
I

Enhancement of Weight Calculation in Ranking of

Internet Search Engines

By

Hisham Khaleel Hamed Abu Jalban

Supervisor

Dr. Moayad A. Fadhil

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master’s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

December-2008

II

فیلادلفیاجامعة

تفویضنموذج

أو للمكتبѧات رسѧالتي مѧن نسѧخ بتزویѧد فیلادلفیѧا جامعѧة أفѧوض ، ھشѧام خلیѧل حامѧد أبѧو جلبѧان أنѧا

.طلبھاعندالأشخاصأوالھیئاتأوالمؤسسات

 :التوقیع

 :التاریخ

Philadelphia University

Authorization Form

I, Hisham Khaleel Hamed Abu Jalban, authorize Philadelphia University to

supply copies of my thesis to libraries or establishments or individuals

upon request.

Signature:

Date:

III

Committee Decision

Successfully defended and approved on ___________________________

__
Examination Committee Signature
__

Dr__________________________________ Chairman

Academic Rank: ______________________ _____________

Dr. _________________________________ member.

Academic Rank________________________ _____________

Dr. _________________________________ member.

Academic Rank:_______________________ _____________

Dr. _________________________ External Member.

Academic Rank:_______________________ _____________

IV

Acknowledgment

I would like to express my deepest regards to my supervisor and mentor whose

suggestions and guidance led to presentation of this thesis.

I also wish to express great admiration and love to my parents and wife for their

encouragement, support and patience through my studies.

I wish to send my ultimate thanks given to my professors who taught me in the

last two years.

Hisham Jalabneh

V

Table of Contents

Authorization Form I

Title II

Examination Committee III

Acknowledgement IV

Table of Contents V

List of Figures VIII

List of Tables IX

List of Abbreviations X

List of Algorithms XI

Abstract XII

Chapter one: Introduction 1

1.1 Internet 2

1.2 Internet Protocols 2

1.3 Internet Development 3

1.4 Search Engines 4

1.5 Aims of the thesis 6

1.6 Research Outline 6

Chapter two : Literature Review 8

2.1 Introduction 9

2.2 Related Work 9

Chapter three : Retrieval Models 13

3.1 Introduction 14

3.2 Retrieval Models Overview 14

3.3 Taxonomy of Information Retrieval Models 15

3.4 Classic Models 16

3.4.1 Boolean Models 16

3.4.2 Vector Models 17

3.3.3 Probabilistic Models 18

VI

3.5 Structured Models 18

3.6 Browsing Models 19

Chapter four : Search Engines 20

4.1 Introduction 21

4.2 Search Engines Anatomy 21

4.2.1 Crawler Manager 22

4.2.2 Indexing 23

4.2.3 Search Interface 24

 4.2.3.1 Query Interface 24

4.2.3.2 Ranking software 26

 4.2.3.3 Results Interface 28

4.3 Google Search Engine As a Prototype 33

4.3.1 System Features 34

4.3.1.1: Page Rank 34

4.3.1.2 Anchor Text 34

4.3.2 Google System Anatomy 35

4.3.2.1 Google Architecture Overview 35

4.3.2.2 Google Data Structure 37

Chapter five : Design and Implementation of the Proposed System 39

5.1 Introduction 40

5.2 Proposed System Architecture 40

5.2.1 Off-Line Part 41

5.2.2 On-Line Part 67

5.3 System Implementation 72

Chapter six : Testing and Evaluation 75

6.1 Introduction 76

6.2 Effectiveness 76

6.3 Efficiency 78

6.4 Understandability 78

Chapter seven : Conclusions and Future Work 83

VII

7.1 Introduction 84

7.2 Conclusions 84

7.3 Future Works 85

References 87

VIII

List of Figures

Figure No. Figure Title Page No.

Figure 3.1 Taxonomy of information retrieval models 15

Figure 4.1 Search Engine Architecture 22

Figure 4.2 Google advanced Search 25

Figure 4.3 Google hit list (results) 29

Figure 4.4 Hierarchical Clustering 31

Figure 4.5 NIRVE Prototype 32

Figure 4.6 Tilebar Visualization 33

Figure 4.7 The architecture of Googol Search Engine 36

Figure 4.8 Repository Data Structure 37

Figure 4.9 Forward and Reverse Indexes and the Lexicon 38

Figure 5.1 The Proposed Search Engine Diagram 42

Figure 5.2 Example of small Web 46

Figure 5.3 Web Pages with its Links Attributes 61

Figure 5.4 System entity relation diagram 66

Figure 5.5 Search Engine User Interface 73

Figure 5.6 Advanced Search Engine User Interface 74

Figure 6.1 Recall And Precision 77

Figure 6.2 The search results in proposed advanced rank 79

Figure 6.3 The search results (hits) in original page rank 80

Figure 6.4 Comparison between precision of original PR and advanced PR 80

Figure 6.5 Comparison between precision of Term-based PR and advanced PR 81

Figure 6.6 Time comparison between the original PR and advanced PR 81

Figure 6.7 Time comparison between term-based PR and advanced PR 82

IX

List of Tables

Table No. Table Name Page No.

Table 4.1 Text Operations 23

Table 5.1 Tags Processing 53

Table 5.2 Page_Identification Table 55

Table 5.3 Stop_Word Table 55

Table 5.4 Noisy_Words 56

Table 5.5 Inverted_Index Table 56

Table 5.6 Page_Meta_Data Table 57

Table 5.7 Page_General_Information Table 58

Table 5.8 URLs_Information Table 64

Table 5.9 Page_Link_Based Table 65

Table 6.1 Searching result, Recall and Precision measures 79

X

List of Abbreviations

No. Abbreviation Stands For

1 ARPA Advanced Research Projects Agency

2 HITS Hyperlink Induced Topic Search

3 HTML Hyper Text Markup Language

4 IDF Inverse Document Frequency

5 IR Information Retrieval

6 ISAM Index Sequential Access Mode

7 ISP Internet Service Provider

8 NASA National Aeronautics and Space Administration

9 NSF National Science Foundation

10 SE Search Engine

11 TCP Transport Control Protocol

12 TF Term Frequency

13 URL Unified Resource Locator

14 WSE Web Search Engines

15 WWW World Wide Web

16 WWWW World Wide Web Worm

XI

List of Algorithms

Algorithm

No.
Algorithm Name

Page

No.

Algorithm 5.1 Crawling algorithm (similarity based) 44

Algorithm 5.2 Crawling algorithm (link based) 47

Algorithm 5.3 Description of reorder_queue () of each ordering metric. 48

Algorithm 5.4 Algorithm Token Processing Algorithm 52

Algorithm 5.5 Link-Based Ranking Algorithm 65

Algorithm 5.6 Determiner Query Algorithm 70

Algorithm 5.7 Term-Based Ranking Algorithm 71

XII

ABSTRACT

This thesis proposes new factors for indexing documents; enhance the weight

calculations for the ranking algorithm and combining the advanced link-based ranker

with the term-based ranker, in order to enhance the ranking score for documents, which

led to improve the recall and precision of the search engine and for making more

relevant documents appear at the beginning of the results list.

The proposed system which is made especially to test the new enhancements on indexer

and ranker has been tested and evaluated, with various queries, and used to compare the

advanced link-based page ranker with the original link-based ranker and term-based

ranker.

The relevance of the returned documents (recall, precision) has been considerably

improved in comparison between the advanced link-based ranker with original link-

based ranker and term-based ranker by more than 13% on queries’ results tested on

more than 3000 Web pages.

1

Chapter One

Introduction

2

1.1 Internet

The Internet is probably the largest revolution in the computer industry since the advent of

the personal computer (PC) and is a valuable clinical tool for physicians and other health

care personnel. It can be used to communicate with colleagues around the world, to obtain

information (including practice guidelines, abstracts, and journal articles), and to arrange

travel and meetings.

Although the technology on which the Internet is based was developed in the mid-1960s, it

was not widely available until almost 1990, and access was primarily limited to

universities, government agencies, or the computer industry. Until recently complex

software and restricted access have required Internet users to have a sophisticated

understanding of computers, networking, and programming. New technology has,

however, made the Internet available to nearly anyone with access to a PC and a modem (a

device that connects the PC to other computers over telephone lines or wireless).

Getting information on the Internet is now as easy as inserting a disk, clicking a "Setup"

icon, and then pointing to a topic with a mouse. Sophisticated multimedia documents,

including video, sounds, and pictures, and which cover every topic from fibre-optic

intubations to the stock market, are accessible nearly anywhere in the world.

The Internet's history begins in the mid-1960s, during the Cold War, at which time the

United States Department of Defence relied on a network of powerful super-computers to

control ballistic missiles and other weapons. It was determined that in the event of a war, it

might be necessary to change this network rapidly or add new computers on short notice

(e.g., by parachuting computers into an area and connecting them by radio). As a result, the

military, through the Defence Advanced Research Projects Agency (ARPA), began to

investigate new simple and reliable ways to connect computers Doyle DJ et al (1996).

1.2 Internet Protocols

The central assumption of this new technology was that physical connections were

unreliable, i.e., a connection could be lost at any time. To avoid this problem, each

computer would keep a constantly updated list of its neighbours and would be able to find

alternative pathways to a particular destination if a connection were severed.

3

To provide reliable communication in this environment, two closely interacting protocols

were developed: the "Internet Protocol" (IP), which moves small packets of information

from one computer to another and the "Transport Control Protocol" (TCP), which breaks

large blocks of data into small chunks and reassembles them on the other end. These

intertwined protocols are commonly referred to as "TCP/IP."

Personnel at institutions connected to the ARPA Net (the Department of Defence TCP/IP

network) quickly learned that linking of computers could permit research reports,

programs, data files, and other information to be shared nearly instantaneously with

colleagues at remote locations.

Subsequently other government agencies used the TCP/IP protocol to connect their

computers. The National Science Foundation (NSF) created NSF Net, a TCP/IP network to

link its five supercomputers and to provide remote users with access to its resources. The

National Aeronautics and Space Administration (NASA) created the NASA Science

Network Doyle DJ et al (1996).

1.3 Internet Development

By the early 1980s, the biggest obstacle to growth of the Internet was bureaucracy. The US

government set strict "appropriate use" policies that governed what information could be

sent and how each network could be used. Administrators were encumbered by the

regulations and by the careful record keeping that were required. To solve this problem,

Congress passed a law combining ARPA Net, NASA Science Net, and NSF Net into the

National Research and Education Network, administered by the NSF. The Internet was

born.

Researchers and scientists at universities and federal agencies, who soon discovered that

TCP/IP networks were easy to connect and that they could expand without disrupting

existing networks, were the initial users of the Internet. To promote widespread use of the

new network, the NSF created policies that encouraged institutions to make access

available to individual users. In 1993, Commercial Internet Service Providers (ISPs) were

allowed to sell access to the general public, and the number of Internet users increased

rapidly. Shortly thereafter, the development of advanced Internet services, in particular the

World Wide Web (WWW), greatly simplified use of the Internet and further increased the

4

rate of growth.

Nearly the entire Internet is currently privately funded and maintained by

telecommunications and computer companies, educational institutions, and other

organizations; the government now funds only those sections that it uses Doyle DJ et al

(1996), Hsinchun Chen et al (1996).

1.4 Search Engines

Due to the massive growth of the Internet, users overloaded with data but in lack for

knowledge and information. Systems invited to lead the way and guide the users to proper

information, called Search Engines.

These systems, which combine (among others) such disciplines as database technology,

distributed computing and storage, statistical linguistics and graph algorithms, are

presented with queries of users.

There are many powerful search services on the Web. Such Web search services are

Yahoo, Alta Vista, Google, Lycos, Infoseek, Excite, WebCrawler and others. In the

Internet world, these search services are called Search Engines.

Search Engines are tools used to help Web users in finding their favorite information or

Web sites. It enables various kinds of words or graphics searches. Each of the Internet

Search Engines has its own rules and works differently.

Some kinds of Search Engines are composed of huge databases of the Web page files that

have been assembled automatically by machine. These databases contain information about

Web pages that have registered with a particular Search Engine, such as Yahoo! At

Yahoo!, registrations are entered by humans, who categorize entries by subject Hsinchun

Chen et al (1996).

Users expect their queries to be instantaneously answered with ranked lists of the most

relevant Unified Resource Locators (URLs) available online for each query. In order to

meet these demands, Web Search Engines (WSEs) must collect and index billions of

resources, and develop highly efficient retrieval and ranking algorithms that are capable of

effectively answering queries in almost a blink of the eye Baeza Yates et al (1999), M.W.

Berry et al (1999).

5

Largest WSEs index thousands of millions of multilingual Web pages containing millions

of distinct terms. Due to the peculiarities and the huge size of the Web repository,

traditional Information Retrieval (IR) systems developed for searching smaller collections

of structured or unstructured documents appear inappropriate for granting retrieval

effectiveness on the Web.

Most components of an IR system must be rethought in order to address the problem of

effectively and efficiently searching and retrieving information from the Web. Consider, as

an example, the problem of deciding which documents are relevant and which are not with

respect to a user query.

This hard task is commonly delegated to a ranking algorithm which attempts to establish

an ordering among the documents retrieved. Documents appearing at the top of this

ordering are the ones considered to be more relevant. The two most accepted metrics to

measure ranking effectiveness are: Precision (i.e. number of relevant documents retrieved

over the total number of retrieved documents) and Recall (i.e. number of relevant

documents retrieved over the total number of relevant documents in the collection) C.J.

Van Rijsbergen (1979). In traditional IR, it can be assumed that the documents in the

collection originate from a reputable source and all words found in a document were

intended for the researcher.

Ranking can simply be based on statistics performed over word frequencies. The same

assumption does not hold on the Web where content is authored by sources of varying

quality and words are often added indiscriminately to boost the page’s ranking. Moreover,

as the size of the indexed collection grows, since users usually only look at the first few

tens of results, a very high precision has to be preferred even at the expense of the recall

parameter.

Similar considerations can be done for others key components of an IR system. The size of

the Web data repository along with its exponential growth, the heterogeneity and

dynamicity of Web data, are all challenging problems justifying the structural complexity

of the software architecture of modern WSEs that exploit a variety of novel technologies

developed in several related research areas such as databases, parallel computing, artificial

intelligence, statistics, etc.

6

In this research, three different WSE issues will be illustrated. These issues are: ranking of

Search Engine query results, indexing, and optimizing Search Engine query.

1.5 Aims of the thesis:

This research has a number of aims:

 Review literature relating to Internet Search Engine technology and in particular

information retrieval systems.

 Provide and explain step by step of areas that will lead to full understanding of the

Search Engine taxonomy.

 Enhance the indexer of the Search Engine through preprocessing, through classifying

new criteria, giving weight to each case and shape of the words and the URLs in the

documents; the system will use a combination of Boolean, Vector, and link-based

models.

 Enhance the ranking of the retrieved information, through enhancing the weight

calculation for the relation between the documents and the query.

 Design, develop, and evaluate a Search Engine for a locally hosted Web site in order

to test the enhancement on indexing and ranking algorithms.

1.6 Research Outline

The research contains number of chapters as follows:

Chapter 2: literature Review

This chapter provides an open picture on the articles, topics, and important subjects

taken into consideration in the study of Search Engines. It provides a couple of

articles which are used as a reference in writing this research.

Chapter 3: Retrieval Models

The topic of information retrieval is addressed in this chapter. Taxonomy of models

is identified and a brief explanation of each model in the taxonomy is provided.

7

Chapter 4: Search Engines

This chapter provides a high level overview of Search Engine technology. It

identifies the standard architecture for a Search Engine and provides a detailed

discussion on the area of search interfaces. This chapter will also create a link

between Search Engines and traditional information retrieval systems, also will give

a good idea about Google Search Engine as a prototype.

Chapter 5: Design and Implementation

This chapter presents a high level overview of the Search Engine architecture. Key

system requirements are identified and a logical overview of the systems main

components is provided.

Chapter 6: Testing and Evaluation

In this chapter the Search Engine is put through testing and evaluation. A selection of

test queries is used to test the usability and functionality of the new enhanced system.

Results from these tests are then evaluated and the appropriate action is considered.

Chapter 7: Conclusions and Future Works

This chapter reviews the aims and objectives of the research and looks at areas where

future work may be appropriate.

8

Chapter Two

Literature Review

9

2.1 Introduction

Due to an ever-growing World Wide Web, the volume of data available online increases

exponentially day by day, the data resides in different forms, ranging from unstructured

data in file systems to highly structured, in relational database systems. Some of this data is

raw data, e.g., images or sound. Some of it has structure even if the structure is often

implicit, and not as rigid or regular as that found in standard database systems. There are

no authorship standards, no editorial board and no imposed topical hierarchy to publish

data on the Web.

In this chaotic sea of data, millions of people by the minute from all over the world are

starving for information. Web search made it possible, by complex information retrieval

systems called Search Engine, which combine such disciplines as database technology,

distributed computing, storage, statistical linguistics and graph algorithms, that been

presented as queries to users. Users expect their queries to be instantaneously answered

related to the most relevant Uniform Resource Locators (URLs) available online for each

query.

2.2 Related Work

Sergey Brin, Lawrence Page (1998)

The paper presents Google as a prototype of a large-scale Search Engine which

makes heavy use of the structure present in hypertext. Google is designed to crawl

and index the Web efficiently and produce much more satisfying search results than

existing systems. The research also presents Google system’s features that gives high

precision and recall results.

This paper describes the important goals that are achieved by implementing the

designed PageRank algorithm, through describing and analyzing Google Search

Engine. These goals are:

The main goal is to improve the quality of Web Search Engines. Another important

design goal is to build systems that reasonable numbers of people can actually use.

10

The PageRank algorithm makes use of both link structure and anchor text, and is

used as a parameter for measuring page importance by Google Search Engine.

Craig Silverstein et al, (1999)

The paper presented an analysis of an AltaVista Search Engine (2008)query log

consisting of approximately one billion entries for search requests over a period of

six weeks, also presents an analysis of individual queries, query duplication, and

query sessions.

The paper presented results of a correlation analysis of the log entries, studying the

interaction of terms within queries. The data presented in the paper supports the

inference that Web users differ significantly from the user assumed in the standard

information retrieval literature. Specifically, it shows that Web users type in short

queries, mostly look at the first 10 results only, and seldom modify the query. This

suggests that traditional information retrieval techniques may not work well for

answering Web search requests.

Krishna Bharat (2000)

The paper describes an extension to Search Engines to explicitly maintain user search

context as they look for information, on many topics, using many Search Engines,

and over many sessions. The paper presents an extension to Search Engines called

SearchPad that makes it possible to keep track of ‘search context’ explicitly.

SearchPad is an agent that works collaboratively with result pages, and allows users

to remember queries and associated leads in a convenient helper window. It

describes an efficient implementation of this idea deployed on four Search Engines:

AltaVista, Excite, Google and Hotbot.

Arvind Arasu et al, (2002)

The paper presents a simple modification to the PageRank algorithm (ranking

algorithm that presented by Page and Brin). By this modification, PageRank

algorithm uses the most recent values for every Web page pointing to a Web page.

11

Chirita P.A., et al (2003)

The article presented a new algorithm for finding hubs and authorities related to a

specific Web page. It is a slight modification of the Google PageRank Algorithm.

Various aspects have been investigated in this direction, like extensions of the

Hyperlink-Induced-Topic-Search (HITS) algorithm or modifications to the PageRank

algorithm. The paper focuses mainly on oriented computing hub scores, but the

formulas for authority scores are almost always analogous.

Liwen Vaughan, (2004)

The paper proposed two measurements, as counterparts of traditional recall and

precision: the quality of result ranking and the ability to retrieve top ranked pages.

The main difference between these measurements and those used in earlier studies is

that these new measures are based on a continuous ranking of test documents (ranked

from the most relevant to the least relevant) rather than the discrete relevance

judgments (e.g. relevant, partial relevant, irrelevant) used in previous studies.

The author conducted an experiment to test these new measurements by applying

them to a performance comparison of three commercial Search Engines: Google,

AltaVista, and Teoma. Results show that the proposed measurements are able to

distinguish Search Engine performance very well.

Kyung Joong Kim, Sung Bae Cho (2007)

The paper presented how personalized Search Engines are important tools for finding

Web documents for specific users, because they are able to provide the location of

information on the World Wide Web (WWW) as accurately as possible, using

efficient methods of data mining and knowledge discovery.

The paper showed how to find relevant Web documents for a given user; the

proposed Search Engine uses link structures and a fuzzy concept network. The

Search Engine finds relevant documents in which user is interested in, and reorders it

with respect to the user’s interests. The Search Engine finds authoritative and hub

12

sources for a user query using link structures. For efficient searching, these link

structures are stored in advance. The fuzzy document retrieval system personalizes

the link-based search results with respect to the user’s interests. The user’s

knowledge is represented using the fuzzy concept network.

The paper presented how Future work will proceed, using the user’s feedback about

the search results.

Amir Hosein Keyhanipour et al (2007)

The paper presented, that Meta-Search Engines could be considered as an interface

on the top of local Search Engines to provide uniform access to many local Search

Engines. In the paper, a novel meta-Search Engine, named as Web Fusion, was

introduced. Web Fusion learns the expertness of the underlying Search Engines in a

certain category based on the users’ references. It also uses the ‘‘click-through data

concept’’ to give a content-oriented ranking score to each result page.

The optimum integration of decision lists of Search Engines and awareness of the

users’ preferences are the most challenging problems in the area of Meta-Search

Engines. The experimental results show that concerning the user preferences as well

as integration of decision lists has significant effect on reducing users’ time and

effort for finding the required information.

13

Chapter Three

Retrieval Models

14

3.1 Introduction

The previous chapter provided the reader with an overview on the background and

literature needed to understand topics of Search Engines. This chapter will provide an

overview of retrieval models used in modern information retrieval systems and will

introduce the reader to a well accepted taxonomy of retrieval models. In addition, this

chapter will provide detailed discussion on a selection of these models.

3.2 Retrieval Models Overview

The majority of retrieval systems adopt the use of terms in the document to index and

retrieve documents (Note: the term “document” will be used in a general sense to refer

not only to text documents but also to any non-textual information, such as multimedia

objects). In its simplest form an index term is a set of keywords, mainly nouns, that

attempt to describe the semantic content of the document to which it is associated.

Although it is widely used, this technique is fundamentally flawed for two reasons.

 Firstly, a lot of the semantic meaning within a document can be lost by representing

the full document text with a small subset of terms.

 Secondly, not all the terms that are extracted have the same relevance with regards to

the document’s semantic meaning. As a result of this, irrelevant documents are often

returned in response to user queries. This leads to frustration on users parts.

Clearly one central problem that affects all information retrieval (IR) systems is the

ability to properly predict which documents are to be considered relevant to a particular

query and which are not. The job of identifying relevance is usually performed by what

are known as ranking algorithms.

Ranking algorithms attempt to order a set of retrieved documents in such a way that

those with a high ranking value are considered to be more relevant than those with a

lower ranking value. Each of these ranking algorithms will have its own distinct notion

as to what constitutes relevance. As a result, these differing notions invariably lead to

distinct information retrieval models.

15

In their book “Modern Information Retrieval” Baeza Yates et al (1999) attempt to

produce a taxonomy of IR models that tries to identify all relevant IR models that have

appeared over the years.

3.3 Taxonomy of Information Retrieval Models

Baeza Yates et al (1999) proposed that there are a total of 15 relevant IR models. These can be

subdivided into retrieval models and browsing models. Figure 3.1 provides an overview of these

models.

Figure 3.1 : Taxonomy of information retrieval models

The retrieval models are generally associated with systems, in which a user will pose a

specific query to the system, and expect a set of relevant documents in return. This

model can be subdivided into both the classic and structured models.

Browsing models, on the other hand, do not require that a user pose a specific question.

Instead, users generally invest time and effort into browsing the document space looking

for relevant references which satisfy or aid them in their search.

16

3.4 Classic Models

Classic models consider that each document within the system can be described by a set

of index terms. Identifying these index terms is not a trivial task; care must be taken to

ensure that the selected terms are appropriate for the document they are describing. For

instance, a noun which appears frequently across a set of documents is of no practical

use as it would result in an unacceptably high number of documents being matched.

However, a noun that appears in only half a dozen documents would be more desirable

as it would result in more precise matches. Once index terms have been identified some

mechanism is needed that will match document index terms with query index terms in

order to establish document relevance. The three classic models for achieving this are

the Boolean, vector and probabilistic models.

3.4.1Boolean Models

The Boolean model is based on set theory and Boolean algebra. Although it has become

the standard model for both large scale information retrieval systems and on-line

systems it suffers from a number of drawbacks. Firstly, users of Boolean systems often

find it difficult to construct queries which are effective Baeza Yates et al (1999),

Witten.I.H et al (1999).

Many Boolean terms such as AND, OR and NOT have different meaning when used in

Boolean logic than they do in natural language. For example, in natural language an

ordinary user would expect that a query for documents containing the terms “X AND

Y” would return documents that contain either or both terms. Therefore the result set

should contain more entries than would a search for “X” alone. In fact, if this is what

the user wanted the OR logical operator should have been used.

This has been found to be a common user mistake. Other problems that users experience

include the proper use of parenthesis, especially nested parenthesis, as well as

effectively identifying and applying techniques which help in the broadening and

narrowing of queries. However, possibly the biggest problem associated with the

Boolean method is that a document is identified as being relevant or non-relevant, i.e.

there is no concept of a document being a partial match. As a result of this limitation the

17

Boolean model has been extended to include ideas such as the fuzzy and extended

Boolean models.

The fuzzy model considers that each query term defines a fuzzy set to which each

document will have a degree of membership. A membership function is then used to

determine how closely a particular query matches a document. Usually a value between

0 and 1 will be returned where 0 indicates that there is no match and 1 indicates a full

match. This leads to a grading technique which is less abrupt than the standard Boolean

technique. Baeza Yates et al (1999), Piccenelli.G et al (2008)

The extended Boolean model adapts Boolean logic so that operators are treated more or

less strictly. For example, a query of the form “X AND Y” would indicate that

documents which only contain one of the terms should not necessarily be ignored while

a query of the form “X OR Y” would indicate that documents containing both “X” and

“Y” should be considered more appropriate than documents containing only one of the

terms.

3.4.2 Vector Models

Even with the extended models described above the Boolean method tends to be

imprecise as partial matching of documents is difficult Baeza Yates et al (1999),

Jasminka Dosa et al (2008), Wilkinson.R et al (1991). Therefore the vector space model

has been proposed which incorporates the idea of partial matches into its framework.

This is achieved by assigning non-binary weights to index terms in both queries and

documents Baeza Yates et al (1999).

These weights can then be used to compute how similar each document in the system is

to the user queries. The concepts behind vector space modelling are that by placing

terms, documents, and queries in a term-document space it is possible to compute the

similarities between queries and the terms or documents, and allow the results of the

computation to be ranked according to the similarity measure between them Braun Loes

(2002). Essentially the model works on the principle that both document and query can

be understood from the terms they contain. By representing these terms as vectors the

semantic relationship between queries and documents in the vector space can be

calculated. The similarity between a document and a query is judged by the cosine of

18

the angel between the document and query vector. Extensions to the vector space

model include algebraic generalized vector, latent semantic indexing and neural

networks Baeza Yates et al (1999), Braun Loes (2002).

3.4.3 Probabilistic Models

The basic idea behind the probabilistic model is that for any given user query there is a set of

documents which contain only the relevant documents and no other. This is known as the ideal

answer set Baeza Yates et al (1999). The properties of this ideal answer set is characterised by a

set of index terms.

Although these index terms are not going to be known to the user at the beginning of the query

a good guess at them can usually be made. This guess will result in a preliminary probabilistic

description of the ideal answer set.

Further interactions are carried out with the user in order to refine and improve the probabilistic

description of the answer set. During this interaction the users basically looks at the retrieved

documents and decides which ones are relevant to their query. The system uses this information

to refine the search process. Because this is repeated a number of times the query will

continually evolve and eventually become the real description of the ideal answer set.

Two alternate approaches to this model are the inference network model and the belief network

model. Both of these models are derived from Bayesian (belief) networks which are based on

probability theory Baeza Yates et al (1999), Fuhr.N (1992).

3.5 Structured Models

The classic model described above is primarily concerned with the retrieval of information based

on the semantic content of its documents. However, there is another set of modelling technique that

combines both the semantic content of the document with its structural make-up. These models are

called structured models and their power can be seen in the following example.

Suppose a user wished to submit a query to a system in which they knew a document existed which

contained the text ‘Information Retrieval’ and also had a Figure labelled ‘Neural Networks’. If the

users were to submit a traditional query such as (‘information retrieval’ AND ‘neural networks’) it

is clear to see that the result set would contain many more documents than that desired by the user.

If on the other hand the user could specify structural features such as the fact that ‘neural networks’

should only be looked for as a label of a Figure within the document then we could expect a more

refined result set. For example, (‘information retrieval’ AND Figure(label(‘neural networks’)))

19

should only return documents that contain the term ‘information retrieval’ and ‘neural networks’

where the term ‘neural networks’ appears as the label of a Figure. The most common forms of

structured models are non-overlapping lists and proximal nodes. Baeza Yates et al (1999),

Jasminka Dosa et al (2008), Braun Loes (2002).

3.6 Browsing Models

The previous models concentrated on scenarios in which a user poses a specific query to

the IR system in order to obtain a set of results. An alternative to this approach, which has

become more widespread with the advent of the World Wide Web, is a technique known as

the browsing model.

It is sometimes the case that a user has a goal which is less defined than that of users in the

previous models; such users are often willing to invest time in exploring a particular

document space in order to find topics or references that are of interest to them.

Quite often this involves users reviewing flat or hierarchical lists of documents or may

even require random navigation through a set of related hyperlinks. The basic idea with

this model is that the user manually chooses the paths of navigation in order to make

informed decisions. Yahoo is one example of a Search Engine that allows such browsing.

This model can be subdivided into three separate types; these are flat, structure guided and

hypertext models. Baeza Yates et al (1999), Karlgen.J (2008).

20

Chapter Four

Search Engines

21

4.1 Introduction

The design and implementation, as well the analysis, of efficient, and effective Web Search

Engines (WSEs), are becoming more and more important as the size of the Web has

continually kept growing. Furthermore, the development of systems for Web Information

Retrieval represents a very challenging task whose complexity imposes the knowledge of

several concepts coming from many different areas: databases, parallel computing,

artificial intelligence, statistics, etc.

This chapter attempts to outline the overall architecture of Search Engines, provide

references to existing Search Engines where relevant, introduce the concept of Search

Engines as Information Retrieval (IR) systems, and identify the main problems areas

associated with such systems.

The Search Engine has been defined in different ways such as:

“A program that indexes documents, then attempts to match documents relevant to a user's

search requests.” MarketingTerms.com (2008)

“Web sites that catalogue other Web sites by topic. By entering your subject or title, you

access their database which hopefully provides you with a list of Web sites that give you

what you want.” BuzzBoltMedia.com (2008)

The researcher defines the Search Engine as a system that indexes Web documents

contents in order to fulfil user’s query with a list of relevant documents.

4.2 Search Engines Anatomy

In its simplest terms a Search Engine is a system that indexes, organises and rates

documents with the aim of satisfying user queries. The overall architecture of a Search

Engine can be sub-dived into three main categories. These are the Crawler Manager, the

Index Manager and the Search Interface Marendy.P (2001), Lee Underwood (2008) as

shown in Figure 4.1.

22

4.2.1 Crawler Manager

Web crawlers form an integral part of Search Engines. The crawler manager is an

automated piece of software that accesses and downloads Web pages and their

associated documents on a regular basis. The aim of the crawler is to build up a map

of the internet in order to index and store contents of its pages for future searches.

Web crawlers work by following a set of pre-defined Web page links Hsiao.R.L

(2008).

While processing these Web pages the crawler takes note of any new hyperlinks on

the pages. These hyperlinked pages are then parsed for new links, and so on,

recursively. The process of downloading and indexing Web pages is a very

complicated and time consuming task. For example, if a Web crawler where to only

download one page at a time, covering the internet would take a number of years.

Instead, Web crawlers generally download thousands of pages in a single go and

process them in parallel The Web Robots Page (2008). The crawler will be discussed

in more detail in chapter five.

Figure 4.1 : Search Engine Architecture

23

4.2.2 Indexing

The index manager is at the heart of any Search Engine. It takes all the documents

that have been processed by the Crawler, and for each document it extracts a set of

terms that will be used to aid in the retrieval of that document at a later stage. These

terms, often referred to as Index Terms, provide a logical view of the document

Baeza Yates et al (1999). Traditionally, index terms would be manually defined and

would only represent a small subset of the total document content. However,

advances in computing are now making it possible to represent a document by its full

set of keywords. Baeza Yates et al (1999) refers to this as a full text logical view.

However, even though modern computer systems have the capacity to handle large

sets of index terms it is still sometimes necessary to reduce these for efficiency

purposes. This is normally achieved by applying a set of intelligent text operations to

the text. These text operations attempt to create a set of index terms that make best

use of the resources available and that accurately match potential user query terms

www.csee.umbc (2008). The following table 4.1 shows some of the text operations

that can be applied G.Saltonl (1989).

Table 4.1 : Text Operations

Text Operation Description

Lexical Analysis Conversion of a byte stream into a set of tokens.

Elimination of Stopwords Removes words that tend not to enforce semantic content of the

document. E.g. the, of, and, a, in, to, is for, with, are, etc…

Stemming Reduction of terms to a single stem form by removing suffixes

and prefixes such as

–‘s, -ing, -ed, -s, …

in-, ad-, pre-, sub,…

Building a thesaurus Build a thesaurus for alternatives to the terms identified after

applying above text operations.

In Chapter 5 some of these operations will be covered in detail.

24

Once the set of index terms has been properly identified the process of indexing the

documents is carried out. In many Search Engines this is achieved by using a

technique known as inverted file indexing. Basically, an inverted file is a list of

sorted index terms where each term maintains a set of pointers to the documents in

which it occurs. However, at this point it is worth noting that in addition to the

complexities of creating the initial inverted file, one major problem associated with

this technique is in the maintenance of the index file itself. Quite often, it is

necessary to add, remove or modify the terms in the index when new documents

become available or when existing documents are removed from the document set.

Traditionally, this update would be achieved by the index manager creating a new

inverted file and destroying the old one. This technique can be quite time consuming

especially when the document set being indexed is large. In the research a fixed

inverted file technique will be used, because of using desktop application with fixed

already crawled documents Huang.L (2008).

4.2.3 Search Interface

The search interface is the visible part of a Search Engines Darnell.R (2008).

The search interface can be divided into three distinct areas, two of which provide the user

interface. These are the:

Query Interface

Ranking software

Results Interface

4.2.3.1 Query Interface

The query interface provides the users with an interface that will allow them to

submit a query to the underlying Search Engine. In general this interface simply

presents the user with a simple edit box into which a set of words can be typed; this

is often referred to as a keyword search.

It is understandable that a user would expect that any given set of keywords would

result in the same query in all Search Engines. However, this is not always the case,

25

as Baeza Yates et al (1999) points out, in AltaVista Search Engine (2008) a sequence

of words is a reference to the union of all the Web pages having at least one of those

words, while in HotBot it is a reference to the Web pages having all the words. In

addition to simple keyword searches, most Search Engines will also provide a query

interface for complex queries that require techniques such as Boolean operations,

phrase searches, proximity searches etc.

This is illustrated in Figure 4.2 which shows the advanced options provided by

Google Search Engine.

Google’s advanced search provides a comprehensive range of filtering techniques

including phrase matching, word exclusion, file format selection and even the

restriction of a search to particular domains.

Figure 4.2 : Google advanced Search

26

As an alternative to the typical query interface outlined above, other Search Engines

such as Yahoo, LookSmart and Magellan use a technique known as the search

directory technique. A search directory allows hierarchical searches, starting with

general subject headings and moving down to increasingly more specific

subheadings.

The searching is done through the use of fixed menu categories, arranged in a

hierarchical fashion. The user simply clicks on a category of interest and is presented

with all of the sub-categories contained within. The user continues this navigational

approach until satisfied with the results.

This search technique is considered to be quite good for scenarios where the user is

unsure of which keywords to use, however, it should be noted that if the search

directory allows the people submitting the content to chose their own categories,

rather than using reviewers to categorise site submissions, then the quality of the

system database can be affected, and the data content may be placed in unsuitable

categories.

4.2.3.2 Ranking Software

The ranking software is the component of a Search Engine that turns a user request

into a set of retrieved documents. As Marendy.P (2001) points out, this software is

responsible for sifting through the data in the indexes to find pages that are

deemed relevant, and producing a ranked output of those pages Marendy.P (2001).

There are a number of techniques that have been developed to rank retrieved

documents. They fall into two categories, those based on classical information

retrieval techniques and those specifically developed for the Web.

The two most popular types of ranking algorithms that are used today are based on

the classical Boolean and Vector State models.

The Boolean model is based on algebraic set theory. For a given user query such as

[‘information’ AND ‘retrieval’] the documents within the set are examined to

determine which ones share the same terms as the query. If any document shares the

same terms then it is included in the result set otherwise it is not. In its most absolute

27

form the Boolean model insists that exact matches are found and gives no precedence

to documents which have a greater frequency of the query term occurrences.

The vector state model, on the other hand, takes a completely different approach to

relevancy and ranking. In this model each document is modelled in software as a

vector, each coordinate relating to a particular attribute of the document. When a

query is submitted a vector is produced for it and a ranking for each document is

determined based on each document’s distance to the query Kobayashi.M et al

(2000).

A traditional method for determining this distance is based on the computation of the

angle defined by the query and document vectors. Although becoming popular the

vector state model is considered impractical for large databases such as the World

Wide Web.

With the Web becoming ever more popular as an information retrieval system,

certain researchers have proposed information retrieval techniques that incorporate

the use of the structural components of the Web-pages themselves. Carriere and

Kazman (1997) propose a model built around the connectivity of pages. After a

keyword query has been submitted, a set of results known as the hit set is returned.

This is converted into a neighbour set, which contains for each node in the hit set, all

the nodes that it links to or that link to it.

The connectivity of a page can then be determined by the total number of incoming

and outgoing hyperlinks to that page. The pages are ranked, giving the highest rank

to the most highly connected pages.

Carriere and Kazman (1997) have found that by doing this they are able to pinpoint

hot spots that are particularly relevant to the user’s query. In addition they have also

extended their model to search beyond the returned result set to locate interesting

pages that are highly connected to those returned by the original query. Google

which indexes over 8 billion Web pages is just one example of a commercial Search

Engine using such technology Kobayashi.M et al (2000).

28

Lawrence and Sergey Brin (1998) founded instead of focusing on content-based for

ranking the hits it focuses on ranking the documents off-line of user through the inner

and outer links that’s associated with each document Brin. S. et al (1998).

Assume that page A has pages T1, T2,…,Tn which point to it. And parameter d is a

damping factor which can be set between 0 and 1 (often d assigned at 0.85). Also,

C(A) is considered as the number of links going at of page A. the Page Rank of a

page A is as following :

It is obvious that Page Rank dose not rank Web sites as a whole, but is determined

for each page individually. Further, the Page Rank of page A is recursively defined to

be the Page Rank of those pages which link to page A . By recursion, Page Rank

computations repeated several times until the number stop changing much. This can

be considered as iteration or recursion stopping condition.

4.2.3.3 Results Interface

The human-computer interface is one aspect of the Search Engine technology that is

less well understood. There are a number of reasons for this, but in part it is because

humans are complex creatures and they tend to be more difficult to characterize and

measure than standard computer systems. It is also because Search Engines often

return extremely large result sets of data which, includes relevant results, as well as

many irrelevant ones.

  




 )(

)(
)(

)(
)1(

)1(1)(TnC
TnPR

TiC
TiPR

TC
TPRddAPR  4.1

Brin. S. et al (1998).
where:

PR(A): is the Page Rank of page A.
PR(Ti): is the Page Rank of page Ti which is a link to
 page A.
C(Ti) : is the number of outbound links on page Ti.
d : is a damping factor which can be set between 0 and 1.

29

This provides complications for the users in their filtering process. Studies in this

area have lead to a growing technology called information visualization, which

attempts to provide visual depictions of very large information spaces in a way that

benefits the user filtering process. Traditional Search Engines such as Google and

Yahoo Search Engine (2008) tended to return lists of matched Web pages, known as

hit lists shown in Figure 4.3. Often these results are accompanied by a score that is

intended to indicate the relevance of each node.

Figure 4.3: Google hit list (results)

However, this method possesses a number of problems. Firstly, as already

mentioned, the result set may often contain results that are of no relevance to the

user. Secondly, if the result sets are particularly large the user may ignore results that

have been ranked at the lower end of the list but may be relevant to their search.

Because users don’t necessarily know what ranking mechanism the Search Engine is

using to calculate the score they can’t be sure if the score produced is an accurate

reflection of the result relevance.

For example, a user that submits a query [‘hypertext’ AND ‘indexing’ AND

‘retrieval’] could be presented with a hit list where documents with all the keywords

30

are given the highest scoring. However, the user may be interested in results that

have a higher proportion of the term ‘indexing’. Unfortunately, with traditional

systems, they would have to review the documents before obtaining a clear

indication as to their relevance. In the following text the attempt will be to outline a

number of alternative visualization techniques:

A. One alternative as outlined by Liu.B et al (2002) is to use hierarchical

clustering. Hierarchical clustering produces a nested sequence of clusters

which form a tree like structure. The bottom nodes of the tree represent single

Web pages, these are combined so as pages that are most similar are clustered

together under a single node. The process continues up each level until all

pages are merged into a single cluster known as the root cluster.

In the schematic example in Figure 4.4 we have 5 Web pages represented as

clusters at the bottom of the tree. Cluster 6 is formed by the merging of

clusters 1 and 2. Clusters 3 and 6 are then merged to form cluster 8 and so on

until all pages are clustered under the topmost node which is cluster 9.

With each node valuable pieces of summary information such as keywords

and domain information are also stored to aid the user. Using the tree the user

can drill down and roll up to see pages that are contained at any level of

granularity. At any stage, the user can ‘click’ on a cluster to receive the

summary information. Clustering the pages this way takes advantage of the

superb visual capability of human users to enable them to spot interesting

patterns, pages and information easily Liu.B et al (2002).

B. The NIRVE prototype as illustrated in Figure 4.5. It takes the idea of

clustering one step further. Rather than simply allowing the Search Engine to

cluster pages based on its internal ranking algorithm the NIRVE prototype

allows users to dynamically map a subset of keywords of the query into a

concept. Names and colours can be assigned to these concepts which are

displayed as an interactive legend at the bottom of the document space

Sebrechts.M.M et al (1999).

31

 Figure 4.4: Hierarchical Clustering

For each retrieved document a concept profile (keywords, word frequencies)

produced based on the frequency of concept keywords that are contained

within the document. Clusters are then defined based on the sets of

documents that have the same concepts associated with them. Instead of

simply presenting these concepts in a tree form as before the NIRVE

prototype represents each cluster as a small box on the face of a globe.

The cluster box contains a colour bar chart indicating the average concept

profile of the documents it contains. The thickness of the cluster box is

proportional to the number of documents within the cluster. The latitude of

the cluster icon on the globe is determined by the number of concepts

exemplified by the cluster i.e. the more concepts a cluster contains the further

‘north’ it will be located. In addition to this, clusters that differ by a single

concept are connected by an arc whose colour represents the conceptual

difference between them.

Selecting any cluster on the globe causes a 2D-document rectangle to be opened

which contains a list of all documents within the cluster. Although users of the

NIRVE prototype felt that the visualization techniques were quite intuitive it was

found that as more concepts were added and the number of clusters increased it

became more difficult to use the system. The reason for this was that, due to the

increased number of clusters their size on screen for a given view decreased, leading

32

to difficulty distinguishing the concept colours. In addition, once more than eight

concepts were defined it became difficult to read concept labels and keywords in the

legend.

C. Hearst outlines a more compact form of visualization display through the use

of the TileBars interface. TileBars are graphical bars that are displayed next

to the title of retrieved documents. They attempt to illustrate to the user both

the sections of the documents that contain the keywords as well as the

frequency with which these keywords appear in the document Hearst.M.A

(1995).

Figure 4.5: NIRVE Prototype

The bars are subdivided into columns where each column represents a section

within the text. Each column is further subdivided into coloured rows, where

each row and colour represents a keyword within the query. Thus it ends up

with a bar comprised of a set of coloured squares. The darkness of each

33

square is intended to correspond to the frequency of the query term within the

text segment, the darker the square the more occurrences within the text.

White indicates no match at all. This method aims to provide the user with an

overview of the document at a glance.

Figure 4.6 provides an example where the query indicated the retrieval of

documents with the terms [‘osteoporosis’ OR ‘prevention’ OR ‘research’].

 Figure 4.6: Tilebar Visualization

The visualisation techniques outlined above are just a few of the many being researched

today. Others include the ‘Bullseye’ view for connectivity based retrievals proposed by

Carriere and Kazaman (19997) as well as simple 2D grid models as outlined by

Sebrechts.M.M et al (1999).

4.3 Google Search Engine As a Prototype

The amount of the information on the Web is growing rapidly, as well as the number of

new user inexperienced in the art of Web research. So, it becomes necessary to create a

Search Engine which scale even today’s presents many challenges.

34

Such a Search Engine must have a fast crawling technology to gather the Web documents

and keep them up to date. Storage space must be used efficiently to store indices and

optionally the documents themselves. In the needed Search Engine the indexing system

must process hundreds of gigabytes of data efficiently, and the queries must be handled

quickly, at a rate of hundreds to thousands per second.

The word Google comes from the word googol, which means 10100 . The Google Search

Engine (www.Google.com) heavily uses the structure present in hypertext to provide much

quality search results.

Google does not require nor request submission to their site. They don’t ask for payment to

be listed. They have a technology called spider that crawls the Internet looking for content

to list. This includes Web pages, Adobe Acrobat (PDF) files, images, news, and Usenet

discussion groups. The cost of indexing and storing text or Hypertext Markup Language

(HTML) will eventually decline relative to the amount that will be available Brin. S. et al

(1998).

4.3.1 System Features

The Google Search Engine has two important features that help it produce high

precision results. First, it makes use of the link structure of the Web to calculate a

quality ranking for each Web page. This ranking is called PageRank. Second, Google

utilizes link to improve search results.

4.3.1.1: Page Rank

Google ranking algorithm is based on how each Web page is connected. The page rank

algorithm uses equation 4.1.

 The Google Search Engine uses a simple algorithm to calculate page rank. It simulates

users using the Search Engine and applies the equation to rank the Web pages. It allows

rapid calculation: about 26 million Web pages can be computed in a few hours.

4.3.1.2 Anchor Text

Most Search Engines associate the text of a link with the page that the link is on.

However, Google associates it with the page that link points to it. There are several

35

advantages for the latter approach. First, anchors often provide more accurate

descriptions of Web pages than the pages themselves. Second, anchors may exist for

documents which cannot be indexed by a text-based Search Engine, such as images, programs,

and databases. So the Search Engine would not return non-existing pages to user. Google

has over 259 million anchors indexed for their crawl of 24 million pages. The idea of

anchor text was originated by World Wide Web Worm (WWWW), Hearst.M.A (1995),

Oliver.A.McBryan (1994).

4.3.2 Google System Anatomy

First, a high level discussion of architecture will be provided. Then, there is some in-depth

description of information data structures. Finally, the major applications: crawling,

indexing, and searching.

4.3.2.1 Google Architecture Overview

Most of Google is implemented in C or C++, and can run in either Solaris or Linux. The

whole system work is illustrated in Figure 4.7.

In Google, the URL Server sends lists of URLs to be fetched by the crawlers. The crawlers

download pages according to the list and send the downloaded pages to the Store Server.

This is done by several distributed crawlers. The Store Server compresses the pages and

stores them in the repository. Every Web page has an associated ID number called a

docID, which is assigned whenever a new URL is parsed out of a Web page.

The indexing function performed by the indexer and the sorter. The indexer performs a

number of functions. It reads the repository, uncompresses the documents, and parses

them. Each document is converted into a set of word occurrences called hits.

The hits contain information about a word, position in document, an approximation of font

size, and capitalization. The indexer distributes these hits into a set of “barrels” and creates

a partially sorted forward index.

The indexer performs another important function. It parses out all the links in every Web

page and stores important information about them in an anchors file. This file contains

enough information to determine where each link points from and to, and the text of the

link. After that, the URL Resolver reads the anchors file and converts relative URLs into

36

absolute URLs and in turn into docID (as an example: http://www.google.com/

209.85.129.104 1950). It puts the anchor text into the forward index, associated with

the docID that the anchor points to. It also generates a database of links, which are pairs of

docIDs, for storing links and docIDs. The database is used to compute the PageRank for all

the documents.

Figure 4.7. The architecture of Googol Search Engine

The Sorter takes the barrels and resorts them by wordID instead of docID in order to

generate the inverted index. Also, the Sorter produces a list of wordIDs and offsets into the

inverted index. A program called DumpLexicon takes this list together with the lexicon

produced by the indexer and generates a new lexicon to be used by the searcher. The

searcher is run by a Web server and uses the lexicon built by DumpLexicon together with

the inverted index and the PageRanks to answer queries Brin. S. et al (1998).

37

4.3.2.2 Google Data Structure

Google's data structures are optimized so that a large document collection can be crawled,

indexed, and searched with little cost. Although, CPUs and bulk input output rates have

improved dramatically over the years, a disk seek still requires about 10 ms to complete.

Google is designed to avoid disk seeks whenever possible, and this has had a considerable

influence on the design of the data structures.

Figure 4.8 Repository Data Structure

Google system is designed from virtual files spanning called BigFiles, repository which

contains the full HTML for every Web page as Figure 4.8 shows, document index

which keeps information about each document it is fixed width Index sequential access

mode (ISAM) index, ordered by docID, lexicon, hit list corresponds to a list of

occurrences of a particular word in a particular document including position, font, and

capitalization information, forward index which is actually already partially sorted; it is

stored in a number of barrels (used 64). Each barrel holds a range of wordID's, and

inverted index which consists of the same barrels as the forward index, except that they

have been processed by the sorter as shown in Figure 4.9.

38

 Figure 4.9 Forward and Reverse Indexes and the Lexicon

39

Chapter Five

Design and Implementation

Of the Proposed System

40

5.1 Introduction

The Internet forms a distributed library of billion of pages, one that is accessible to

anyone, anywhere in the world, at the click of the mouse. Every day hundreds of millions

of “trips” to the library start with a query to an Internet Search Engine. For example if the

query is “library of the congress” Google Search Engine will return in less than a second

a list of 38,900,000 pages, stored by their usefulness to the query. This unprecedented

ease of access to information has revolutionized the way research is done by students,

scientists, journalists, shoppers, and others. It opens up an online marketplace of

products, services, and ideas that benefits both information providers and seekers; sellers

and buyers; consumers and advertisers.

The design of a good Search Engine confronts many competitions. In particular, the

Search Engine must deal with huge volumes of data. Unless it has unlimited computing

resources and unlimited time, one must carefully decide what Web pages to retrieve and

in what order. Nowadays, the most familiar Search Engine is Google Search Engine that

is explained explicitly in the previous chapter (section 4.3).

In this chapter, several enhancements are proposed by constructing a fresh Search

Engine. The goal from these propositions is to retrieve a well ranked result. The goal will

be achieved by implementing the following issues:

1. Enhancing indexing process by extracting several factors. The factors are used to

provide more accurate information about the content of the document.

2. Implementing a new ranking module used for computing the rank score according to

the Global Ranking (ranking that depends on the hyperlink structure and features

among Web pages) and Local Ranking (ranking that depends on the relevancy

between the given query and Web pages).

55..22 PPrrooppoosseedd SSyysstteemm AArrcchhiitteeccttuurree

The proposed system is constructed in a combined link-based and content-based response

fashion, as it is shown in Figure 5.1. The search starts when the user posts a query to the

Search Engine interface. The query is forwarded to the query optimizer and then once it

is constructed, the query is posted to the searcher, the searcher performs several

41

operations to retrieve the required documents from the repository, and then the

documents are ranked by the ranker. Finally, the results are browsed to the user as a

sorted list of pages’ title and their URL according to their accurate ranking score.

The system is partitioned into two parts depending on connectivity with the user. These

parts are off-line part, and on-line part. Each part of the system will be described in detail

as follows:

5.2.1 Off-Line Part

This part is run independently from the end-user. It consists of the following sub-systems

and databases:

A. Crawler

A crawler is a program that collects Web pages, commonly for use by Search Engine

Brian Pinkerton (1994). The basic algorithm executed by any Web crawler takes a list

of URLs as its input and repeatedly executes the following steps. Remove a URL from

the URLs list, download the corresponding document, and extract any links contained in

it. For each of the extracted links, ensure that it is an absolute URL, add it to the list of

URLs, and repeat the process again. This basic algorithm requires a number of

functional components:

1. A component to store the list of URLs.

2. A component for downloading documents using the HTTP protocol.

3. A component for extracting links from HTML documents.

4. A component for determining whether a URL has been encountered before.

The main question here is: How should a crawler select URLs to scan from its queue

of known URLs? If a crawler intends to perform a single scan of the entire Web, and

the load placed on target sites is not an issue, then any URL order will suffice. That is,

eventually every single known URL will be visited, so the order is not critical.

42

Query

Result

Ranked
Result

Query

Ranker

Link
Based-
Ranker

Term
Based-
Ranker Searcher

 Search Valid

 Query

Search
Engine
Indices

Q
u

ery T
erm

s

URLs info
Links

C
r
a
w
l
e
r

I
n
d
e
x
e

r

Repository includes:
 (*.html, *.htm)

U
ser In

terface

U
n

m
atch

ed

Q
u

ery

Unmatched
Query

Invalid &
Unmatched
Query

URL

Terms-Information

Off-Line Part

On-Line Part

Pages

Query Optimizer

Extracted
Information

Downloaded
Pages

URLs info

Figure 5.1: The Proposed Search Engine Diagram

URLs info

43

However, most crawlers will not be able to visit every possible page for two main reasons:

1. The crawler may have limited storage capacity, and may be unable to index or

analyze all pages. Currently, the Web contains several terabytes of data and is

growing rapidly, so it is reasonable to expect that most systems will not want or

will not be able to cope with all that data Brewster Kahle (1997).

2. Crawling takes time, so at some point the crawler may need to start revisiting

previously scanned pages, to check for changes. This means that it may never get to

some pages. It is currently estimated that over 600GB of the Web changes every

month Brewster Kahle (1997).

In either case, it is important for the crawler to visit “important” pages first, so that the

fraction of the Web that is visited is more meaningful. The following sections will present

several different useful definitions of importance, and develop crawling priorities so that

important pages have a higher probability of being visited first.

Several importance measures were investigated to establish site importance given a Web

page P, the importance of the page I (P) will be defined in one of the following ways:

1. Similarity to a Driving Query Q. A query Q drives the crawling process, and I(P) is

defined to be the textual similarity between P and Q. IS(P) will be used to refer to the

importance metric in this case. Also IS (P, Q) refers to make the query explicit.

To compute similarities, each document (P or Q) can be viewed as an n-dimensional

vector (w1, . . . ,wn). The term wi in this vector represents the ith word in the vocabulary. If

wi does not appear in the document, then wi is zero. If it does appear, wi is set to represent

the significance of the word. One common way to compute the significance wi is to

multiply the number of times the ith word appears in the document by the inverse

document frequency (idf) of the ith word. The idf factor is one divided by the number of

times the word appears in the entire “collection,” which in this case would be the entire

Web. The idf factor corresponds to the content discriminating power of a word: A term

that appears rarely in documents (e.g., “queue”) has a high idf, while a term that occurs in

many documents (e.g., “the”) has a low idf. The similarity between P and Q can then be

defined as the inner product of the P and Q vectors. Another option is to use the cosine

44

similarity measure, which is the inner product of the normalized vectors. Note that if idf

terms haven’t been used in the similarity computation, the importance of a page, IS (P),

can be computed with “local” information, i.e., just P and Q. However, by using idf

terms, it can be computed with “global” information. During the crawling process the IS`

(P) is used to refer to the estimated importance of page P, which is different from the

actual importance IS (p) that is computable only after the entire Web has been crawled. If

idf factors are not used, then IS` (p) = IS (p) Brewster Kahle (1997), Budi Yuwono et al

(1995). The similarity based algorithm is given in Algorithm 5.1.

Algorithm 5.1 Crawling algorithm (similarity based)
// URL : Unified recourse locator.
// hot_queue: Queue that holds the URLs which contains search words.
// url_queue : Queue that holds URLs.
Input: starting_url: seed URL
Procedure:
{1} enqueue(url_queue, starting_url)
{2} while (not empty(hot_queue) and not empty(url_queue))
{3} url = dequeue2(hot_queue, url_queue)
{4} page = crawl page(url)
{5} enqueue(crawled_pages, (url, page))
{6} url_list = extract_urls(page)
{7} foreach u in url_list
{8} enqueue(links, (url, u))
{9} if (uurl_queue and uhot_queue and (u,-) crawled_pages)
{10} {if (u contains computer in anchor or url)
{11} enqueue(hot_queue, u)
{12} else
{13} enqueue(url_queue, u)}
{14} reorder_queue(url_queue)
{15} reorder_queue(hot_queue)
{16}end while
Function description:
dequeue2(queue1, queue2): if (not empty(queue1)) dequeue(queue1)
 else dequeue(queue2)

45

2. Backlink Count: The value of I (P) is the number of links to P that appear over the

entire Web. IB (P) will be used to refer to this importance metric. Intuitively, a page P

that is linked to by many pages is more important than one that is seldom referenced.

This type of “citation count” has been used extensively to evaluate the impact of

published pages. On the Web, IB (P) is useful for ranking query results, giving end-

users pages that are more likely to be of general interest. Note that evaluating IB (P)

requires counting backlinks over the entire Web. A crawler may estimate this value with

IB` (P), the number of links to P that have been seen so far Budi Yuwono et al (1995),

Junghoo Cho et al (1998).

3. PageRank: The IB (P) metric treats all links equally. Thus, a link from the Yahoo

home page counts the same as a link from some individual’s home page. However,

since the Yahoo home page is more important (it has a much higher IB count), it would

make sense to value that link more highly. The PageRank backlink metric, IR (P),

recursively defines the importance of a page to be the weighted sum of the importance

of the pages that have backlinks to P. Such a metric has been found to be very useful in

ranking results of user queries. IR` (P) will be used for the estimated value of IR (P)

when there is only a subset of pages available.

More formally, if a page has no outgoing link, assume that it has outgoing links to every

single Web page. Next, consider a page P that is pointed at by pages t1, . . . , tn. Let ci be

the number of links going out of page ti. Also, let d be a damping factor (whose intuition

is given below). Then, the weighted backlink count of page P is given by:

IIRR ((PP)) == ((11 -- dd)) ++ dd [[IIRR ((tt11))//cc11 ++ ·· .. IIRR((ttii//ccii))·· ·· ++ IIRR((ttnn))//ccnn]] ((55..11))

This leads to one equation per Web page, with an equal number of unknowns. The

equations can be solved for the IR values. They can be solved iteratively, starting with

all IR values equal to 1. At each step, the new IR (p) value is computed from the old IR

(ti) values (using the equation above), until the values converge. Algorithm 5.2 shows

the link based algorithm Brin.S et al (1998)..

As an example of how to find IR(P) for a couple of pages Figure 5.2 demonstrates that

46

Suppose the damping factor = 0.85.

IR(A) = 0.15 + 0.85 IR(C)

IR(B) = 0.15 + 0.85 (IR(A) / 2)

IR(C) = 0.15 + 0.85 (IR(A) / 2 + IR(B))

These equations can be solved by assuming at first IR(A) , IR(B) , IR(B) to be 1.

IR(A) = 1.193633507

IR(B) = 0.657294240

IR(C) = 1.215994345

The page rank [IR(P)] results after 10 iterations.

4. Forward Link Count: For completeness it may considers a metric IF (P) that

counts the number of links that emanate from P. Under this metric, a page with many

outgoing links is very valuable, since it may be a Web directory. This metric can be

computed directly from P, so IF` (P) = IF (P). This kind of metric has been used in

conjunction with other factors to reasonably identify index pages.

Figure 5.2: Example of small Web

5. Location Metric: The IL (P) importance of page P is a function of its location, not

of its contents. If URL u leads to P then IL (P) is a function of u. For example, URLs

ending with “.com” may be deemed more useful than URLs with other endings, or

URLs containing the string “home” may be more of interest than other URLs. Another

47

location metric that is sometimes used considers URLs with fewer slashes more useful

than those with more slashes. All these examples are local metrics since they can be

evaluated simply by looking at the URL u. As stated earlier, the importance metrics can

be combined in various ways. For example, a metric may defined as:

IC (P) = k1 · IS (P,Q) + k2 · IB(P) ………………………………. 5.2

For some constants k1, k2. This combines the similarity metric (under some given query

Q) and the back-link metric. Pages that have relevant content and many back-links

would be the highest ranked Junghoo Cho et al (1998).

Two main aspects could be devised. In spidering algorithms which consider only

PageRank and Backlink count, the PageRank strategy outperforms the other due to its

non–uniform traversing behaviour: going in Depth when the importance of the children

Algorithm 5.2 Crawling algorithm (link based)
// URL : Unified recourse locator.
// hot_queue: Queue that holds the URLs which contains search words.
// url_queue : Queue that hold URLs.
Input: starting_url: seed URL
Procedure:
{1} enqueue(url_queue, starting_url)

 {2} while (not empty(url_queue))
{3} url = dequeue(url_queue)
{4} page = crawl_page(url)
{5} enqueue(crawled_pages, (url, page))
{6} url_list = extract_urls(page)
{7} for each u in url_list
{8} enqueue(links, (url, u))
{9} if (uurl_queue and (u,-)crawled_pages)
{10} enqueue(url_queue, u)
{11} reorder_queue(url_queue)
{12} end while
Function description:
enqueue(queue, element): append element at the end of queue
dequeue(queue) : remove the element at the beginning of queue and
 return it
reorder_queue(queue) : reorder_queue using information in links

(refer to Algorithm 5.3)

48

is high enough, moving to the siblings whenever children nodes contain unimportant

documents.

On the other hand, when a similarity driven crawling algorithm is used the PageRank

strategy is comparable to Breadth First traversal. This happens because when a page is

authoritative with respect to a particular topic, its children are likely to have a high

importance too Budi Yuwono et al (1995), Junghoo Cho et al (1998).

Running a Web crawler is a challenging task. There are complex performance and

reliability issues. Crawling is the most fragile application since it involves interacting with

hundreds of thousands of Web servers and various server names which are all beyond the

control of the system.

More than 4000 Web pages from different topics like sports, news, education, etc have

been downloaded to be used as a data set in the proposed Search Engine. By implementing

the basic crawling algorithm the Crawler starts with a seed Web page that is specified by

the administrator. Each Web page is assigned a unique identification number (called

page_id), then the Crawler begins to find all hyperlinks within the Web page (document)

(links ending with .html or .htm).

Algorithm 5.3 Description of reorder_queue () of each
 ordering metric.

{1} breadth first
 do nothing (null operation)
{2} backlink count, IB`(p)
 foreach u in url_queue
 backlink_count{u] = number of terms (-,u) in links
 sort url queue by backlink count[u]
{3} PageRank IR`(p)
 solve the following set of equations:
 IR[u] = (1 - 0.85) + 0.85i(IR[vi]/ci), where
 (vi, u)  links and ci is the number of links in the page vi

 sort url_queue by IR(u)

49

Each link will be determined and checked by Crawler whether it is retrievable link and its

page is able to be indexed or not and to avoid storing the same URL more than one time.

Then, this URL will be assigned a unique page_id and stored into the URL_List that

functions as a queue. Also, the Crawler extracts important information about the links

between two Web pages (source and destination) by parsing the source page. The

information which is considered as a link attributes will be valuable in computation of the

Page Rank during the Link-Based Ranker phase. These attributes are:

1. Distance.

It is represented between the source Web page and the destination Web page. The

distance is determined by if the host-names are different the value of the distance will

be equal to 2; the second case is if both host-names are equal the value will be 1.

2. Visibility of the link.

This attribute is determined by checking specific HTML tags which represent the

style of the text that is used as a link. These two tags are , and <I>, bold and

Italic style respectively. If the text is either bold or italic the value of link visibility

will be equal to 2, otherwise it will be equal to 1.

3. Position of the link.

This attribute is determined by computing the position of URL within the source

page. The source page is partitioned into four parts related to the importance of the

link because the designer of any Web page would replace the most important link at

the beginning of the Web page and so on down to emphasize the importance. The

value of link’s position will be equal to 4 if the link occurs on the first quarter, 3 in

the second quarter lower, 2 in the third quarter, and 1 in the fourth quarter.

Once the Web page has been crawled, files type, and URLs will be stored into the Search

Engine Indices. Then the crawler dequeue another Web page from the queue (URL_List)

to repeat the process.

The Crawler stops when no more un-crawled Web pages exist. After the Crawler finishes

its work, the Indexer and the Link-Based Ranker work simultaneously to save time, using

50

multithreading taking the Web page processed by the crawler directly to the indexer to be

processed while the crawler is fetching the next page.

B. Indexer

The indexer is one of the most complicated and critical process in constructing Search

Engine. The Indexer is used for analyzing the crawled Web pages content keeping

information about each word occurred in an individual Web page. This information is

useful to computing the relevancy between the page and the given query. To extract

information from the page (document, position, word (d, p, w) triple) to emphasize the

importance of the Web page, there exist a number of methods to transform a sequence of

bytes, or characters.

Methods that achieve this goal are used together and refer to their collectivity as term

extraction techniques. Some of these techniques may omit certain words, change their

lexicon, or apply other forms of transformation. Each emitted word w from the above

triple is thus not always an exact match of the word that was encountered in the source

text. More pertinently, searching is primarily based on the emitted triples instead of the

actual text. It is thus understood that term extraction implies rules that can be used to

define formally what a word is in the context of searching a text collection with an

inverted index.

Real text is, of course, not just a stream of words. It comes in a wide variety of formats

and often includes unwanted special characters. Moreover, natural text contains different

words with similar meanings and different forms of the same word, which may be

appropriate for consideration when computing a set of answer documents. Translating

real text into a stream of words is usually partly dealt with by implementing an

appropriate transformation function in the first step of an indexing algorithm. This first

step can be organized into the sequence of methods shown below:

 Document Conversion

It is the first step in translating process which refers to any method that transfers an

input text into a sequence of character codes.

51

 Parsing

Parsing uses an input sequence of characters to determine word boundaries, and

outputs words as (d , p , w). Finding a word boundary can be simple if special

characters such as space, full stops, and semicolons are used. These special

characters and other such symbols are usually excluded from an index, because

their usefulness is limited when searching with methods that are based on the

occurrence of words. Determining the end or the beginning of a word can also be a

hard task in other situations.

 Word Transformation

Word transformation concerns different words with equivalent meanings. It is

sometimes appropriate to return documents, which contain these equivalent words,

as result documents, even if they were not present in the initial query.

In this research, an enhanced Indexer is proposed, which will lead to enhance the quality

of the extracted information that must be more accurate to be useful in describing the

content of the indexed Web pages. Once the enhanced indexer reads the Web page as a

normal text file, it performs the following steps as shown in Figure 5.1:

1. Page Parsing

Most Search Engines are used to convert the whole Web page into a pure text page then

parse it partially. For example, Google Search Engine parses only few hundreds of words

that lies at the beginning of the page. Any parser which is designed to run on the entire

Web must handle a huge array of possible errors. These range from typos in HTML tags

to kilobytes of zeros in the middle of a tag, HTML tags are nested hundreds deep, and a

great variety of other errors challenge anyone’s imagination to come up with equally

creative ones.

In parsing step (in the Enhanced Indexer), each page is fetched from the repository and

parsed into a text file which contains the most important HTML tags. These tags are

support to the Indexer in the next steps in order to extract the information which is

formed, then form accurate attributes for each word occurring in the indexed page.

52

22.. EExxttrraaccttiinngg kkeeyywwoorrddss aanndd tthheeiirr aattttrriibbuutteess

In this step, after parsing process is completed successfully, the lexical tokens are

generated from the text file of the Web pages. Each token is checked whether it is a

HTML tag or a real word. If the token is HTML tag it will be processed in the next step,

but if the token is a real word a negative dictionary (a dictionary that contains the stop

words) is used to remove the noise words that do not reflect the content of the Web page.

The negative dictionary (Stop-Word) exists in the Search Engine Indices.

33.. IInnvveerrtteedd IInnddeexxiinngg

In the final step, each prepared token will be processed as in algorithm 5.4:

while the reading head does not reach the end of the file the Indexer will read the ith token

(where i refer to the word’s number within the page). If the read tokeni is tag it will be

processed by the procedure tag_process(tokeni) which extracts the attributes of its related

word(s). Each tag has different steps of processing which depends on its type. Table 5.1

represents the processing of important HTML tags.

If the token is word and not a noisy word (not stop(wordi)) then, word descriptor will be

extracted, and the word's word_id (identification number of a word in the Lexicon as will

be presented in Table 5.5 will be fetched to store the word_id and word descriptor

attributes in the Inverted Index Table in Search Engine Indices. In the Inverted Index a

mapping between the word_id and the page_id where the word occurs is done.

Algorithm 5.4 Token Processing Algorithm
// Token: set of characters extracted from page.
Input: Tokenized Web page
Output: Inverted Index table
{1} while not file.eof do

[2] if tag(tokeni) then /* i is the ith number of tokens in the Web page */

[3] tag_process(tokeni)

[70] else if word(tokeni) and not stopped(tokeni) then

[71] store(tokeni, attribute)

{2} move to next tokeni

{3} end [while]

53

The information that is extracted in this step can be classified into three classes:

A) Word Descriptor Attributes

These are extracted for each indexed word individually, and stored in the inverted Index

Table. These attributes are:

11.. Word Position.

22.. Word Importance.

33.. Word Style.

44.. Word Size.

55.. Word Font Color.

The format of Inverted Index Table will be illustrated in Table 5.5.

Table 5.1 Tags Processing

Tag Type Processing

<TITLE> Determine the title of the Web page.

<META> Determine Meta data set, Author’s name, publishing date,

modification date, descriptor, and the title if the <TITLE>

tag didn’t exists in the Web page.

<BODY> Determine the general text color of the Web page.

 Determine the (color, and size) of each word occurred in

the Web page.

<H1>...<H6> Determine the style and the size of each word occurred in

the Web page.

, <I>,

<U>

Determine the style of the word occurred in the Web page.

Etc… Etc…

54

B) Page Information Attributes

More types of attributes are extracted during Indexing and stored at the end of Indexing

process. These are stored in Page_Meta_Data Table. These attributes are:

1. Page Title.

2. Author Name.

3. Keywords used in the Web page.

4. Descriptor Terms.

5. Publishing Date.

6. Modification Date.

The format of Page_Meta_Data Table is presented in Table 5.6.

C) Page Descriptor Attributes

Also, another set of attributes is extracted and stored at the end of indexing process.

These attributes are related to the form of the Web page and stored in the

Page_General_Information Table. These attributes are:

1.Number of words in the Web page.

2.The general font color.

3.The general font size.

The format of this table is presented in Table 5.7.

C. Repository

The repository contains collection of Web pages that downloaded by the Crawler. Each

Web page individually is of type (.html or .htm). All these Web pages are indexed by the

enhanced indexing system.

D. Search Engine Indices

It is a database that consists of the following tables:

1. Page_Identification Table:

55

This table is created during the Crawler running interval. The format of this table

is represented in table 5.2.

Table 5.2 Page_Identification Table

page_id

(unique)

page_URL

(full address)

file_type

(.html or .htm)

crawled

(as 0 or 1)

This table consists of four fields:

 page_id: represents the unique assigned identification number for each

individual Web page.

 page_URL: represents the full URL of Web page.

 file_type: refers to the page’s type whether it is .html or .htm.

 Crawled: works as an acknowledgement flag to distinguish between the

crawled and others which have not yet crawled, because of a modification,

or new uploading.

So, this bit is used for reducing the number of revisited pages. Re-crawling or

revisiting to the URL list to crawl the pages depends on several Importance

Metrics that are used to select the starting page. These metrics were

described previously. In Crawler a PageRank Importance Metrics is used

and the implemented algorithm is represented in algorithms 5.2 and 5.3.

2. Stop_Word Table:

Stop_Word Table contains the noisy words. The word in noisy_word field is

used to remove the noisy words from the converted page. The format of the

Stop_Word Table is presented in table 5.3.

Table 5.3 Stop_Word Table

noisy_ word

56

noisy_word: represents the set of words which must be removed from the

text file, as in table 5.4.

Table 5.4 Noisy_Words

a and are as at be but

for if in into is it by

no not of on or as such

et that the their then there these

they this to was will with etc...

3. Inverted Index Table:

This table is created during the Indexing phase. The information in this table is

stored at each word occurrence and this information is used in computing the

relevancy of the page depending on every term occurred within the given query

(computed by Term-Based Ranker). Table 5.5 presents Inverted Index Table.

Table 5.5 Inverted_Index Table

word_id

(unique)

page_id

(unique)
Word position importance style color Size

 word_id: represents a unique number of each word.

 page_id: represents a unique page number that contains the words, whose ids

are identified in word_id field.

57

 Word: represents the word extracted from the page.

 Position: is the offset of the word within the Web page. The number in this

field is related to the length of page (number of words in the page).

 Importance: The importance of a word is determined by specifying the

location where the word occurs. For example, if the word occurs in the Title

of the Web page the word will have a high importance which is6, 4 if it

comes in Meta data and 2 other wise.

 Style: This attribute represents (Bold, Italic, Underline) styles where each

case has its unique identified number. If the style of a specific word is (Bold

or Italic or Underline), the word’s style value will be equal to 2, else is 1.

 Color: represents the font color for the current word. It takes 2 if the color is

different than the general color and 1 if it is the same as the general color.

 Size: represents the font size for the current word.

4. Page_Meta_Data Table:

The Page_Meta_Data Table contains seven fields as illustrates in table 5.6.

Table 5.6 Page_Meta_Data Table

page_id

(unique)
page_title author_name keywords descriptor modification_date publishing_date

 page_id: as described in table 5.5.

 page-title: the title is extracted either from the <TITLE> tag or from the

<META> tag when its attribute name equals title then the content of the

content attribute represents the Web page title. For example.

<title> Philadelphia university / Jordan </title>

 author_name: the name of the author is extracted from the <META> tag

when its attribute name equals author then the content of the content

attribute represents the Web author name. For example,

58

<META name= “author” content= “Baeza-Yates”>

 keywords: the keywords are extracted from the <META> tag when its

attribute name equals keyword then the content of the content attribute

represents the most frequently used word which is related to the topic of the

Web page.

 Descriptor: the descriptor is extracted from the <META> tag when its

attribute name equals descriptor then the content of the content attribute

represents a simple description about the subject of the Web page.

 Modification_date: Modification date refers to the date that the Web page is

uploaded again to the crawler because of any simple modification or updating

happening on this Web page. It is extracted from the <META> tag when its

attribute name equals (update, modfdate, or any word refers to the

modification_date), then the content of the content attribute represents the

Web modification date.

 Publishing_date: Publishing date refers to the date that this Web page is

published or uploaded at first time to the crawler. It is extracted from the

<META> tag when its attribute name equals (pubdate, publishdate, or any

word refers to the publishing_date), then the content of the content attribute

represents the Web publishing date.

5. Page_General_Information Table:

This table consists of four fields as illustrated in table 5.7.

Table 5.7 Page_General_Information Table

Page-Id

(unique)
number of words color size

59

 Page_id: as described in table 5.5.

 Number of words: refers to the total number of different words occurred in

the page_id specified page.

 Color: represents the general font color for the current page_id.

 Size: represents the general font size for the current page_id.

E. Link-Based Ranker

The ranker system consists of two subsystems, the link-based ranker subsystem and the

term-based ranker subsystem. In this section the link-based ranker will be presented. This

subsystem is working in off-line time; it depends on the hyperlink structure of the Web

page. In this research, several modifications are proposed to achieve a high quality

ranking score by implementing the improved PageRank algorithm on the Web pages.

These are:

1. Additional Factors Influencing PageRank

The original PageRank calculations are based on the number of inbound links and

outbound links only. But by adding the additional factor to the original PageRank

equation (4.1) the improved PageRank will achieve more accurate values. Therefore, the

following modification of the PageRank algorithm is assumed:

     
     

   
























 ATnIMP

TnC

TnPR
ATIMP

TC

TPR
ddAPR ,,1

1

1
1  ……(5.3)

Where, IMP(Ti,A) represents the evaluation of the (inbound or outbound) link which

points from page Ti to page A. IMP(Ti,A) may consist of several factors, each of which

has to be determined only once. Each link has three important factors that are extracted

during the crawler running phase. These factors are,

1. Distance between the Web pages which is represented by D in equation (5.4).

2. Visibility of a link which represented by V in equation (5.5).

3. Position of a link within a Web page which is represented by P in equation (5.5).

60

To implement the evaluation of the linking page into PageRank, the evaluation factor of

the modified algorithm must consist of several single factors. For a link that points from

page Ti to page A, it can be given as follows:

     TiDATi,VPATi,IMP  …...………………………(5.4)

where D(Ti) represents the distance between Web pages, and VP(Ti,A) is the weight of

a single link within a page by its visibility or position, which can be given as follows,

     
  







 


TiSUM

A,TiPA,TiV
A,TiVP …………...………………(5.5)

where P(Ti,A) represents the position of a link within a document. P(Ti,A) equals 4 if

the link is on the first quarter of the page, 3 if the link is on the second, 2 one third of

the page, and 1 if the link is on the forth quarter of the page. V(Ti,A) represents the

visibility of a link. V(Ti,A) equals 1 if a link is not particularly emphasized, and 2 if the

link is, for instance, bold or italic. SUM(Ti) is the summation of the multiplicative

orrelation between V and P, which can be given as follows,

       



iK

TkTiVTkTiPTiSUM ,, …….……………………(5.6)

Additionally, an evaluation of links by the distance between pages as a means to avoid

the artificial inflation of PageRank is used because of the bigger the distance between

two pages, the less likely has one Webmaster control over both. A criterion for the

distance between two pages will be if they are on the same domain or not, distance

equals 1 if in the same domain and 2 if they are from different domains. In this way,

internal links would be weighted less than external links. In the end, any general

measure of the distance between links can be used to determine such a weighting. This

comprehends if pages are on the same server or not. This factor is referred to in

equation (5.4) by the term D(Ti).

Those factors reflect the probability for the random surfer clicking on a link on a

specific Web page. In the original PageRank algorithm, this probability is given by the

term (1/C(Ti)), whereby the probability is equal for each link on one page. Assigning

different probabilities to each link on a page can, for instance, be realized as follows,

61

 Figure 5.3 Web Pages with its Links Attributes

Consider a Web consisting of four pages A, B C, and D where each of these pages has

two outbound links to the near pages as in Figure 5.3. The links are weighted by two

evaluation factor V and P. The multiplicative correlation between V and P for the links

in this example is evaluated as follows:

V(A,B) * P(A,B) = 1*1 = 1

V(A,C) * P(A,C) = 1*3 = 3

V(B,A) * P(B,A) = 2*2 = 4

V(B,D) * P(B,D) = 1*2 = 2

V(C,A) * P(C,A) = 2*2 = 4

V(C,D) * P(C,D) = 1*2 = 2

V(D,B) * P(D,B) = 2*2 = 4

V(D,C) * P(D,C) = 3*1 = 3

62

For the purpose of determining the single factors IMP, the evaluated links must not

simply be weighted by the number of outbound links on one page, but in fact by the

total of evaluated links on the page. Thereby, the following weighting are quotients

SUM(Ti) for the single pages Ti:

SSUUMM((AA)) == VV((AA,,BB)) ** PP((AA,,BB)) ++ VV((AA,,CC)) ** PP((AA,,CC)) ==11++33 == 44

SSUUMM((BB)) == VV((BB,,AA)) ** PP((BB,,AA)) ++ VV((BB,,DD)) ** PP((BB,,DD)) ==44++22 == 66

SSUUMM((CC)) == VV((CC,,AA)) ** PP((CC,,AA)) ++ VV((CC,,DD)) ** PP((CC,,DD)) ==44++22 == 66

SSUUMM((DD)) == VV((DD,,BB)) ** PP((DD,,BB)) ++ VV((DD,,CC)) ** PP((DD,,CC)) ==44++33 == 77

TThhee rreessuulltt ooff eeaacchh SSUUMM((TTii)) iiss ssttoorreedd iinn PPaaggee__lliinnkk__bbaasseedd TTaabbllee aass wwiillll bbee pprreesseenntteedd iinn

TTaabbllee 55..99.. TThhee eevvaalluuaattiioonn ffaaccttoorrss VVPP((TT11,,TT22)) ffoorr aa lliinnkk wwhhiicchh iiss ppooiinnttiinngg ffrroomm ppaaggee TT11

ttoo ppaaggee TT22 aarree hheennccee ggiivveenn bbyy tthhee eeqquuaattiioonn ((55..55)).. TThheeiirr vvaalluueess rreeggaarrddiinngg pprreesseenntteedd

eexxaammppllee aarree aass ffoolllloowwss::

VVPP((AA,,BB)) == 11//44 == ..2255

VVPP((AA,,CC)) == 33//44 == ..7755

VVPP((BB,,AA)) == 44//66 == ..6677

VVPP((BB,,DD)) == 22//66 == ..3333

VVPP((CC,,AA)) == 44//66 == ..6677

VVPP((CC,,DD)) == 22//66 == ..3333

VVPP((DD,,BB)) == 44//77 == ..5577

VVPP((DD,,CC)) == 33//77 == ..4433

IIff aallll ppaaggeess AA,, BB,, aanndd CC aarree iinn tthhee ssaammee ssiittee,, tthhee eevvaalluuaattiioonn ffaaccttoorrss IIMMPP((TT11,,TT22)) ffoorr aa

lliinnkk wwhhiicchh iiss ppooiinnttiinngg ffrroomm ppaaggee TT11 ttoo TT22 aarree ggiivveenn bbyy eeqquuaattiioonn ((55..44)).. SSiinnccee DD((TTii)) ffoorr

aallll ii iiss eeqquuaall ttoo ((11)),, tthhee vvaalluuee ooff IIMMPP((TT11,,TT22)) wwiillll bbee eeqquuaall ttoo VVPP((TT11,,TT22)).. AAtt aa ddaammppiinngg

ffaaccttoorr dd ooff 00..8855,, tthhee ffoolllloowwiinngg eeqquuaattiioonnss ffoorr tthhee ccaallccuullaattiioonn ooff PPaaggeeRRaannkk vvaalluueess wwiillll bbee

oobbttaaiinneedd::

63

PPRR((AA)) == 00..1155 ++ 00..8855 ** ((00..6677 ** PPRR((BB)) ++ 00..6677 ** PPRR((CC))))

PPRR((BB)) == 00..1155 ++ 00..8855 ** ((00..2255 ** PPRR((AA)) ++ 00..5577 ** PPRR((DD))))

PPRR((CC)) == 00..1155 ++ 00..8855 ** ((00..7755 ** PPRR((AA)) ++ 00..4433 ** PPRR((DD))))

PPRR((DD)) == 00..1155 ++ 00..8855 ** ((00..3333 ** PPRR((CC)) ++ 00..3333 ** PPRR((BB))))

SSoollvviinngg tthheessee eeqquuaattiioonnss ggiivveess tthhee ffoolllloowwiinngg PPaaggeeRRaannkk vvaalluueess ffoorr tthhee pprreesseenntteedd

eexxaammppllee::

PPRR((AA)) == 11..3322

PPRR((BB)) == 00..9955

PPRR((CC)) == 11..3399

PPRR((DD)) == 00..8811

FFiirrsstt ooff aallll,, iitt iiss oobbvviioouuss tthhaatt ppaaggee CC hhaass tthhee hhiigghheesstt PPaaggeeRRaannkk ooff aallll ffoouurr ppaaggeess.. TThhiiss iiss

ccaauusseedd bbyy;; ppaaggee CC rreecceeiivviinngg tthhee rreellaattiivveellyy hhiigghheerr eevvaalluuaatteedd lliinnkk ffrroomm ppaaggee AA aass wweellll aass

ffrroomm ppaaggee DD.. FFuurrtthheerrmmoorree,, eevveenn bbyy tthhee eevvaalluuaattiioonn ooff ssiinnggllee lliinnkkss,, tthhee ssuumm ooff tthhee

PPaaggeeRRaannkk vvaalluueess ooff aallll ppaaggeess aallmmoosstt eeqquuaallss 44 wwhhiicchh iiss tthhee nnuummbbeerr ooff ppaaggeess..

2. Using the modified PageRank value for Web page

The original PageRank equation (4.1) is implemented in several iterations to be as most

as converge. So, in the first iteration all pages rank value is equal to one as an initial

value, then in the second iteration pages’ rank value at the first iteration is used as an

input to the next iteration and so on. Instead of using PR(t)i-1 (of i-1th iteration) as input

to PageRank equation in the ith iteration, the most recent PageRank can be used as it is

clear in this equation:

     
 

 
  









 

 ijij PjC

lPjPR

PjC

lPjPR
ddPiPR

1
1 …………….(5.7)

64

BByy iimmpplleemmeennttiinngg tthheessee mmooddiiffiiccaattiioonnss oonn tthhee oorriiggiinnaall PPaaggeeRRaannkk eeqquuaattiioonn,, tthhee pprrooppoosseedd

PPaaggeeRRaannkk eeqquuaattiioonn wwiillll bbee aass ffoolllloowwss::

     
     

    



























 

 ijij

PiPjIMP
PjC

lPjPR
PiPjIMP

PjC

lPjPR
ddPiPR ,,

1
1 (5.8)

Where l is the iteration number.

The Link-Based Ranker algorithm is shown as in algorithm 5.5.

F. Links

The links in repository consists of two tables:

1. URLs_Information Table:

The contents of this table are created at the crawling phase during the URL

extraction operation. The format of this table is presented in Table 5.8.

Table 5.8 URLs_Information Table

URL_ID

(unique)
page_out page_in visibility position Distance

 URL_ID: the serial number of the link

 page_out: the page_id of the page that points to another page.

 page_in: the page_id of the page that is pointed by the other pages.

 Visibility: the style of the object that is used to make the link, (e.g. text or

image).

 Position: the position of the link within the Web page.

 Distance: the distance between the two linked pages. This could be

recognized from the host name.

65

2. Page_Link_Based Table:

The contents of this table are created by the crawler as an initial basic data set to

be used by the Link-Based Ranker. The format of this table is present in Table 5.9.

Table 5.9 Page_Link_Based Table

Page_Id

(unique)
Term_Based_Ranker SUM(Ti) Page_Rank

 Term_based_ranker: Shows the number computed by the term based ranker.

 SUM(Ti): it is a numerical factor used by the proposed page_Rank equation

(link-based ranking).

 Page_Rank: computed ranking score by link-based ranking.

 Algorithm 5.5 Link-Based Ranking Algorithm
// P: Web Page.

Input: Webpage, and hyperlink

Output: link-based rank values

{1} no_error = true

{2} While no_error

{3} For all Pi in Web retrieve_factors(Pi)

{4} For all Pj points to Pi

{5}

     
     

    



























 

 ijij

PiPjIMP
PjC

lPjPR
PiPjIMP

PjC

lPjPR
ddPiPR ,,

1
1

{6} err = abs[PR(Pi)l - PR(Pi)l + 1]

{7} If err>0.000001 then

{8} no_error = false

{9} end[While]

66

Entity relation diagram of the proposed system is shown in Figure 5.4.

Meta_Data_Table
page_id

page_title

author_name

key_words

descriptor

publishing_date

modification_date

Page_General_Information_Table
page_id

number_of_words

Color

Size

Max_words_ferq

Page_Identification_Table *
page_id

page_url

file_type

VP

SUM

Crawled
Page_Linkbased_table *

page_id

number_of_page_out

IMP

number_of_page_in

page_rank

[Advanced PR]

Page_Word_Table
word_id

page_id

word

position

importance

style

color

size

group_number

freq

URLs_Information_Table
url_id

page_id

url_full_adress

distance

file_type

link_visibility

link_position

Divs_Tables
div_id

page_id

text

Div_number

HTMLSource
page_id

HTMLSource

Figure 5.4 System entity relation diagram

67

5.2.2 On-Line Part

This part depends on the user given a query (it works at Query-Time). It consists of the

following subsystems:

A. User Interface

The user interface of the Search Engine consists of two parts: the query interface and the

answer interface (HITS). The basic query interface is a box where a sequence of words is

entered and has other choices for advanced search.

The proposed Search Engine supports complex query interface, which includes Boolean

operators and other features, such as phrase search and title search. For the answer

interface, the proposed Search Engine usually returns pages in the order of relevance to

the query. In other words, the page that has the higher ranking score appears on the top of

the list. Typically, each result entry in the list includes a title of the page, a URL, a brief

summary.

The Graphical User Interface (GUI) has no significant changes from any Search Engine

design. The GUI is the interface between the user and the back-end of Crawler and

Indexer. It is where the search initially begins (initiated by the user) and is also where the

search process ends with the search results displayed. The GUI initially, in the normal

manner, begins with a search field and a search button. When the user clicks on the

search button, the query will be optimized and send to the searcher. Then when the

results are ready, they are displayed to the user back on the GUI, with a small brief on the

resulted Web Pages.

B. Query Optimizer

This process consists of two steps:

1. Query validation

Once the user posts the search query to the Search Engine, the query will be

optimized to provide an error-free query to the Query Ranker. The query is

optimized by:

68

 Removing all additional white characters (Tab, New line, and space). For

example, if the posted query was “used cars for sale$”, it will be

converted to “used cars for sale$”.

 Removing other special characters like (# , @ , ! , $, ^ , % , …, etc.). For

example, the output of the previous step is considered an input to this step so

the query which will be “used cars for sale”.

 Eliminating all the noisy word from the query. The final form of the query in

the previous example will be “used cars sale”.

2. Query Determiner

The second step in the Query Optimizer is Query determiner that determines the

relationship between each two neighbouring terms within the same given query

depending on the used operator between them. Even if there is no operator used,

in this project the default operator is OR operator. The Stack technique is used in

reconstructing the query.

Algorithm 5.6 shows how the query is determined. Once the Query determiner

receives the valid query, it will split the query into a set of terms assigned in an

array; each cell in the array represents a single term in the valid query. Then, to

construct the searched query, each item will be checked whether it is a word or a

delimiter. If the item is a word it will be appended to the string of Search_Query.

If not, it must be checked if it is a delimiter character [(“) or (”)].

The delimiter character is used to surround the words that are enclosed between

them to be matched in the page as a phrase not just as a set of related word. So, if

the delimiter character is a beginning delimiter (“) all words in the Op_Stack will

be popped sequentially and appended to Search_Query; but if it is an ending

delimiter (”) it will be discarded.

69

C. Searcher

The searcher is the core of relevant pages selection process. It receives the query from the

Query Optimizer Subsystem, and then builds SQL statements to search the

Inverted_Index Table in the Search Engine Indices for a match with any keywords to

retrieve word_id. Depending on the retrieved word_id the following information will be

extracted:

1. page_id.

2. position.

3. importance.

4. style.

5. color.

6. size.

Then the Page_General_Information Table is searched for a match with any retrieved

page_id to retrieve the following information from the searched table:

7. Number of words (nows).

8. Page font color (color).

9. Page font size (size).

So, each term has its complete information that is stored in a temporary storage buffers.

This extracted information is considered as factors used by the Term-Based Ranker in the

next step.

70

D. Term-Based Ranker

Term-Based Ranking is done primarily to provide relevant pages to the user. The non

relevant pages will not be retrieved, unless search option includes this information. The

Term-Based Ranking algorithm ranks the retrieved Web pages to determine the relevancy

of these pages to the query terms. (Equation 5.9).

The proposed Term-Based Ranking algorithm is implemented as shown in algorithm 5.7.

Algorithm 5.6 Query Determiner Algorithm

Input: Valid Query

Output: Determined Query

{1} receive(Valid_Query)

{2} while not eos.(Valid_Query) //eos: End of statement (submitted user query).

{3} itemi = take_item(Valid_Query)

{3} end[while]

{4} for i = 1 to n /* where n is the number of items within the Valid_Query*/

{6} } if word(itemi=”intitle”) then

append(search_query,itemi+1)

if word(itemi=”author”) then

append(search_query,itemi+1)

if word(itemi) then

{77} append(search_query, itemi)

{8 else

if begin_delimiter(itemi) then

{76} while not end_delimiter(Op_Stack.top)

{11} operator = pop(Op_Stack.top)

{12} append(Search_Query, operator)

{78} end[while]

 {5} end[for]

 {6} end. // of the algorithm.

71

To determine which Web page is to be displayed first on the result list, the higher number

of hits on a Web page determines a higher quality page and will be displayed to the user

at the top of the list. This is known as the term-based ranking algorithm. Once the results

are gathered the document ranking based on term-based will be multiplied by document

ranking based on advanced link-based [R(i,q) * PR(i)] and then pages will be sorted

according to the new result in Ranking. The searcher will display them back on the GUI

to the user. The URLs of every keyword match are potential results to be displayed to the

user.

Algorithm 5.7 Term-Based Ranking Algorithm

Input: Set of pages

Output: term-based rank values

{1} for all pages in Retrieved_pages_list

{2}

   

















 

qtermj

IDFj
iTF

jiTF
qiR ..

max

.
5.05.0,

{3} goto {1}

    














  IDFj

imaxTF

i.jTF
5.05.0i,qR ……… (5.9)

where:

N: the number of Web pages in the index database.
R(i,q): the relevance score of the ith page respect to the query q
TF(i,j): the term frequency of Qj in Pi
TF maxi: the maximum term frequency of a keyword in Pagei
IDFj:

   

N

i
jiCN

1
,log

C(i,j) : Documents that contain the query term j in document i.

72

5.3 SSyysstteemm IImmpplleemmeennttaattiioonn

On the server side, the process involves creation of a database and its periodic

updating done by software called Crawler. The Crawler crawls the WebPages

periodically and indexes these crawled WebPages in the database. In the indexing

process the stopwords are removed to make the database clear. Then all crawled pages

are indexed later. As stated earlier, the Indexer processes the Web pages through the

hyperlinks. In this process it extracts the Metadata like ‘title’, ‘keywords’, and any

other related information needed for providing complete search results from the

HTML document, and the entire content of the HTML document is saved in database.

The idea of indexing the whole page except the stop words is based on the fact that a

page dealing with a particular issue will have relevant words throughout its page. Thus

indexing all the words in a document increases the probability of getting the relevant

WebPages to a query.

The front-end of the Search Engine is the client side having a graphical user interface

as in Figure 5.5, which prompts the user to type in the search query. The interface

between the client and server side consists of matching the user query with the entries

in the database and retrieving the matched WebPages to the user’s machine.

The database consists of a number of tables that are arranged so as to facilitate faster

retrieval of the data. This database is housed in a database server that is called Search

Engine Indices, which is connected to the Search Engine. The typical English Search

Engines will have more than one database server due to the huge number of English

Web sites. The proposed Search Engine uses a single database server, because of the

small number of Web pages taken from the internet without any interference from the

designer contains news, education, sports, entertainment, etc. When the user types the

query it is taken to the server housing the Search Engine.

73

Figure 5.5 Search Engine User Interface

The proposed Search Engine validates the query and then translates it into the structured

query language (SQL) which is understandable to the database and passes this SQL query

to the Search Engine Indices. The Search Engine Indices identify the database entries that

match the query given and sends to the proposed Search Engine server these entries along

with other information related to other entries such as the title, the author name, URL and

the matching portion from the content of the corresponding entry. The proposed Search

Engine sorts these database entries using a ranking algorithm. The ranking algorithm

determines the relevancy of a retrieved Webpage to the user query. The retrieved sites are

then displayed along with links to these sites and a small portion of text from the matched

content. This text gives an idea to the user about the page before the user goes to that

particular page.

Advanced Search options allow the user to search for various combinations of the query

terms. Some of the search options include Boolean search and phrasal search. By Boolean

Search, several options should be available to the user to refine the query. This is important

74

because the search should return only the relevant pages to the user. Boolean search option

includes OR, AND, and NOT logic operators, the default being OR operator. Boolean

search can be illustrated by the following example. Consider a query consisting of two

words. The search results for the OR logic will retrieve the pages containing either of the

two terms and the search results for the AND logic retrieve the pages containing both the

query terms. The NOT search returns the WebPages that does not contain the NOT term.

The Search Engine automatically searches for both the AND & OR logic. Phrasal search

looks for a phrase instead of a word in the database. To include phrase search in the query

the user should type the phrase between two quotes (“ ”). The corresponding phrase will

be searched as is in the database. This option is particularly useful if the user knows a

phrase in the domain of the search. However, this option requires huge processing power

and bigger memory in the database as it is represented in Figure 5.6.

Figure 5.6 Advanced Search Engine User Interface

75

Chapter Six

Testing and Evaluation

76

6.1 Introduction

To evaluate any Search Engine, there are two main classes of performance measures,

Effectiveness and Efficiency. Also, from the software viewpoint the Understandability of

the User Interface is considered an important issue.

6.2 Effectiveness

According to Baeza Yates et al (1999), the determination of how successful the returned

search results are is quite a complex process. Two measures that can be used are Recall and

Precision. Which are the most effective ways of measurements beening used by (Text

Retrieval Conference) TREC.

Recall is the fraction of the relevant documents (contained in the index) that have been

retrieved and precision is the fraction of the retrieved documents that are relevant.

However, there are a number of problems with these two measures.

Firstly, they assume that all the documents in the document set have been examined

closely. Unfortunately, this is not the case as neither the test candidates nor the author have

full knowledge of the document sets’ contents.

Secondly, to evaluate these measures accurately the document set should be quite large,

this leads to a testing cycle that can be quite time consuming and resources.

To explain these principles (Recall and Precision), some examples will be introduced. For

a Query I, R is the set of all relevant Web pages in existence at a certain point of time. Ra

is the set of relevant pages that have been returned. A is the set of all results returned for a

search at the same time, as in Figure 6.1.

Recall

Recall determines the percentage of relevant documents that were retrieved. The Recall

value is between 0 and 1. It defines as:

R

Ra

documents relevant of Number

retrieveddocumentsrelevantofNumber
Recall

A high recall means the most of the page that should be returned by a perfect Search

Engine is returned. While in normal or in advanced mode all results that are presented in

77

the Search Engine User Interface are still used. The full evaluation of the recall can only be

done by doing a user plane review or (by a user judgment).

 Precision

Precision is a measure that shows how much of what the user sees is relevant. The resulting

value is a real number between 0 and 1. Precision is very important to the proposed Search

Engine given thousands of Web pages. This measure is defined as:

A

Ra


documents retrieved ofNumber

retrieved documentsrelevant ofNumber
precision

Figure 6.1 Recall And Precision.

In this research, five different kinds of queries are tested and evaluated by Recall and

Precision of the first 10 retrieved results. The following results are obtained as illustrated in

Table 6.1.

The results show that the general Recall of the first 10 retrieved Web pages is always

100%, which is reasonably good. For the Precision results it is obvious that the rank values

of the retrieved Web pages reflect the real relevancy of the existent Web pages in the

proposed Search Engine databases.

78

The proposed Search Engine ranking system effectiveness proved to lead to more relevant

document presented at the beginning of the GUI for the user, because as stated before most

users examine the first 10 pages, better than the original page ranking system presented by

Google by 13%. Figure 6.2 and 6.3 represents the proposed Search Engine results and

results obtained using the original page ranking system for the same query respectively.

6.3 Efficiency

Efficiency measures the amount of relevant pages retrieved by the proposed Search Engine

in comparison with the original page ranking, term-based ranking, and the time that the

system requires to find relevant information. Ten queries have been made on the advanced

page ranking system compared by the original page ranking system and term-based ranker,

found that the precision of the advanced page ranking is better than the original page

ranking and term-based ranking, Figure 6.4, and 6.5 demonstrate the result.

And found that the time needed for the system to produce results for both ranking system

almost same with an extra time for advanced ranking system due to the new calculations

that should be made to find the results and because of the small database stored in the

system. Figure 6.6, 6.7 demonstrates the result.

6.4 Understandability

The proposed system has a user interface that looks like that of any other system as it is

illustrated in Figure 5.4. It resembles most of commercial Search Engines interfaces.

The only difference is in displaying the results which are the most relevant not related to

how much advertisements do the Web site owner pays the Search Engines

administration.

The system’s retrieving time is not stable; it depends on the complexity of the given

query especially if the query is constructed in the advanced search mode that will take

more time.

79

Table 6.1 Searching result, Recall and Precision measures

Query Results Recall Precision

Title “al al-bayt

university”
All first 4 pages are relevant 100% 100%

phone directory
1,2,3,4,5,6,8,9 Relevant

7, 10 Irrelevant
100% 80%

disease and medicine All first 7 pages are relevant 100% 100%

Good movie for you
1,2,3,4,7,8,9,10 Relevant

5,6 Irrelevant
100% 80%

cnn news Web site All 10 pages are relevant 100% 100%

Figure 6.2: The search results in proposed advanced rank

80

Figure 6.3: The search results (hits) in the original page rank

Figure 6.4: Comparison between precision of original PR and advanced PR

Queries

PrecisionPrecision

81

Figure 6.5: Comparison between precision of Term-based PR and advanced PR

Figure 6.6: Time comparison between the original PR and advanced PR

Queries

Queries

Precision

Time

82

Figure 6.7: Time comparison between term-based PR and advanced PR

Queries

Time

83

Chapter Seven

Conclusions and Future Works

84

7.1 Introduction

The last chapter discusses the evaluation and the ways that been used to test the enhanced

Search Engine through enhancing the indexer and the ranking module. This chapter will

conclude the research by reflecting its aims and objectives and detailing any future work

that should be considered for Search Engines in general.

7.2 Conclusions

The research aims outlined previously in chapter one were successfully met and achieved.

The appropriate literature was reviewed and evaluated; this research addressed the core

issues that need to be considered when developing a Search Engine. These issues included

indexing, searching, Search Engine interfaces and result set evaluation, given Google

Search Engine as a prototype.

It also provides a full understanding for all enhanced indexer criteria’s through full

indexing of documents. The research proved that the enhanced ranker provide more

relevant document than that of the link-based ranker proposed by Brin. S. et al (1998), and

a locally hosted Search Engine was designed, developed and tested.

By evaluating the Search Engine results related through different ranking systems as

explained in chapter five, the system can use a combination of term-based ranking and

link-based ranking giving these conclusions:

1. By feeding the proposed Search Engine with different kinds of queries, the

produced results proved that, the aim of this research has been achieved in

retrieving the most relevant Web pages to the optimized user query.

2. The index processing takes longer time in indexing the Web page, because in the

proposed Search Engine full text indexing processing is performed, not partial

indexing.

3. The retrieved documents in this research are limited on Web pages or Web sites

only (Files of type *.htm and *.html).

85

4. The enhanced indexing and enhanced ranking system proved to give the user

more relevant documents and improved the precision as stated in chapter 6.

5. Merging the term-based ranker and link-based ranker proved to be a great

improvement to the Search Engine recall and precision.

6. By implementing several experiments on Google Search Engine (2008), two

important drawbacks were discovered:

a) Any Search Engine should not care for the stop words in the user query,

But Google Search Engine does care. For example, if a given user query is: “The

optimal ranking for Web page”, Google Search Engine retrieved 372,000 Web

pages only. By eliminating or discarding the stop words (the, and for) from the

previous user query it became: “optimal ranking Web page”, Google Search

Engine retrieved 3,350,000 Web pages.

b) In Google Search Engine, indexing process includes the title and Meta

tags information and few hundreds of words that occur in the beginning of the

Web page. That means if the user query is a full title of a previously known Web

page, Google Search Engine must retrieve it certainly. But by applying several

user queries Google Search Engine does not retrieve these Web pages until

additional information must be submitted with the user query.

7.3 Future Work

By the experiments, several suggestions are identified that could be implemented in the

future to make the project more optimal in its activation with the user:

1. Because of the limitation of this research in retrieving only *.htm and *.html files, in

the future, other kinds of textual documents could be retrieved such as *.pdf files.

2. Expanding the ability of the proposed Search Engine in retrieving image files such as

*.bmp, and *.jpg, and media files, audio or video such as *.wav.

3. Building a spelling checker to identify the wrong word in the user query, and

mistakes corrector to correct or repair the wrong words. This provides a helpful user

interface to the user.

86

4. Different Web services include Search Engine have become a promising technology

for E-trading (E-commerce) and for the development of new Internet-based software

systems. The new systems should not only look for the required information but also

for the quality of the retrieved information and services. Consumers not only expect

the service to meet functional aspects but they also demand good quality of services

(QoS) such as service reliability, security, trust and execution cost. It is therefore

imperative to devise techniques to publish less subjective QoS values to assist service

consumers in selecting services according to the desired level of QoS Wei Li Lin et al

(2008).

5. Meta-Search Engines are operating on the theory that if using one Search Engine is

good, using multiple search programs at one time is even better, it digs out the

database of multiple Search Engines and deliver the result as one listing. Meta-Search

Engines could provide a unified access for their users, because the required

information of users is distributed in the databases of various Search Engines. It is

inconvenient and inefficient for an ordinary user to invoke multiple Search Engines

and identify useful documents from the returned results. This approach will improve

the relevancy of the retrieved documents because there is no Search Engine that can

crawl and index the whole Web sites. Amir Hosein Keyhanipour et al (2007), Shengli

Wu et al (2004), Engines (1999).

87

References

88

AltaVista Search Engine www.altavista.com accessed on 2008.

Amir Hosein Keyhanipour, Behzad Moshiri, Majid Kazemian, Maryam Piroozmand,
Caro Lucas (2007), Aggregation of web search engines based on users’ preferences in
WebFusion, Knowledge-Based Systems 20, pages 321–328.

Arvind Arasu, Jasmine Novak, Andrew Tomkins, John Tomlin (2002), PageRank
Computation and the Structure of the Web: Experiments and Algorithms,
<www2002.org/CDROM/poster/173.pdf>.

Baeza-Yates, R., Ribeirio-Neto, B. (1999), Modern Information Retrieval, ACM Press,
Addison Wesley.

Braun, Loes (2002), Information Retrieval from Dutch Historical Corpora
< http://www.nici.ru.nl/~idak/publications/papers/scripties/scriptiebraun.pdf >.

Brewster Kahle (1997), Archiving the Internet. Extended version of the article
Preserving the Internet that appeared in Scientific American, March.

Brian Pinkerton, “Finding What People Want: Experiences with the Web Crawler”.
The Second International WWW Conference Chicago, USA, October 17-20, (1994).

Brin, S., Page, L. (1998), The anatomy of a Large-Scale Hypertextual Web Search
Engine, Computer Science Department,Stanford University, Stanford, CA 94305,
USA.

Budi Yuwono, Savio L. Lam, Jerry H. Ying, Dik L. Lee (1995). A World Wide Web
Resource Discovery System. The Fourth International WWW Conference Boston,
USA, December 11-14.

BuzzBoltMedia.Com, accessed (2008)< http://www.aboutus.org/Search_Engine >.

C.J. Van Rijsbergen (1979). Information Retrieval. Butterworths,. Available at
http://www.dcs.gla.ac.uk/Keith/Preface.html.

Carriere, J. and Kazaman, R. (1997), WebQuery: Searching and visualizing the web
through connectivity. In proceedings of the sixth international conference on the
World Wide Web, pages 107-117.

89

Chirita, P.A.; Olmedilla, D.; Nejdl, W. (2003), Finding related hubs and authorities
Web Congress, Proceedings. First Latin American Volume, Issue, 10-12 Nov.
Page(s): 214 – 215.

Craig Silverstein, Hannes Marais, Monika Henzinger, Michael Moricz (1999),
Analysis of a very large web search engine query log, ACM SIGIR Forum, Volume 33
, Issue 1 Pages: 6-12 .

Darnell, R., accessed (2008), HTML Unleashed, Professional Reference
http://www.webreference.com/dlab/books/html-pre/43-0.html..

Doyle DJ, Ruskin KJ, Engel TP (1996), The Internet and medicine: Past, present, and
future. Yale J Biol Med; 69(5) pages 429–437.

Fuhr, N. (1992), “Probabilistic Models in Information Retrieval”. The Computer
Journal. 35 (3), pages 243-255.

G. Salton. 1989, Automatic Text Processing. Addison Wesley, Massachusetts.

Google Search Engine www.Google.com accessed on 2008.

Hearst, M.A, (1995). Tilebars: Visualization of term distribution information in full
text information access, In Proceedings of the ACM SIGCHI Conference of Human
Factors in Computing Systems, (Denver, CO) pages 59-66.

Hsiao, R.L., Technical Reviews accessed (2008), Search Engines Inside Out
<http://www.csie.ntu.edu.tw/~b2506023/se.pdf>.

Hsinchun Chen, Chris Schuffels, and Richard Orwig, (1996). Internet Categorization
and Search: A Self-Organizing Approach, Journal of visual communication and image
representation, Vol. 7, No. 1, March, pages 88–102.

Huang, L., accessed (2008), A Survey On Web Information Retrieval Technologies,
CiteSeer: Scientific Literature Digital Library,
< http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.1902 >.

Jasminka Dobsa, Fakultet organizacije i informatike, Varazdin, Sveuèilište u Zagrebu
(2008) , Comparison of information retrieval techniques, <
http://videolectures.net/solomon_dobsa_lsici/>.

90

Junghoo Cho, Hector Garcia-Molina, Lawrence Page (1998). Efficient crawling
through URL ordering. Source”, Computer Networks and ISDN Systems archive
Volume 30 , Issue 1-7.

Junghoo Cho, Hector Garcia-Molina, Lawrence Page (1998). Efficient Crawling
Through URL Ordering Computer Networks and ISDN Systems archive
Volume 30 , Issue 1-7 Pages: 161 - 172

Karlgen, J. accessed (2008), The basics of information retrieval: Statistical and
Linguistics, CiteSeer: Scientific Literature Digital Library,
<http://citeseer.nj.nec.com/karlgren00basics.html>.

Kobayashi. M, and Takeda, K. (2000), Information Retrieval on the Web, IBM
Research Report, RT0347. ACM Computing Surveys (CSUR) Volume 32, Issue 2
Pages 144 – 173.

Krishna Bharat (2000), SearchPad: explicit capture of search context to support Web
search, Computer Networks, Volume 33, Issues 1-6, June 2000, Pages 493-501.

Kyung-Joong Kim, Sung-Bae Cho (2007), Personalized mining of web documents
using link, Applied Soft Computing 7 pages 398–410.

Lee Underwood, Search Engine Basics.
<http://www.webreference.com/authoring/search_engines/ > accessed (2008).

Liu, B., Zhao, K., and Yi, L. (2002), Visualizing Web Site Comparisons, In
proceedings of the eleventh international conference on the world wide web, (ACM
Press), (Honanlulu, Hawaii, USA), pages 693-703.

Liu, J., (1999) Guide to Meta-Search Engines
<http://www.indiana.edu/~librcsd/search/meta.html>.

Liwen Vaughan (2004), New measurements for search engine evaluation proposed and
tested, Information Processing and Management 40, Elsevier, pages 677–691.

M.W. Berry and M. Browne (1999). Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM Book Series: Software, Environments, and Tools,
June.

91

Marendy, P., (2001) .A Review of World Wide Web searching techniques, focusing on
HITS and related algorithms that utilize the link topology of the World Wide Web to
provide the basis for a structured based search technology, CiteSeer: Scientific
Literature Digital Library.
< http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.8509 >.

MarketingTerms.Com, accessed (2008).<http://www.marketingterms.com
/dictionary/search_engine>.

Oliver A. McBryan (1994). GENVL and WWWW: Tools for Taming the Web. First
International Conference on the World Wide Web. CERN, Geneva (Switzerland), May
25-26-27.

Piccenelli, G., and Mont, M.C. accessed (2008), A Type 2 Set Based Model for
Adaptive Information Retrieval”, <http://www.hpl.hp.com/techreports/98/HPL-98-
27.pdf>.

Sebrechts, M. M., Vasilakis, J., Miller, M.S., Cugini, J.V., Laskowski, S. J. (1999),
Visualization of search results: A Comparative Evaluation of Text, 2D, and 3D
interfaces, (SIGIR ‘99), (CA, USA, ACM), pages 3-10.

Shengli Wu, and Jieyu Li, (2004). Effectiveness Evaluation and Comparison of Web
Search Engines and Meta-search Engines, Springer Berlin / Heidelberg, Volume
(3129/2004) pages 303-314.

Soboroff, I. accessed (2008), Information Retrieval,
<http://www.csee.umbc.edu/~ian/irF02/lectures/03Text-Processing.pdf>.

The Web Robots Page accessed (2008), <http://www.robotstxt.org/wc/robots.html>.

Wei-Li Lin, Chi-Chun Lo, Kuo-Ming Chao, Muhammad Younas (2008). Consumer-
centric QoS-aware selection of web services, Elsevier Journal of Computer and
System Sciences 74 pages 211–231.

Wilkinson, R., Hingston, P. (1991), Using the cosine measure in a neural network for
document retrieval, In proceedings of the ACM SIGIR Conference on Research and
Development in information Retrieval, (Chicago, USA, ACM) , pages 202-210.

Witten , I.H., Moffat, A., Bell, T.C. (1999), Managing Gigabytes – Compressing and
Indexing Documents and Images, Morgan Kauffman ACM ISBN 1558605703.

Yahoo Search Engine www.yahoo.com accessed on 2008.

