non-

specialists. They also don’t allow describing some specific domain needs in an accurate

way.

� Domain-Specific Modeling Languages (DSMLs)

A DSML is a language that offers, through appropriate notations and abstractions,

expressive power focused on, and usually restricted to a particular problem domain

(Andova et al, 2011). It enables domain experts to develop accurate models using

concepts in their own domain, rather than concepts provided by existing formalisms,

which typically do not provide the required or correct abstractions. Domain-specific

modeling has become a new trend in software development because it assists domain

experts in focusing on the level of abstraction relevant to their problem space (Engine et

al, 2010).

� Imperative and Declarative Modeling Languages

The difference between imperative and declarative languages also appears in computer

programming. Imperative programming implies “say how to do something” (Pichler et al,

8

2012), whereas declarative programming implies to “say what is required and let the

system determine how to achieve it” (Pichler et al, 2012).

Similar to imperative programming, imperative modeling languages implies “inside-to-

outside” (Pichler et al, 2012) approach. Primarily, this consists in specifying the

procedure of how the work has to be done. In contrast to Imperative languages,

Declarative modeling is referred to as an “outside-to-inside” (Pichler et al, 2012), This

mean that declarative languages do not specify the procedure in advance, instead of

determining how the process has to work exactly, only its essential characteristics are

described.

� Textual and graphical modeling languages

The appearance of a language is defined by means of its syntax. In the language driven

approach, the constructs of the language are related to the concepts that have been

identified in the domain space. With respect to the syntax, a language, in general, can be

classified as a textual language, a graphical language, or a combination of the two

approaches (Engelen and van den Brand, 2010).

Graphical or visual languages became more and more popular with the advent of model

driven engineering techniques. They have several benefits over textual language, such as

the ability to express complex relations in a more intuitive fashion. Graphical syntax may

seem capable of expressing more than the textual syntax. They are mostly convenient of

documenting specification and communicating solutions to various interest groups.

However, editing graphical representations can be cumbersome (Kiel and Schneider,

2011).

 Research has shown that graphical languages are not superior to textual languages and

the both type of languages have their benefits. For instance there are cases where textual

languages are more appropriate because of their clear structure (reading from left to right,

from top to bottom) and the tools that can handle textual artifacts are widely spread and

very mature. Further reasons for preferring textual languages to graphical ones are the

speed of creation and suitability for editing and versioning (Kiel and Schneider, 2011).

9

2.2.2 The Basic Concepts in Modeling Languages: Model & Metamodel

A model is an abstraction of a part of the reality for a specific purpose, and is expressed

in a modeling language. The structure of the modeling language itself (i.e. the abstract

syntax) is given by another model called metamodel. So, the metamodel is a model about

models and any model written in a language must conforms to the metamodel (i.e. the

Abstract syntax) of that language. For instance, Java program conforms to the Java

grammar. Models and metamodels can be placed in layers, in MDE convention the reality

is in layer M0, models that represent the reality are in layer M1 and the metamodels of

those models are in layer M2 as shown in figure (2.1) below (Wolterink, 2009).

Figure 2.1: Models and Metamodels in MDE Convention

Many different definitions of metamodel may be found, but in the context of this thesis,

we will consider metamodels as the specification of the abstract syntax of a modeling

language (i.e. language concepts, properties on those concepts, and the existing relations

between these concepts).

2.3 Formal Semantics of Languages

Language definition deals with defining the structure of the language. However, the

meaning of those structures must also be defined. This meaning is defined by the

semantics of the language. The semantics of a language can be defined in different ways.

This section explains what the semantics are, and we take a look at different styles for

10

specifying dynamic semantics. Also two comparisons on different approaches for

defining the semantics of modeling languages will be presented.

2.3.1 A Brief Description on Formal Language Definition

A language can be formally defined as a 5-tuple L = < C, A, S, MS, MC > as shown

below, where (C) is the Concrete syntax, (A) is the abstract syntax, (MS) is the semantics

mapping, and (MC) is the syntactic mapping. The syntax of a language consists of three

parts: a concrete syntax which defines the specific constructs and notations that are used

to express models; these models can be represented as graphical, textual, or mixed. An

abstract syntax which defines the language concepts, their relationships and well-

formedness rules in the language, and a syntactic mapping MC : C → A, which relates

the syntactic constructs into the elements in the abstract syntax.

 On the other hand, language’s semantics consist of two parts: a Semantic Domain (S)

which explains the meaning of the language models in some formal, mathematical

framework, and a Semantic Mapping MS: A → S which relates the syntactic concepts to

their meaning in the semantics domain (Chen et al, 2005).

Figure 2.2: Formal Language Specification

11

The semantic domain invariably distinguishes between two fundamental features: static

semantics which express some language constraints that are hard to be defined with BNF

syntax and dynamic semantics which are used to describe the meaning and behavior of

the language constructs (Wang et al, 2012).

2.3.2 Dynamic Semantics Styles

There are several styles for specifying dynamic semantics. Some of these styles are

axiomatic semantics, denotational semantics, and operational semantics. These styles are

discussed briefly below.

Denotational semantics: The meanings are modeled by mathematical functions that

represent the effect of executing the constructs. Thus, only the effect is of interest, not

how it is obtained. Denotational semantics is also called extensional semantics, because

only the “extension”—the visible relation between input and output data—matters. For

example, two differently coded programs that both compute factorial have the same

denotational semantics (Schmidt, 2012).

Operational semantics: The meaning of a construct is specified by the sequences of

computation steps that result when the construct is executed on a machine. In particular,

it is of interest how the effect of a computation is produced. Operational semantics is also

called intensional semantics, because the sequence of internal computation steps (the

“intension”) is most important. Thus, two differently coded programs of factorial have

different operational semantics (Schmidt, 2012).

Axiomatic semantics: specific properties of the effect of executing the constructs are

expressed as assertions or logical propositions. Thus there may be aspects of the

execution that are ignored (Schmidt, 2012).

However, it should be noted that these three styles of semantics are not rival, but are

different techniques appropriate for different purposes (i.e. operational semantics are used

when implementing compilers for languages, denotational semantics are used for

analogous reasoning of languages (easier to understand and reason about the

12

mathematical representation of a language rather than the languages' constructions

themselves (Naumenko et al, 2003)), while axiomatic semantics are used to prove

properties of programs rather than their meanings). In fact, they are complementary and

highly dependent on each other (Lester et al, 2011).

2.3.3 A Comparison on General Denotational Semantics Approaches

The problem of defining the denotational semantics of a modeling language is not new.

Some considerable amount of research has already been done. This has led to a number

of approaches for defining the denotational semantics. In all approaches there is a

mapping from the modeling language to a semantic domain. However, this mapping is

done in different ways. This section presents the main general approaches for defining the

denotational semantics of modeling languages and investigates each of them according to

some criteria.

2.3.3.1 General Denotational Semantics Approaches of Modeling Languages

There are two general approaches for defining the denotational semantics of modeling

languages: the translational semantics approach (Bryant et al, 2011) and the traditional

denotational semantics approach (Lester et al, 2011). This section investigates each

approach with respect to some criteria and recommends the most appropriate one.

� Translational Semantics Approach

This approach consists in mapping the abstract syntax of a modeling language into the

abstract syntax of an existing formal specification language with well-defined and

understood semantics (Bryant et al, 2011).

The main advantage of this approach is that the existing tools (i.e. model checker, test-

case generator, etc) of the target formal language may be reused (no need to build

specific tools for the DSML language). However, it is very challenging to correctly map

the constructs of the DSML into the constructs of the formal language, because there is

no direct mapping between the source and target languages (different level of

abstraction).

13

Another challenge is how to map the execution results (i.e. error messages, debugging

traces) back into the DSML in a meaningful manner, so that the domain expert who uses

the DSML understands these messages.

However, Translational semantics approach supports different styles of dynamic

semantics (i.e. denotational, operational and a mix-approach). The authors in (Wang et al,

2012) have proposed a formal denotational semantics model using Object-Z language for

the semantic web service ontology (WSMO). The work of (Hahn, 2008) uses the

combination of Object-Z and timed-refinement calculus languages to give a consistent

formal denotational and operational semantics model of a DSML for multiagent systems.

Furthermore, the author in (Rusu, 2011) has proposed a formal operational semantics

model using Maude language for a DSML language called xSPEM. Based on such a

semantics definition, simulation, reachability and model-checking analysis tools can be

generated.

� Traditional Denotational Semantics Approach

This approach consists in mapping each syntactic construct in a language directly into its

mathematical meaning by using mathematical objects (i.e., Algebra, Functions, Sets,

etc.). For instance, the effect of a sequence of statements separated by ‘;’ is the functional

composition of the effects of the individual statement (Lester et al, 2011).

The difference between this approach and translational semantics approach is that

translational semantics approach maps target language constructs into a high-level formal

constructs, classes, while this approach maps target language constructs into primitive

formal constructs, sets and functions. As the language being specified grows larger

(enhanced or evolved), it becomes very difficult to understand or extend these

specifications, because of bad structuring (i.e., the abstract syntax, static and dynamic

semantics are specified separately). Well, if the language is enhanced or evolved, the

modification to the already existing semantic will be very costly. Furthermore, the

traditional denotational semantics approach assumes that the modeler has a very strong

mathematical background (Dong, 2005).

14

2.3.4 A Comparison on Different Approaches based on Translational

Semantics

Translational semantics approach is considered as the most common way for defining the

semantics of modeling languages. Some considerable amount of research has already

been done based on the translational semantics approach. This section presents the main

approaches based on the translational semantics and investigates each of them according

to some criteria.

2.3.4.1 Different Approaches Based on Translational Semantics

There are two main different approaches based on translational semantics: the approach

that is based on a formal meta-modeling language (Wang et al, 2012), (Rusu, 2011), and

the approach using Semantic unit (semantic anchoring) (Chen et al, 2005). This section

investigates each approach with respect to its: modularity, applicability, reusability and

extendibility.

� Translational Semantics Based on a Formal Meta-modeling Language

This approach maps the syntactic construct of the modeling language being defined into a

formal meta-modeling language with well-defined and understood semantics. The

meaning is given according to the semantics of the formal meta-modeling language.

There are different languages that are used as meta-languages for defining the semantics

of other languages. For instance, Object-Z (OZ) is used as a meta-language to provide a

formal specification for all the aspects of a language (i.e. the abstract syntax, the static

and dynamic semantics) in a single unified framework, so that the semantics of a

language can be more consistently defined and revised as the language evolves (Wang et

al, 2012).

Object-Z is an extension of the Z formal specification language to accommodate object

orientation and scale with large specifications. Object-Z is used as a modeling language

and also as a meta-language. It has been used to define the denotational semantics for

textual languages (Wang et al, 2012), graphical languages (Hahn, 2008) and also for

languages that support mixed notations such as SOFL (Dong, 2005).

15

The main advantage of using OZ is modularity. That is, the abstract syntax, static

semantics and dynamic semantics of an individual construct are typically defined in one

object-z class. Not only does this help the readability of the semantics, but also if the

language is enhanced or extended, the corresponding semantic modifications can be

captured by minimal disruption of the existing semantics. Furthermore, it is also possible

with this approach to reuse parts of the semantics specification of one language to define

another (Wang et al, 2012).

On the other hand, Maude which is a high level language that supports modularity and

reusability is also used as a meta-language for defining the semantics of other languages.

Maude is an efficient rewriting engine that integrates functional programming with

rewriting logic and provides meta-language capabilities. Because of the facilities and the

capabilities of Maude, it is used as a notation and a semantic framework for specifying

the semantics of modeling languages. Furthermore, the semantics rules defined by Maude

can be modified easily without modifying the overall semantics rules (Rusu, 2011).

Maude has been used to specify the semantics for textual and graphical languages (Rivera

et al, 2009). The formal semantics of a DSML language are specified in Maude in terms

of rewrite rules. The Maude rewrite rules are based on rewriting-theory and are specified

in a textual form.

� Translational Semantics Based on Semantic Unit

This approach is also called semantic anchoring and it uses the well-known abstract state

machines (ASM) formalism to define the semantics. It consists of specifying

transformation rules between the abstract syntax of the main DSML language which was

defined in a UML/OCL-based metamodel and that of a selected Semantic unit (SU) that

has been defined in the Abstract State Machine Language (ASML) (Chen et al, 2005).

Semantic anchoring approach is more applicable for graphical languages in which their

abstract syntax and static semantics have been defined in UML/OCL-based metamodels.

One advantage of this approach is that the already existing semantic units (USs) can be

re-used to easily specify the semantics of other languages.

16

However, this is not always possible. For instance, in heterogeneous systems, the

semantics is not always fully captured by a predefined SU, if the semantics is specified

from scratch it is not only expensive but we lose the advantages of anchoring the

semantics to a set of common and well-established SUs. This is not only losing

reusability of previous efforts, but has negative consequences on our ability to relate

semantics of DSMLs to each other and to guide language designers to use well

understood and safe behavioral and interaction semantic as well.

Furthermore, semantic anchoring requires well understood and safe semantic units and it

is not clear how to specify the language semantic from scratch when these semantic units

do not yet exist (Gargantini et al, 2009). Also if the language is enhanced or extended, it

is required to re-apply the semantic anchoring process once more which seems a bit

costly.

2.3.5 Conclusion

Any language needs to be defined with different styles of dynamic semantics (i.e.,

denotational, operational, etc.). Each style of dynamic semantics has its applications. For

instance, we prefer the denotational approach when reasoning about the language, while

we may prefer the operational approach when implementing the language. Cloud# is a

new language and still evolving. It has no ready tools, so the first step in defining the

semantics of Cloud# language is to check if soundness of this language (i.e. has no

conceptual or designing errors). Denotational semantics provide an environment for

verification and validation.

This thesis is concerned with defining the formal denotational semantics of Cloud#

language. The denotational semantics approach with Object-Z language is used to define

the semantics of Cloud# language over the other approaches. In the next few paragraphs

we show our justification about this selection.

Object-Z approach is one of the most interesting approaches in translational semantics. It

provides a single, canonical and unambiguous specification of a language, which can be

beneficial to the semantics of that language in many different ways. It provides a formal

specification of all aspects of the language in a single unified framework, so that the

17

meaning of the language can be more consistently defined and revised as the language

evolves. That is, the abstract syntax, static and dynamic semantics of a language are

specified in the same Object-Z class. Not only does this help the readability of the

semantics, but if the language is enhanced, the corresponding semantics modifications

can be captured by minimal disruption to the existing semantics. It is also possible with

this approach to reuse parts of the semantics specification of one language to define

another (Wang et al, 2012).

On the other hand, the semantics of Object-Z itself is well studied. It has a fully abstract

semantics (Smith, 1995, a&b). The denotational semantics (Griffiths and Rose, 1995) and

axiomatic semantics (Smith, 1995, a&b) of Object-Z are closely related to Z standard

work (Woodcock and Brien, 1991). Also, Object-Z provides some useful constructs, such

as Class-union (Dong and Duke, 1993) which can define the polymorphic nature of

language constructs effectively. Furthermore, Object-Z also provides a range of tool (i.e.

model checker) which can be beneficial to the language being specified especially if that

language is new and still has no ready tools. Some considerable amounts of works have

been done based on the Object-Z approach such as the work in (Wang et al, 2012),

(Wang et al, 2007), (Hahn, 2008), (Dong, 2005), etc.

Object-Z has been integrated with many different formal languages (i.e. timed-refinement

calculus, Pi-Calculus, etc) which makes OZ promising to define all the aspects of a

language (i.e. abstract syntax, static, operational and denotational semantics) in a

consistent way. For instance, Object-Z has been integrated with timed-refinement

calculus to provide a consistent approach that combines different styles of dynamic

semantics (i.e. denotational and operational semantics) in a single unified framework

(Hahn, 2008).

18

Chapter Three: Method

3.1 Introduction

This chapter aims to describe the selected approach that has been adopted to conduct our

research work in details. So, in the first part of this chapter, we present the selected

approach in more details and finally, in the second part of this chapter, we present some

basic knowledge that is useful to understand the elaborated specifications.

3.2 Method Description

The Object-Z approach provides a formal specification for all the aspects of Cloud#

language in a single unified framework, so that the semantics of Cloud# language can be

more consistently defined and revised as the language evolves. Figure 3.1 below shows

the general approach of the framework.

Figure 3.1: The General Approach of the Framework

The language constructs are specified as different Object-Z classes. The syntax of an

individual language construct is captured by the attributes of an Object-Z class. The

predicates are defined as class invariants used to capture the static semantics of the

language. The class operations are used to define the denotational semantics of the

language.

19

In this approach, a model/program in a language is modeled as an object which consists

of a collection of objects. Different Object-Z classes are used to model the different

language constructs. For instance, if Expressions are modeled by an Object-Z class, say

Exp, and then any individual expression in a program is modeled as an instance of the

Object-Z class Exp. In the next section we will present a brief description on the basic

knowledge in Object-Z language that helps to understand the elaborated specifications.

A formal denotational semantics model for Cloud# language will be presented in this

thesis in an incremental way. That is, the abstract syntax of Cloud# will be presented in

Chapter 4, the static and dynamic semantics of Cloud# will be presented in Chapter 5 and

6 respectively. Because of the limitations in space, we only presented the formalization of

the main syntactic constructs in Cloud# language. However, the rest of the formal

description is available in the appendix at the end of this thesis.

3.3 Object-Z Background

Object-Z is an object-oriented formal specification language developed at the software

verification research center at the University of Queensland. It is founded on the simple

and easily understandable mathematical theory of typed sets. Object-Z is an extension of

the Z formal specification language to accommodate object orientation. The main reason

for this extension is to improve the clarity of large specifications through enhanced

structuring (Smith, 1999).

The essential extension to Z given by Object-Z is the class construct, which groups the

definition of a state schema and the definitions of its associated operations. A class is a

template of objects: for each object, its states are instances of the state schema of the

class and its individual state transitions conform to individual operations of the class. An

object is an instance of a class and evolves according to the definitions of its class (Smith

and Winter, 2012).

3.4 Aspects of Object-Z

In this section, some aspects of Object-Z that have been used in this thesis, such as class

union, and object containment will be explained briefly.

20

3.4.1 Class Union

Class union enables the definition of a set comprising the object identities of a collection

of classes. It is a more general form of polymorphism than that of the traditional

polymorphism, since the classes need not be related by inheritance nor have any

restrictions on their features. The expression constructs a set of object identities which is

the union of the sets of identities of its constituent classes. Like set union, class union is

commutative and associative.

Expression ::= Expression ∪ ∪ ∪ ∪ Expression

Each constituent expression of a class union is either a class union expression or a class

name. We have adopted class union in this thesis, because it is a more general form of

polymorphism. For more information about class union please refer to (Dong and Duke,

1993).

3.4.2 Referencing Local Objects

Typically, objects locally reference other objects in any object-oriented system. This

facilitates the sending and receiving of messages. However, such referencing could result

in a complex structure or in a cyclic pattern (i.e. inside an expression may be other

expressions, but an expression cannot be inside itself).

To solve this inconsistency, a condition must be added to ensure acyclic pattern. In

Object-Z, the subscript ‘ ’ is added to some attributes in a class to ensure this

condition implicitly (for more information on local objet reference read (Dong et al, 1997).

3.4.3 Secondary attributes

In Object-Z, there are two types of attributes that can be defined in a class, the primary

and secondary attributes (semantic variables). Delta is used to separate these kinds of

attributes. The values of the primary variables determine the state of an object. On the

other hand, the values of secondary variables depends on the primary variables values.

For instance, in the class below, the value of the secondary attribute sum depends on the

values of the primary attributes a1 and a2. This means that the secondary attribute sum

21

stores run-time information about the Plus object (i.e. its value). For more information

about secondary attributes read (Smith, 1999).

22

Chapter Four: An Abstract Syntax for Cloud#

4.1 Introduction

This chapter presents the abstract syntax of Cloud# language as a BNF based syntax and also as

an Object-Z metamodel based syntax. The first part of this chapter presents the main

modifications that have been made to the syntax of Cloud# to make this language ready for

formal semantics definition. The second part of this chapter presents an Object-Z metamodel

based syntax for Cloud#. And finally, a small conclusion is presented.

4.2 A BNF based Syntax for Cloud#

The abstract syntax of a language deals solely with the well-formedness rules that make

up legal expressions in a language without any consideration given to their meaning. The

meaning of a language is defined by mapping the syntactic domain into a semantic

domain. So the abstract syntax must be specified precisely prior to semantics since

meaning can be given only to correctly formed expressions in a language (Stuurman,

2010).

The first step in our research methodology is to make sure that the authors of Cloud#

language in (Liu and Zic, 2011) have completely described the Cloud# BNF abstract

syntax. This is done by studying the agreement or conformance between the abstract and

concrete syntax of Cloud# language (through example models). After this study, we

noticed that there are some missing parts in the syntax that must be explicitly defined so

that the language becomes ready for formal semantics definition. Some modifications and

additions have been proposed. Figure 4.1 below shows the only published version of

Cloud# abstract syntax.

23

Figure 4.1: The Abstract Syntax of Cloud#

This section presents the main modifications and additions that have been suggested to

the syntax of Cloud# language. It mainly discusses five points about this language: the

structure of computation unit (CUnit), the computation unit definition, the computation

tasks, the type definition, and also a typing system for Cloud# language. Finally, an

augmented and refined version of the abstract syntax is presented.

4.2.1 The Structure of Computation Unit (CUnit)

The current syntax of Cloud# defines the computation unit (CUnit) as a tuple of six

components (Liu and Zic, 2011). These components are defined outside the borders of

the CUnit, so it becomes difficult for the compiler to distinguish between the components

of different CUnits or to state where a specific CUnit begins or ends. In this section, we

propose a suitable structure for any computation unit that groups the declaration of CUnit

and its components in a single structure. That is, any CUnit contains a declaration which

identifies the signature of its components and a body which identifies the definitions of

these components. The production rules below ensure such requirements.

CUnit : := CUnitDec { TypeDefinitions Components CUnitDefinitions }

CUnitDec : := (ID, Comp,[CUnit1,..., CUnitn], HCallDefs, Conf ,Res)

Components : := Res ‘;’ Conf ‘;’ Processes HCallDefs

24

4.2.2 Computation Unit Definition

According to the concrete syntax of Cloud# language (Liu and Zic, 2011), any new

computation unit (CUnit) must be defined before we can use it. As shown below, there

are two different Computation Units with the identities vm1, and vm2 respectively.

If the modeler has the intention to use these Computation Units in other places (i.e. use

them as sub-units in other Computation Units), then he must define them in advance as

follows:

After defining Computation Units, now it is possible for the modeler to use them in other

places as follows:

We have introduced a new BNF Production Rule for defining Computation Units as

shown below:

4.2.3 Computation Tasks (Comp)

The current abstract syntax of Cloud# language defines the computation tasks as an

action sequence or a parallel composition of different action sequences (Liu and Zic,

2011). In fact, such description is very abstract and doesn’t perfectly match of what stated

in the available concrete syntax. In the concrete syntax of Cloud#, a computation task can

be a noop action to indicate that there are no computations, or it can be a parallel

composition of different processes. On the other hand, A process can be atomic (i.e. has a

unique identifier and is described by a parallel composition of different action sequences)

or it can be composite (i.e. has a unique identifier and is described by a parallel

composition of different processes). The following production rules ensure these

requirements.

CUnitDef : := ID ‘=’ CUnit

25

4.2.4 Type Definition

Cloud# language gives the ability for its users to introduce new data-types depending on

the already existing data-types. This allows modeling more complex structures and

reusing these structures throughout Cloud# models. The type definition consists of an

identity (id) and a specific type. Two production rules have been added to the abstract

syntax of Cloud# language for type definition as follows:

4.2.5 Typing System for Cloud# Language

No clear typing system appears in the current syntax of Cloud# language. In this section

we suggest a clear typing system which includes all the required data-types. These data-

types should be available to ensure well-typing models.

Data-types can be classified as follows:

� Pre-defined types: integer, string and Boolean.

� User-defined types: Base, Tuple, Record and List.

� Void type: this type is used for the operations that don’t return values (i.e. Write

() is a hypercall that returns nothing).

The BNF production rules bellow present the main types that should be available in

Cloud#.

Comp : := noop | ProcessExp

ProcessExp : := ProcessId | ProcessId ’|’ ProcessExp

Process : := ProcessId ‘=‘ ProcessDescription

ProcessDescription : := ProcBody | ProcessExp

ProcBody : := ‘{‘ Actions | Actions‘|’ProcBody ‘}‘

TypeDefinitions : := ϵ |TypeDef ‘; ‘ TypeDefinitions

TypeDef : := ID ‘=’ Type

26

Note: Base-Type is a user-defined type and it can be anything the user defines (i.e. it can

be IPAddress to mean the type of IP address).

4.2.6 An augmented and refined Version of Cloud# Abstract Syntax

T : := PreDefType | UserDefType

PreDefType : := integer | string | boolean| VoidType

UserDefType : := BaseType | ’(‘ T1 ‘,’ ... ‘,’ Tn ’)’ | ‘[‘ T ‘]’ | ‘{‘ ID1 ’=’ T1 ‘,’… ‘,’ IDn ‘=’ Tn ’}’

CUnit : := CUnitDec { TypeDefinitions Components CUnitDefinitions }

CUnitDec : := (ID, Comp,[CUnit1,..., CUnitn], HCallDefs, Conf ,Res)

TypeDefinitions : := ϵ |TypeDef ‘; ‘ TypeDefinitions

TypeDef : := ID ‘=’ Type

Components : := Res ‘;’ Conf ‘;’ Processes HCallDefs

Conf,Res : := ’{‘ ID1 ‘=’ T1 ‘,’ ... ’,’ IDn ‘=’ Tn ‘}’

Processes : := ϵ | Process Processes

HcallDefs : := ID ‘=’ ‘{‘ HCall1 ‘,’ ... ‘,’ HCalln ‘}’

CUnitDefinitions : := ϵ | ID ‘=’ CUnit ‘;’ CUnitDefinitions

Comp : := noop | ProcessExp

ProcessExp : := ProcessId | ProcessId ’|’ ProcessExp

Process : := ProcessId ‘=‘ ProcessDescription

ProcessDescription : := ProcBody | ProcessExp

ProcBody : := ‘{‘ Actions | Actions‘|’ProcBody ‘}‘

Lbl , BaseType ,Var : := ID

27

Actions : := seqAction

seqAction : := ϵ| A ‘;‘ seqAction

A : := noop | Var ‘:=‘ SymbolicVal | lbl ‘:‘ A | goto lbl | E ‘⇒⇒⇒⇒’ A | if E then ‘{‘ Actions ‘}‘

else ‘{‘ Actions ‘}‘ | for Var in E do ‘{‘ Actions ‘}‘ | return E ‘;‘ | ‘⟦⟦⟦⟦‘ CUnit ‘⟦⟦⟦⟦‘ |

HCallStmt | ‘Update(‘ E ’,’ E' ‘,’ E" ‘)’ | ‘append(‘ E ‘,‘ E' ‘)‘

SymbolicVal : := Expression | HCallStmt

HCallStmt : := ID ‘(‘ Exp1 ‘,’ ... ‘,’ Expn ‘)’

E : := Var | Con | self | UnaryExp | BinaryExp | DotExp

UnaryExp : := ‘length(‘ E ‘)’ | ‘head(‘ E ‘)‘

BinaryExp : := E1 OP E2 | ‘{‘ E ’}’ E' | E '[‘ i ‘]‘ | ‘LookUP(‘ E ‘,’ E' ‘)’

OP : := > | = | < | + | -

DotExpression : := ID ‘.’ ID | ID ‘.’ DotExpression

HCall : := ID ‘(‘ Var1 ‘:’ T1 ‘,’ ... ‘,’ Varn ‘:’ Tn ’) :’ T ‘=’ { Actions }

T : := PreDefType | UserDefType

PreDefType : := integer | string | boolean| VoidType

UserDefType : := BaseType | ’(‘ T1 ‘,’ ... ‘,’ Tn ’)’ | ‘[‘ T ‘]’ | ‘{‘ ID1 ’=’ T1 ‘,’… ‘,’ IDn ‘=’ Tn ’}’

Con : := String of letters or digits

ID : := Alphabet | Alphabet ID

Alphabet : := 'a' | 'b' | 'c'|...|'z'

28

4.3 An Object-Z Metamodel based Syntax for Cloud#

As mentioned in chapter 3, the Object-Z approach which is used for defining the formal

semantics of Cloud# language is based on translational semantics. That is, the abstract

syntax of Cloud# must be translated into the abstract syntax of Object-Z language prior

semantics definition. So, every Cloud# language construct is modeled as a class in

Object-Z language. The syntax of each individual construct is captured by the attributes

of its class. The result will be an Object-Z metamodel based syntax for Cloud# language.

This part describes the formalization of the abstract syntax of individual constructs in

Cloud# language. The Abstract syntax for Cloud# Computation unit with its components,

Actions, and expressions will be described respectively.

4.3.1 Computation Unit (CUnit)

 Computation Unit (CUnit) is the main syntactic construct in Cloud# language. It is

dedicated to model clouds, virtual machines or operating systems, etc. A computation

unit is represented with a declaration and the definitions of CUnit components (i.e. type

definitions, processes, hypercall definitions, and CUnits definitions). These components

are all modeled as attributes in an Object-Z class named CUnit as follows:

4.3.1.1 Computation Unit Declaration

The declaration of CUnit is represented as a Tuple of six components: a unique identifier

(id), a computation task (Comp), a list of sub computation units (Units), a Hypercall

definition (HcallDefs), a configuration part (Configuration), and a resource part

(Resource). The declaration can be modeled as follows:

29

4.3.1.2 Type Definition

Syntactically, the type definition consists of an identity (id) and a specific type. This type

can be a simple type (i.e. Boolean, integer, etc) or a composite type. It can be modeled as

follows:

4.3.1.3 Computation unit definition

Syntactically, the Computation Unit definition consists of an identity (id) and a specific

CUnit. It can be modeled in an Object-Z class named CUnitDef as follows:

4.3.1.4 Hypercall Definition

Hypercall definition is defined with an identify (id) and as a set of Hypercalls which are

used by the sub-CUnits to handle privileged operations. It can be modeled as follows:

30

4.3.1.5 Hypercall

A hypercall in Cloud# is a syntactic construct like a procedure in Pascal. Syntactically, a

hypercall consists of an identity (id), a formal parameter list (formalpar), a body (body),

and a return type (rType). It can be modeled as follows:

4.3.1.6 Computation Tasks

A computation task indicates the computations that a CUnit intends to perform, for

instance, virtualization of resources and scheduling of computation tasks. It can be

modeled in a class union as a noop action or a process expression.

4.3.1.7 Process Expression

A Process Expression represents a set of Process-identities which refer to some processes

in Cloud model. It is defined as a total function that maps every process identity in that

process expression to a specific process. It can be modeled as follows:

31

4.3.1.8 Process

A process is defined with an identifier (id) and a process description (processDesc). It

can be modeled as follows:

4.3.1.9 Process Description

Syntactically, a process description can be defined as a body (i.e. a parallel composition

of different action sequences) or a process Expression (i.e. a parallel composition of

different processes) and it is modeled in a class union as follows:

4.3.1.10 Process Body

Syntactically, the Process Body consists of a parallel composition of different action

sequences. It can be modeled as follows:

4.3.2 Cloud# Actions

Cloud# action can be a simple noop action, an assignment-statement, an if-statement, a

for-statement, an event-statement, a unit control-switch statement, an HCall-statement, a

return-statement, a label-statement, an Append action, and an Update action or a goto-

statement. This is captured by the class-union as follows:

32

4.3.2.1 Action Sequence

Action sequence represents a set of actions that are executing in a sequential manner.

Syntactically, an action sequence is defined as a sequence of different actions. It can be

modeled as follows:

4.3.2.2 noop Action

Syntactically, a noop action is defined as an Object-Z class with empty state schema as

follows:

4.3.2.3 Event Statement (E ⇒ A)

Syntactically, an event statement is defined as an Object-Z class that has two attributes

(expression and action) as follows:

33

4.3.2.4 Unit Control-Switch Statement (⟦CUnit⟦)

Syntactically, a Unit Control-Switch Statement is defined as an Object-Z class that has

one attribute of a CUnit type as follows:

4.3.2.5 HCall Statement

Syntactically, HCall Statement is like a procedure call, it consists of a hypercall (hcall)

and an actual parameter list (actualpar). It can be modeled as follows:

4.3.2.6 Append Action

Syntactically, the Append Action is described below in the Object-Z class named

Append. It includes two sub- expressions (e1 and e2).

4.3.2.7 Update Action

Syntactically, the Update Action is described below in the Object-Z class named Update.

It includes three sub- expressions (e1, e2 and e3).

34

4.3.3 Cloud# Expressions

In this section, Object-Z is used to specify the abstract syntax of expressions. Each

expression is modeled as an object (Wang et al, 2012): a binary (unary) expression is

modeled as an object with two (one) sub expressions. An expression can be a constant,

variable, self-reference, unary expression, binary expression, or dot expression. On the

other hand, constant can be any value except nil. Expressions can be modeled as follows:

4.3.3.1 Unary Expressions

Cloud# language includes two unary expressions: the Head and length expressions.

Unary Expression can be modeled as Class Union as follows:

� Head Expression

Syntactically, the Head expression is shown below in the Object-Z class named Head. It

includes one sub expression (e).

35

� Length Expression

Syntactically, the length expression is shown below in the Object-Z class named Length.

It includes one sub expression (e).

4.3.3.2 Binary Expressions

Cloud# language includes three binary expressions: arithmetic expression which includes

arithmetic and logical operations (i.e. >, <, =, +, -), ReturnAt expression (E[i]) and

LookUp expression. Binary expressions and arithmetic expressions can be modeled using

class union as follows:

� ReturnAt expression (E[i])

Syntactically, the ReturnAt expression is described below in the Object-Z class named

ReturnAt. It includes two sub expressions (e1 and e2).

� LookUp Expression

Syntactically, the LookUp expression is described below in the Object-Z class named

LookUp. It includes two sub- expressions: e1 which is used to locate the required

element and a list e2.

36

4.4 Conclusion

In the first part of this chapter, we have presented the main modifications that have been

done to the syntax of Cloud# language. These modifications made Cloud# language

ready for formal semantics definition. In the second part, we built an Object-Z based

metamodel for Cloud# language by translating its abstract syntax into the abstract syntax

of Object-Z Language. Because of the limitations in space, we only presented the

formalization of the main syntactic constructs in Cloud# language. However, the rest of

the formal description is available in the appendix at the end of this thesis.

37

Chapter Five: A Static Semantics Model for Cloud#

5.1 Introduction

This chapter investigates the formalization of the static semantics for individual

constructs in Cloud# language. The first part of this chapter presents how the Object-Z

approach is used to give formal static semantics for Cloud# syntactic constructs. The

static semantics will be added to the Cloud# metamodel that has been accomplished in

the previous chapter. The last part of this chapter presents a small conclusion.

5.2 Formal Static Semantics Definition

Static semantics definition is the first step in the semantic analysis which manages the

identifiers that are defined in the source model. It aims at detecting static semantic errors

such as the redefinition of an identifier in the same scope, as well as associating

identifiers with appropriate types or values. Furthermore, static semantics also manages

the types of all phrases in the language. It detects type-mismatch errors such as

assignment to a constant value and associates syntactically well-formed phrases with

appropriate phrase types (Fisher, 2010).

 In the Object-Z approach, the static semantics of Cloud# syntactic constructs are

captured by class predicates or invariants. Static semantics are based solely on the

abstract syntax. That is, the static semantics will be added to the Cloud# metamodel that

has been accomplished in the previous chapter.

This section describes the formalization of the static semantics of individual constructs in

Cloud# language. The static semantics for Cloud# Computation unit with its components,

Actions, and expressions will be described respectively.

5.2.1 Computation Unit (CUnit)

 The static semantics for a CUnit can be defined as follows:

[1] Every two different defined types in a CUnit must have different identities.

38

[2] Every two different defined CUnits within the borders of the same parent CUnit

must have different identities.

[3] The number of defined types, the number of defined CUnits and the number of

processes equals or more than zero. On the other hand, the number of hypercall

definitions is at most equal to one.

5.2.1.1 Computation Unit Declaration

The static semantics for a Computation Unit Declaration can be defined as follows:

[1] Every two different sub-units must have different identities.

[2] The number of sub-units within the same parent CUnit is equal or more than zero.

5.2.1.2 Hypercall Definition

The static semantics for a hypercall definition are defined as follows:

[1] The number of Hypercalls within the same definition is equal or more than zero.

39

5.2.1.3 Hypercall

The static semantics for a hypercall are defined as follows:

[1] If the return-type of an HCall doesn’t belong to void type, then there is a return-

statement (s) such that s belongs to the body (body) of that HCall.

[2] For all return-statements that belong to the body (body) of an HCall, their types

should match the return-type of that HCall.

Please refer to the appendix for more information about the function (type_of) and the

classes (Variable, Type, and ReturnStmt).

5.2.1.4 Process Expression

The static semantics for a Process Expression are defined as follows:

[1] Every two ProcessIds that appear in the Process Expression must be different.

[2] There exists a CUnit such that all the referenced-processes in the Process

Expression belong to that CUnit’ processes.

40

5.2.1.5 Process Body

The static semantics for a process body are defined as follows:

[1] The number of action sequences within the same body of a process is equal or

more than one.

[2] The return statement is not allowed to be in the body of a process (process does

not return values).

[3] The first action in the process body belongs to Event Statement, and the last

action belongs to Goto statement.

5.2.2 Cloud# Actions

This section presents the formalization of the static semantics for Cloud# actions.

5.2.2.1 Action Sequence

The static semantics for an Action Sequence are defined as follows:

[1] The number of actions should be equal or more than one.

41

5.2.2.2 Event Statement (E ⇒ A)

The static semantics for an Event Statement are defined as follows:

[1] The value of the expression (eExp) should be of a Boolean Type.

5.2.2.3 Unit Control-Switch Statement (⟦CUnit⟦)

The static semantics for a Unit Control-Switch Statement are defined as follows:

[1] The CUnit that appears in Unit Control-Switch Statement must be one of the sub-

units of an existing computation unit (CUnit).

5.2.2.4 HCall Statement

The static semantics for an HCall statement are defined as follows:

42

[1] The number of actual parameters in the HCall statement should be equal to the

number of parameters in the HCall header.

[2] The type of each parameter in the HCall statement should be equal to the type of

its correspondence in the HCall header.

5.2.2.5 Append Action

The static semantics for an Append action are defined as follows:

[1] The type of the expression (e1) value should be of a list type.

[2] The type of the expression (e2) value is the same type of the elements in the list

(e1).

5.2.2.6 Update Action

The static semantics for an Update action are defined as follows:

[1] The value of e1 can’t be nil.

[2] The value of e3 can’t be nil.

[3] The value of e2 should be of a list type.

[4] The elements in e2 should be of a Tuple type. And for each Tuple in e2, the first

and the second elements should have the same types of the values of e1 and e3

respectively.

43

5.2.3 Cloud# Expressions

This section presents the formalization of the static semantics for Cloud# expressions.

5.2.3.1 Head Expression

The static semantics of a Head expression are defined as follows:

[1] The type of the expression (e) value should be of a list type.

5.2.3.2 Length Expression

The static semantics of a Length expression are defined as follows:

[1] The type of the expression (e) value should be of a list type.

44

5.2.3.3 ReturnAt expression (E[i])

The static semantics for a ReturnAt expression are defined as follows:

[1] The value of e1 should be of a list type.

[2] The value of e2 should be of an integer type.

[3] The values of e2 should be within e1 domain (i.e. ranging from 1 to the number of

element in the list e1) to avoid referencing errors.

5.2.3.4 LookUp Expression

The static semantics for a LookUp expression are defined as follows:

[1] The value of e2 should be of a list type.

[2] The type of the elements in the list e2 should be of a Tuple type.

[3] The type of e1 should be of the same type of the first element in the tuples that

located in the range of the list e2.

45

5.3 Conclusion

In this chapter, we have presented formal static semantics of individual constructs in

Cloud# language. These static semantics have been added to the metamodel of Cloud#

language as invariants or predicates in the Object-Z class for each Cloud# syntactic

construct. Some of these constructs have no static semantics so they are not presented in

this chapter. On the other hand, Because of the limitations in space, we only presented the

formalization of the main syntactic constructs in Cloud# language. However, the rest of

the formal description is available in the appendix at the end of this thesis.

46

Chapter Six: A Denotational Semantics Model for Cloud#

6.1 Introduction

This chapter investigates the formalization of the denotational semantics for individual

constructs in Cloud# language. The first part of this chapter presents how the Object-Z

approach is used to give formal denotational semantics for Cloud# syntactic constructs.

The denotational semantics will be added to the Cloud# metamodel as class operations.

The last part of this chapter presents a small conclusion.

6.2 Formal Denotational Semantics Definition

The denotational semantics method aims at mapping a language construct directly to its

meaning, called its denotation. The denotation is usually a mathematical function. A

denotational definition is more abstract than an operational definition, for it does not

specify computation steps. Its high-level and modular structure makes it especially useful

to language designers and users, because the individual parts of a language can be studied

without having to examine the entire definition (Schmidt, 2012).

The denotational semantics of Cloud# language are specified in terms of the operations of

a hypothetical machine. The hypothetical machine is composed of: an event queue

holding incoming events, an event dispatcher mechanism, and an event processor which

processes dispatched event instances according to the semantics of Cloud# language. In

the Object-Z approach, the denotational semantics of Cloud# syntactic constructs are

captured by class operations.

This section describes the formalization of the denotational semantics for individual

constructs in Cloud# language. The denotational semantics for Cloud# Computation unit

with its components, Actions, and expressions will be described respectively.

47

6.2.1 Computation Unit (CUnit)

At run-time, a CUnit can have different states (i.e. blocked, ready, running and finished

state) as shown in the figure below. Initially, any CUnit is in a ready state. When a CUnit

is scheduled to execute its computation tasks, it takes the control and starts the execution.

This time, its state must be changed from ready to running state.

Furthermore, there are two reasons that a CUnit returns the control and stops the

execution. The first reason is because that this CUnit has already finished the execution

of its computation tasks. So, its state must be changed to the finished state indicating the

completion of computations. The second reason is that this CUnit is waiting for I/O event

or needs to perform a privileged operation and this is usually done by Hypercalls. This

time, its state must be changed to a blocked state. However, at any given time, only one

CUnit is allowed to be in the running state.

Figure 6.1: The State-transition of a Computation Unit at run-time.

The denotational semantics for a CUnit can be defined by introducing one semantic

variable and five operations. The semantic variable (Status) is modeled as a free type in

Object-Z language to indicate the different states of a given CUnit as follows:

48

[1] A CUnit finishes its execution and its state changes from running to finished state,

if and only if all of its processes are finished and blocked. Also, all of its sub-units

must be in the finished state.

[2] A CUnit is considered to be blocked if and only if all of its processes and all of its

sub-units are blocked.

[3] A CUnit is considered to be running if and only if one of its processes or one of

its sub-units is running.

[4] The Number of running CUnits at any given time is equal to one.

The following Object-Z operations show how the state is changed for a given CUnit at

run-time:

[1] Initially, any CUnit is in a ready state.

[2] Acquire operation: this is only applied when the CUnit starts its execution

normally from the beginning. Its state changes normally from ready to running.

49

[3] Release after finishing the execution operation (ReleaseF): this operation is only

applied when the CUnit finishes its execution normally. Its state changes from

running to finished state.

[4] Acquire after being blocked operation (AcquireB): this operation is only applied

when the control gets back to a CUnit after being blocked. Its state changes from

blocked to ready.

[5] Resume operation (Resume): when the control gets back to a CUnit after being

blocked, this operation is applied so that the CUnit resumes its execution. So, its

state changes from ready to running.

[6] Release for executing a privileged operation (ReleaseB): this makes a CUnit to

release the control to a high-privileged CUnit. Its state changes from running to

blocked state.

6.2.1.1 Hypercall

A hypercall is a way for the low-privileged computation units (sub-units) to make the high-

privileged computation unit (CUnit) to handle privileged operations. The denotational semantics

for a hypercall are defined simply by executing the body of the HCall as follows:

50

[1] Execute operation: it executes the actions in the body of an HCall sequentially.

However, if some of these actions belong to a Return statement, it executes this

action and terminates the execution of that HCall.

.

6.2.1.2 Interleaving Concurrency

There are two different kinds of concurrency: non-interleaving and interleaving

concurrency. The non-interleaving concurrency assumes that the execution of an action is

non-interruptible. So the modeling of non-interleaving concurrency is very simple and

requires no new concepts. On the other hand, modeling interleaving concurrency is more

complicated. For instance, when two assignment-statements evaluate concurrently on the

same store, the result is a set of possible output stores as shown in the example below.

Example: Consider ⟦(X := X+2 ; X := X-1) || (X := 3)⟦, where || is a parallel operator

with interleaving concurrency. Even if we consider that each assignment is atomic, there

will be a set of possible interleaving of the statements that lead to different output store as

follows.

X:=X+2; X:=X-1; X:=3
X:=X+2; X:=3; X:=X-1
X:=3; X:=X+2; X:=X-1

51

This means that we need a form of denotational semantics for representing the

operational aspects of concurrency in the semantics. In this thesis we follow the

resumption denotational semantics that presented in (Schmidt, 1997). The resumption

semantics approach assumes that each action or command is a sequence of steps called

Evaluation Steps. Each action or command in a language has different evaluation steps,

For example, the evaluation steps for the simple addition ⟦ X + Y⟦ involves the

following steps:

� Evaluate the left operand.

� Evaluate the right operand.

� Add.

Consider A = ⟦⟦⟦⟦a1, a2, …, an⟦⟦⟦⟦,,,, B = ⟦⟦⟦⟦b1, b2,…, bn⟦⟦⟦⟦,,,, and P= A; B, where A and

B are two different actions within the process P. The action A is supposed to be executed

before the action B. In interleaving concurrency, there are two conditions that must hold

for legal execution of a process:

1. The sequence of actions within the same process must be preserved. That is, the

action A must be executed before the action B.

2. The sequence of evaluation steps with a single action must be preserved. That is,

in the action A, for instance, the execution of its evaluation steps proceeds as

follows: a1; a2; a3…. etc.

In this section we show how the interleaving concurrency can be applied to Cloud#

language.

� Cloud# Action with Interleaving Concurrency

As mentioned above, every action is composed of a sequence of evaluation steps. So, we

have introduced a new class named BaseAction in which all the actions in Cloud#

language are inherited from. This class has one attribute named steps which indicates a

sequence of evaluation steps for an action. However, the formalization of the class

52

EvaluationStep is not mentioned in this thesis, because we assume that the number of

evaluation steps for a specific action depends on the machine that executes such action.

The denotational semantics for the class BaseAction are defined by introducing one

semantic variable (executed) and one operation (Execute) as follows:

[1] An evaluation step can be executed, if and only if its precedent evaluation step in

the same action is executed.

[2] An action is considered to be executed, if and only if all of its evaluation steps

have been executed.

[3] The Execute operation executes the evaluation steps for a specific action in a

sequential manner.

� Action Sequence

The denotational semantics for an action sequence in Cloud# can be defined by

introducing two semantics variables and five operations. The semantic variable

(executed) refers to the completion of execution for an action sequence, while the

semantics variable (status) refers to the different states (i.e. blocked, running, etc.) of an

action sequence at run-time. The operations show how the state for an action sequence is

changed as follows:

53

[1] An action can be executed, if and only if its precedent action in the same action

sequence is executed.

[2] An action sequence is considered to be executed, if and only if all of its actions

have been executed.

[3] Initially, an action sequence is in a ready state and not executed.

[4] The Block operation blocks the execution of an action sequence and changes its

state to blocked state.

[5] The UnBlock operation changes the state of an action sequence to a ready state

and makes it ready for execution.

[6] The Resume operation changes the state of an action sequence to the running

state and makes it start execution.

[7] The Execute operation executes the actions within an action sequence in a

sequential manner as the state of an action sequence is not blocked. On the other

hand, if the action sequence reaches to the last action, its state is changed to the

finished state.

54

� Process Expression

The denotational semantics for a process expression are defined by one operation

(Execute) as follows:

[1] The Execute-operation executes all processes that are referred in the ProcessExp

concurrently.

� Process

The denotational semantics for a Process are defined by introducing one semantic

variable (status) and one operation (Execute). The semantic variable refers to the

different states (i.e. running, blocked, etc) of a process at run-time as follows:

[1] A process is considered to be finished, when all of its action sequences are

finished.

[2] A process is considered to be blocked, when all of its action sequences are

blocked.

[3] A process is considered to be running, if one of its action sequencing is running.

[4] At any given time, only one process is allowed to be in the running state.

[5] The Execute-operation executes the body of a process.

55

� Process Body

The denotational semantics for a process body are defined by one operation (Execute)

as follows:

[1] The Execute-operation executes all action sequences that present in a process body

concurrently.

6.2.2 Cloud# Actions

This section investigates the formalization of the denotational semantics for Cloud# actions. The

meaning of an action can be modeled as a store transformation which is captured in class

operations.

56

6.2.2.1 Unit Control-Switch Statement (⟦CUnit⟦)

Cloud# language provides two directions of control and data transfer (i.e. from the high-

privileged computation units to the low-privileged computation units and vice versa). If

the high-privileged computation unit wishes to run a low-privileged computation unit, the

unit control-switch statement is used. That is, the high-privileged computation unit

releases the control to the low-privileged computation unit which takes the control and

starts execution of its computation tasks. The low-privileged computation unit only

returns the control if it has already finished the execution of its computation tasks or if it

is blocked (i.e. needs to perform a privileged operation and this is usually done with

Hypercalls).

In the dynamic semantics of the Unit Control-Switch statement, the control can be

returned back to the high-privileged computation unit only and only if the low-privileged

computation unit finishes the execution of its computation tasks. We do not care about

returning the control when the low-privileged computation unit is blocked, because this

can be handled in the Hypercall statement. The denotational semantics for Unit Control-

Switch action can be described by introducing one semantic variable and four operations.

The semantic variable refers to a high-privileged CUnit that are executing the Unit

Control-Switch statement. The Object-Z operations are described as follows:

[1] In the TransferControl operation, the requester which is a high-privileged CUnit

blocks itself and releases the control. On the other hand, the requested low-

privileged CUnit acquires the control and starts the execution of its computation

tasks from the beginning.

[2] In the ReturnControl operation, the requested CUnit releases the control after

finishing its computation tasks and the requester CUnit acquires the control after

being blocked and resumes its execution.

[3] In the ExecuteComputation, the requested CUnit keeps executing its

computation tasks until the execution is finished and then it releases the control

back to the high-privileged CUnit.

[4] The Execute operation is used to preserve the sequence of operations.

57

6.2.2.2 HCall Statement

HCall statement is used by a low-privileged CUnit for asking the high-privileged one to

handle a privileged operation. The denotational semantics for an HCall statement are

defined by introducing two semantics variables (caller and callee) and four operations.

The semantics variables refer to two different Computation Units. The caller refers to the

computation unit that wants to perform a privileged operation, while a callee refers to a

high-privileged computation unit that supposed to perform such operation. The Object-Z

operations are described as follows:

[1] TransferControl operation: The caller blocks itself and transfer the control to the

callee.

[2] ValSubs operation: the values of the parameters in the HCall statement are

assigned to the formal parameters in the HCall.

[3] ReturnControl operation: the callee releases the control after executing the

HCall. This time, the caller acquires the control again and resumes its execution.

[4] Execute operation: it is used for executing the HCall and sequencing the

operations.

58

6.2.2.3 Event Statement (E ⇒ A)

The Event Statement (E ⇒ A) means that if the expression E evaluates to true, then the

action A proceeded to execute; otherwise, the action is blocked until E becomes true.

Event statement is useful for modeling event-driven systems. For instance, event

statement is used to model a network driver, which responds only to the arrival of new

network packets. The denotational semantics for an Event Statement can be defined by

introducing one semantic variable (container) and one operation (Execute). The

semantic variable refers to the container in which the event statement is located. The

operation is described as follows.

[1] Execute operation: if the value of the expression (eExp) evaluates to true and the

container is not blocked, then the action proceeds to execute; otherwise the

container blocks itself and waits for an event. Once the value of eExp becomes

true, the container unblocks itself, resumes its execution and executes the action.

59

6.2.2.4 Append Action

Append (e1, e2) is used to add the element (e2) on the top of the list (e1). The

denotational semantics for an Append Action are defined by introducing one operation

(Execute) as follows:

[1] The Execute-operation adds the value of the expression (e2) to the top of the list (e1).

Please refer to the appendix in the end of this thesis to see how the value is added or

removed from a list value.

6.2.2.5 Update Action

Let e1, e3 are expressions and e2 is a list that contains elements of a tuple type. Update

(e1, e2, e3) is used to change the second element of a tuple to e3, if the first element of

60

that tuple equals to e1. The denotational semantics for an Update Action are defined by

introducing one operation (Execute) as follows:

[1] The Execute-operation changes the value of the second element in a Tuple to e3, if

the value of the first element in that Tuple equals to the value of the expression (e1).

Please refer to the appendix in the end of this thesis to see how the value of a Tuple is

changed.

6.2.2.6 noop Action

The noop action does nothing when executed and is usually used in the computation task

component when it has nothing to do. The denotational semantics for the noop action

are defined by introducing one operation (Execute) as follows:

[1] The Execute-operation does nothing when executed.

61

6.2.3 Cloud# Expressions

This section presents the denotational semantics for Cloud# Expressions. The

denotational semantics for an expression are defined by the final value of that expression.

6.2.3.1 Head Expression

Head expression evaluates to the value of the first element in a list and removes the first

element from that list. The denotational semantics for the Head expression are specified

by introducing one variable (V) and two operations as follows:

[1] The variable (V) is equal to the value of the first element in the list.

[2] The Assign operation changes the value (V) of the Head Expression.

[3] The SetVal operation assigns the value of the first element in the list (e) to the

variable (V) and removes that element from the list.

62

6.2.3.2 Length Expression

Length expression evaluates to the number of elements in a list. The denotational

semantics for Length expression are defined by introducing one variable (V) as follows:

[1] The variable (V) equals to the number of elements in the list (e).

6.2.3.3 ReturnAt expression (E[i])

ReturnAt expression evaluates to the value of the ith element in a list. The denotational

semantics for ReturnAt expression are specified by introducing one variable (V) as

follows:

[1] The variable (V) equals to the value of the element in the list (e1) which is

indexed by the value of e2.

63

6.2.3.4 LookUp Expression

Let e1 is an expression and e2 is a list that contains elements of a tuple type. LookUp

(e1, e2) expression evaluates to the second element in a tuple, if the first element of that

tuple equals to e1. The denotational semantics of LookUp expression are specified by

introducing one variable (V) as follows:

[1] The variable (V) equals to the value of the second element in a Tuple, if the value

of e1 is equal to the value of the first element in that Tuple.

6.3 Conclusion

In this chapter, we have presented formal denotational semantics for individual constructs

in Cloud# language. These semantics have been added to the metamodel of Cloud#

language as class operations. Because of the limitations in space, we only presented the

formalization of the main syntactic constructs in Cloud# language. However, the rest of

the formal description is available in the appendix at the end of this thesis.

64

Chapter Seven: Evaluation

7.1 Introduction

This chapter presents an evaluation for the work that has been done in this thesis. It

investigates the consistency of Cloud# language. The first part presents a background on

the usual techniques for verification and validation that can be done depending on the

denotational semantics of a language. The second part presents a case study which

illustrates how to convert Cloud# models to OZ specifications. The consistency of

Cloud# language is discussed in the last part of this chapter.

7.2 Background on the Formal Verification and Validation Techniques

Formal methods provide precise ways to specify modeling languages using formal

notations with a well-defined syntax and precise semantics. These notations have a set of

associated tools and inference rules which enable automated analysis, verification and

validation (Coppit, 2003).

There are two main techniques for verification and validation that can be done depending

on the denotational semantics of a language: the consistency checking and proving

interesting properties about language models. This section investigates each technique

according to its usage and how it is handled.

7.2.1 Checking the consistency of a language

One of the most important issues that must be proved about any language is its

consistency (Coppit, 2003). The consistency checking for any language mainly involves

two steps. The first step is to ensure that the formal semantics definition truly expresses

the right semantics for the language. This type of consistency checking requires working

with the language designers, because they are the only ones who know the actual

meaning of the available informal semantics definition. The second step is to ensure the

soundness of the language by checking the agreement between the formal semantics

definition and the available concrete syntax (i.e. type-checking). This is usually done

using the current existing tools for formal validation (i.e. Z/EVES, CZT, etc). For

instance, the authors in (Wang et al, 2012) applied an Object-Z type checker to check the

65

consistency of the WSMO language. They used Amazon Associates Web service model

(A2S) as a case study. Amazon model was first transformed to Object-Z language and it

was loaded with the formal semantics definition to an Object-Z type-checker to ensure if

the language sound. Amazon has been chosen because it is one of the largest models that

have been developed based on this language. In other words, a selected model must be

large enough so that it can cover the most aspects of the language, otherwise the checking

results won’t be accurate. In this thesis, we use the same approach that is used for WSMO

to check the consistency of Cloud# language.

7.2.2 Proving some important properties about language models

The second step after checking the consistency of a language is to reason about some

interesting properties that should be exist in the language models (i.e. liveness properties,

safety properties, etc.). This is usually done using mathematical proof techniques (i.e.

based on temporal logic). It mainly involves two steps: the first step is to state or write

the desired property in an informal way (i.e. natural language) and then it is translated to

a logical expression. Once the property is converted to a logical expression, the second

step starts by applying one of the mathematical proof techniques (i.e. proof by induction)

to check if such property holds or not. For instance, the authors in (Taguchi and Ciobanu,

2004) used proof by induction to prove the liveness properties for concurrent Z

specifications.

7.3 A Case Study—Cloud# Basic Model

In this section, we use the Cloud# basic model that appears in (Liu and Zic, 2011) as a

case study to illustrate how it can be represented in Object-Z specifications. This model

shows a cloud service which allows multiple virtual machines to run and share their

storages and network resources. The features showed by this model are: a basic

scheduler, the isolation of storage space for different clients and the virtualization of

network devices. The basic Cloud# model is represented in Object-Z specifications

depending on the formal semantics definition that we have defined in the previous

chapters. That is, any concrete Cloud# element is modeled as an instance of the Object-Z

class that represents its abstract syntax, static and dynamic semantics. Please refer to

66

(Smith, 1992) for more information about object instantiation in Object-Z language.

Because of the limitations in space, we will only present the main parts of this model.

7.3.1 The Part of Computation Units

The main Computation Unit in the Cloud# basic model includes two virtual machines

(VM1 and VM2) as shown below. The computation task in this model is a parallel

composition of Scheduler and Network which performs scheduling and packet

processing.

This can be modeled in OZ as follows:

67

7.3.2 The Part of Processes

The Cloud# basic model includes two main processes (Scheduler and Network) as shown

below. The Scheduler is represented as a set of actions that are executing in a sequential

manner. On the other hand, the Network process is a composite process. It is represented

as a parallel composition of two different processes (Send and Receive).

This can be modeled in OZ as follows:

68

7.3.3 The Part of Hypercalls

In the Cloud# basic model, there is a definition for two different Hypercalls (read and

write) as shown below. These calls enable the virtual machines to access the physical

storages, retrieve and update the data in the cloud infrastructure.

This can be modeled in OZ as follows:

69

7.4 Conclusion

We used the Object-Z version of the Cloud# basic model that has been discussed in the

previous section to check the consistency of Cloud# language. The basic Cloud# model

has been applied along with the existing formal denotational semantics definition of

Cloud# language to the Zed Community Tool (CZT) type-checker. No typing errors have

been found which indicates the consistency of Cloud# language. However, we can’t state

precisely that Cloud# language is consistent, since the selected model is not large enough

to cover the most aspects of the language. However, this model has been chosen due to

the fact that Cloud# is still new and has not been used to model real and large cloud

infrastructures. Well, a more complex and large model leads to a more accurate result.

Now that this language has been provided with a formal denotational semantics

definition, it is easy to use this language for modeling real and large Cloud infrastructures

and check the consistency of Cloud# language in a more accurate way.

70

Chapter Eight: Conclusions and Future Works

8.1 Conclusions

In this thesis, we have presented a formal denotational semantics for Cloud# language

which is a domain-specific modeling language for modeling the infrastructure of the

Cloud. Object-Z language has been used as a meta-language for defining the formal

semantics of Cloud#. The formal semantics definition with Object-Z language has been

given as a single unified framework. That is, the abstract syntax, static and dynamic

semantics of a single language construct is specified in one Object-Z class. Not only does

this help the readability of the semantics, but if the language is enhanced or evolved, the

required modifications can be done by the minimal disruption to the existing semantics.

Also it is possible to use some parts of semantics definition of one language to define

another.

On the other hand, the consistency checking for Cloud# language has been done using an

Object-Z type-checker tool. A sample Cloud# model has been converted to the Object-Z

specifications and then applied along with the existing formal denotational semantics to a

type-checker. No typing errors have been found which indicates the consistency of

Cloud# language. However, it is not realistic to state precisely that Cloud# language is

consistent, because the sample model is not large enough to cover the most aspects of the

language and it doesn’t even represents a real cloud infrastructure. This model has been

chosen due to the fact that Cloud# is still new and has not been used to model real and

large cloud infrastructures. Well, a more complex and large model leads to a more

accurate result.

71

8.2 Future works

Defining the formal semantics of a modeling language can be beneficial to that language

in many different ways (i.e. for reasoning about the language or for providing tool

support). In this thesis, we have defined a formal denotational semantics for Cloud#

language. This type of semantics facilitates reasoning about the language using the

existing tools for verification and validation or by using mathematical proof techniques.

In this thesis, we only used one of the existing tools to check the consistency of Cloud#

language. However, in future, some mathematical proof techniques will be adopted to

reason about Cloud# models and to check the existence of some interesting properties

such as the liveness property as mentioned in chapter 7.

On the other hand, the denotational semantics definition is not enough. Cloud# is like any

other language, it also needs an operational semantics definition. The operational

semantics definition will help in developing tools (i.e. Compiler, interpreter, etc) for

Cloud# language. Without the operational semantics definition, the generation of these

tools will be a very complex process. In our future work, we propose to provide Cloud#

language with an operational semantics definition which is consistent to the already

existing denotational semantics. This can be accomplished by using one of Object-Z

language extensions with a process-based language (i.e. pi-calculus, CSP, etc). That is, all

the aspects of the language will be defined in a single unified framework. Similar work

for defining all the aspects of the language in a single framework appears in (Hahn,

2008).

72

REFERENCES

Adamis, G., Horváth, R., Pap, Z., and Tarnay, K. (2005). Standardized languages for

telecommunication systems. Computer Standards & Interfaces, 27(3), 191-205.

doi:10.1016/j.csi.2004.09.005.

Andova, S., Van den Brand, M., and Engelen, L. (2011). Prototyping the Semantics of a

DSL using ASF+SDF: Link to Formal Verification of DSL Models. Electronic

Proceedings in Theoretical Computer Science, 56, 65–79. doi:10.4204/EPTCS.56.5

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., and Neugebauer, R.

(2003). Xen and the Art of Virtualization Categories and Subject Descriptors.

Computer Science and Information System.

Bruneli, H. (2010). Combining Model-Driven Engineering and Cloud Computing.

modeling design and analysisfor the Service Cloud- MDA4ServiceCloud'10:

Workshop's 4th edition. Paris, France.ECMFA.

Bryant, B., Gray, J., Mernik, M., Clarke, P., France, R., and Karsai, G. (2011).

Challenges and directions in formalizing the semantics of modeling languages.

Computer Science and Information Systems, 8(2), 225–253.

doi:10.2298/CSIS110114012B

Chen, K., Sztipanovits, J., and Abdelwalhed, S. (2005). Semantic anchoring with model

transformations. Model Driven, 115–129. Springer. Verlag. Retrieved from

http://www.springerlink.com/index/y3g6237844251u27.pdf

Cho, H., Sun, Y., and Gray, J. (2011). Key Challenges for Modeling Language Creation

By Demonstration. 2011 Workshop on Flexible Modeling. Retrieved from

http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/papers/cho_flexitools_icse20

11.pdf.

Coppit, D. (2003). Engineering modeling and analysis: Sound methods and effective

tools. Syntax, (January). Computer Science PHD Thesis. University of Virginia.

73

Dong, J, and Duke, R. (1993). Class union and polymorphism. Technology of Object-

Oriented Language Retrieved from

http://www.comp.nus.edu.sg/~dongjs/papers/tools93.ps

Dong, J. S. (2005). An Object Semantic Model of SOFL, In Intergrated Formal Methods

(IFM'99), Pages 189-208, York, UK,(10139236).

Dong, JS, Duke, R., and Rose, G. (1997). An object-oriented denotational semantics of a

small programming language. Object Oriented Systems, 4(1), 29–52. Retrieved from

http://www.comp.nus.edu.sg/~dongjs/papers/oos97.ps

Engelen, L., and Van den Brand, M. (2010). Integrating Textual and Graphical Modelling

Languages. Electronic Notes in Theoretical Computer Science, 253(7), 105–120.

doi:10.1016/j.entcs.2010.08.035

Engine, C. (2010). domain-specific languages Domain-Specific Languages in a Customs.

Information System, (April), 65-71.

Fisher, D. (2010). Static semantics for syntax objects.PHD thesis, Computer and

Information Science.Univeristy of notheasten Boston.

Gargantini, A., Riccobene, E., and Scandurra, P. (2009). A semantic framework for

metamodel-based languages. Automated Software Engineering, 16(3-4), 415–454.

doi:10.1007/s10515-009-0053-0

Goncalves, G., Endo, P., Santos, M., Sadok, D., Kelner, J., Melander, B., and Mangs, J.-

E. (2011). CloudML: An Integrated Language for Resource, Service and Request

Description for D-Clouds. 2011 IEEE Third International Conference on Cloud

Computing Technology and Science, 399–406. doi:10.1109/CloudCom.2011.60.

Griffiths. A, and Rose.G (1995), A Semantic Foundation for Object Identity in Formal

Specification, Object-Oriented Systems, vol. 2, Chapman & Hall, pp. 195–215.

74

Hahn, C. (2008). A domain specific modeling language for multiagent systems. on

Autonomous agents and multiagent systems, (Aamas), 233–240. Retrieved from

http://dl.acm.org/citation.cfm?id=1402420

Ji, X. (2011). Analysis and Design for Object-oriented Multi-tier Architecture of Public

Opinion Survey System Based on UML. Procedia Engineering, 15, 5445–5449.

doi:10.1016/j.proeng.2011.08.1010

Kiel, C., and Schneider, C. (2011). On Integrating Graphical and Textual Modeling.

Diploma Thesis. University of KIEL.

Kos, T., Kosar, T., and Mernik, M. (2011). Development of data acquisition systems by

using a domain-specific modeling language. Computers in Industry.

doi:10.1016/j.compind.2011.09.004.

Lara, J. De, Vangheluwe, H., and Alfonseca, M. (2004). Meta-modelling and graph

grammars for multi-paradigm modelling in AToM 3. Software and Systems

Modeling. Retrieved from

http://www.springerlink.com/index/atmw5mtfqa33cmh1.pdf

Lester, D. (2011). Module COMP36411 Understanding Programming Languages.

Electronic Notes in Theoretical Computer Science Univeristy of Manchester.

Liu, D., and Zic, J. (2011). Cloud#: A Specification Language for Modeling Cloud. 2011

IEEE 4th International Conference on Cloud Computing, 533–540.

doi:10.1109/CLOUD.2011.18

Ma, Z. M., Yan, L., and Zhang, F. (2012). Modeling fuzzy information in UML class

diagrams and object-oriented database models. Fuzzy Sets and Systems, 186(1), 26–

46. doi:10.1016/j.fss.2011.06.015

Naumenko, A., Wegmann, A., and Atkinson, C. (2003). The Role of Tarski’s Declarative

Semantics in the Design of Modeling Languages. Swiss Federal Institute. Retrieved

from http://ic2.epfl.ch/publications/documents/IC_TECH_REPORT_200343.pdf

75

Pichler, P., Weber, B., and Zugal, S. (2012). Imperative versus Declarative Process

Modeling Languages: An Empirical Investigation. Business Process. Retrieved from

http://www.springerlink.com/index/XN46272735MX025N.pdf

Rivera, J., Durán, F., and Vallecillo, A. (2009). Formal specification and analysis of

domain specific models using Maude. Simulation. Retrieved from

http://sim.sagepub.com/content/85/11-12/778.short

Rodríguez, A., Fernández-Medina, E., Trujillo, J., and Piattini, M. (2011). Secure

business process model specification through a UML 2.0 activity diagram profile.

Decision Support Systems, 51(3), 446–465. doi:10.1016/j.dss.2011.01.018

Rumpe, B., and France, R. (2011). On the relationship between modeling and

programming languages. Software & Systems Modeling, 11(1), 1–2.

doi:10.1007/s10270-011-0224-x

Rusu, V. (2011). Embedding domain-specific modelling languages in maude

specifications. ACM SIGSOFT Software Engineering Notes. Retrieved from

http://dl.acm.org/citation.cfm?id=1921557

Schmidt, D. (2012). Programming language semantics. Information Sciences, 1–20.

Retrieved from http://dl.acm.org/citation.cfm?id=1074733

Schmidt, D. A. (1997). A METHODOLOGY FOR LANGUAGE DEVELOPMENT . Nichols Hall, Kansas

State University, Manhattan.

Smith, GP, and Smith, G. (1992). An Object-Oriented Approach. ukpmc.ac.uk, (October).

Retrieved from http://ukpmc.ac.uk/abstract/CIT/692593

Smith, Graeme. (a) (1995.). Extending W for Object-Z. Proceeding the 9th annual Z-User

Meeting. Springer. Verlag.

Smith, Graeme. (b) (1995). of Computing A Fully Abstract Semantics of Classes for

Object-Z, Formal Aspects of Computing, Springer. Verlag. 7, (3) 289-313

76

Smith, Graeme. (1999). The Object-Z Specification Language, Springer. Verlag.1.

doi:10.1007/978-1-4615-5265-9

Smith, Graeme, and Winter, K. (2012). Incremental Development of Multi-Agent

Systems in Object-Z. lbox.itee.uq.edu.au. Retrieved from

http://lbox.itee.uq.edu.au/~smith/pubs/sew2012.pdf

Stuurman, G. (2010). Action semantics applied to model driven engineering. Computer

Science MSc Thesis. University of Twente.

Taguchi, K., and Ciobanu, G. (2004). Relating Pi-calculus to Object-Z. Proceedings of

Ninth IEEE International Conference on Engineering Complex Computer System.

14-16 97-106.

Wang, H. H., Gibbins, N., Payne, T. R., and Redavid, D. (2012). A formal model of the

Semantic Web Service Ontology (WSMO). Information Systems, 37(1), 33–60.

doi:10.1016/j.is.2011.07.003

Wang, H., Saleh, A., Payne, T., and Gibbins, N. (2007). Formal specification of owl-s

with object-z. OWL-S: Experiences an Retrieved from http://www.ai.sri.com/OWL-

S-2007/final-versions/OWL-S-2007-Wang-Final.pdf

Wolterink, T. (2009). Operational Semantics Applied to Model Driven Engineering.

University of Twente MSc. Thesis. Retrieved from http://essay.utwente.nl/59094/

Woodcock. J, and Brien. S, W: a logic for Z (1991). Proceedings of Sixth Annual Z-User

Meeting, University of York, 1991.

77

Appendix 1: Formal Semantics Description of Cloud#

o Cloud# Types

The subscript ‘ ’ on IntType specifies that there is only one instance of Integer type. It

is a syntactic sugar for a system constraint: #IntType=1. Similarly, there is only one

instance of Boolean type, String type, and Void type.

78

o Cloud# Values

Each instance of the class IntVal, BoolVal, StrVal or BaseVal models a particular value of

its type. As represented in (Dong, 2005) the one-to-one correspondence relationship is

79

captured by the subscript ‘ ’ on the type of Val. Which is a syntactic sugar for a

system constraint (e.g. for IntVal):

1 1

80

The subscript ‘©’ on the type Variable or TupleRef refers to the non-shared object

containment.

o Mapping Function

o The Variable Reference

81

o The Arithmetic Expressions

82

o The Dot Expression

o The Assignment Statement

83

o Label Statement

o IF Statement

84

o FOR Statement

o Return Statement

o Goto Statement

85

o Cloud# Identities

 الملخص

واحد من أھم المجا'ت البحثية في مجال تطوير البرمجيات في الوقت الحاضر. فقد (CloudMDE) يعتبر

فرص تمكن ا'نظمة المبنية على ايجاد يھدف إلى .(CloudMDE) استقطب اھتماما متزايدا من المجتمع البحثي

 (#Cloud)جة و العكس بالعكس. وقد تم اقتراح لغة الحوسبة السحابية من ا'ستفادة من التقنيات الھندسية في النمذ

ھي #Cloud) (استخدام تقنيات الھندسة في النمذجة لدعم البنية التحتية =نظمة الحوسبة السحابية.كتطبيق على

 (Imperative)لغة من نوع ھي (#Cloud)لغة نمذجة مختصة في وصف البنية التحتية ل?نظمة السحابية.

مكن ھذه اللغة القدرة على التعامل مع المكونات ا'ساسية في البنية التحتية ل?نظمة السحابية وذات شكل نصي. ت

عGوة على ذلك،ھذه اللغة تدعم التزامن وا'ستجابة للمؤثرات بشكل مباشر على اعتبارھم اجزاء اساسية من اللغة.

مجردة (المفردات) و الضوابط التي يجب اتباعھا ةالخارجية. حتى اIن يتوفر لھذه اللغة الوحدات البنائية لبناء جمل

للوحدات البنائية في ھذه اللغة. ومع ذلك، ھذه الوظيفيلكتابة جمل صحيحة في اللغة با'ضافة الى وصف للمعنى

للوحدات الوظيفيبشكل رياضي. في ھذه ا=طروحة، تم وصف المعنى الوظيفياللغة تفتقر إلى تعريف المعنى

. لقد تم (#Cloud)لوصف لغة (Object-Z)اللغة بشكل رياضي. وقد تم استخدام اللغة الرياضية البنائية في

وصف مفردات اللغة في اطار واحد وموحد بحيث ان وصف المفردات والضوابط لكتابة جمل صحيحة با'ضافة

وھذا يساعد على سھولة قراءة الوصف، بل و يساعد ايضا للمفردات تم وضعة في وحدة واحدة الوظيفيالى المعنى

على اجراء التعديGت على الوصف الرياضي بطريقة سھلة في حالة تطوير او تحديث اللغة. ايضا مثل ھذا الوصف

عدم وجود اي يمكن من اعادة استخادم بعض اجزاءه لتعريف لغات اخرى. من ناحية أخرى، تم التحقق من

. حيث تم اخذ أحد (Object-Z)م احد ادوات التحقق في لغة او ذلك باستخد (#Cloud)تناقضات في لغة

وتم تحميله مع التعريف الرياضي الذي تم انجازه في ھذه ا'طروحة الى أحد أدوات لغة (#Cloud)نماذج لغة

(Object-Z) سليمة وخالية من النتائج اي تناقضات في ھذه اللغة مما يدل على ان ھذه اللغة تظھرحيث لم

 ا'خطاء التصميمية.

 السيمانتك الشكلي للغة الكلود شارب

 إعداد

 يحيى مصطفى عبد الرحمن

 المشرف

 د. مراد معوش

 قدمت ھذه الرسالة استكما� لمتطلبات الحصول على درجة الماجستير في تخصص علم الحاسوب

 عمادة البحث العلمي والدراسات العليا

ة في5دلفياجامع

٢٠١٣كانون الثاني ،

