

Extending Web Services Datatypes Specification for Different

Development Platforms

BY

RAED OMAR AL-ABSI

SUPERVISOR

DR. SAMER HANNA

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master`s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

July 2014

 خبيؼخ فٛلادنفٛب

ًَٕرج رفٕٚط

أفٕض خبيؼخ فٛلادنفٛب ثززٔٚذ َسخ يٍ سسبنزٙ نهًكزجبد أٔ ،سائذ ػًش ػجذ سثّ انؼجسٙ أَب

 .انًؤسسبد أٔ انٓٛئبد أٔ الأشخبص ػُذ غهجٓب

 :انزٕقٛغ

 :انزبسٚخ

Philadelphia University

Authorization Form

I am, Raed Omar Al Absi, authorize Philadelphia University to supply

copies of my thesis to libraries or establishments or individuals upon

request.

Signature:

Date:

Extending Web Services Datatypes Specification for

Different Development Platforms

BY

RAED OMAR AL-ABSI

SUPERVISOR

DR. SAMER HANNA

This Thesis was Submitted in Partial Fulfillment of the

Requirements for the Master`s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia University

July 2014

Successfully defended and approved on _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Examination Committee Signature Signature

Dr. , Chairman. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

Dr. , External Member. _ _ _ _ _ _ _ _ _ _ _ _

Academic Rank:

i

DEDICATION

To (Allah), who has blessed me beyond belief.

To my father, Omar Al Absi.

To my Mother, my great lover.

To Jasmine, my wife, my life, and best friend.

To Omar and Abd alrahman, my ambitious and loving children's.

To Reem, my loving daughter.

To my brothers (Rami, Mohammed, Ahmad, Ibrahim, Hasan).

To my sisters (Reem and Rasmiah).

To My Friends (Jalal, Mohammad, Sami, Saleem).

To Dr. Samer Hanna, my mentor and friend.

To Dr Seed Al Ghoul , my teacher.

I love you all.

For being the most important part of my dream

For the support, courage, and unconditional love.

 Raed Omar Al -Absi

ii

ACKNOWLEDGMENT

 (82)النساء (وَلَوْ كَانَ مِنْ عِندِ غَيِْْ اللَّهِ لَوَجَدُوا فِيهِ اخْتِلََفاً كَثِيْاًۚ أفََلََ يَ تَدَب َّرُونَ الْقُرْآنَ)

A number of people inspired me in carrying out this thesis. It is

more or less impossible to acknowledge everyone who helped in

some way. But some need to be singled out.

Dr. Samer hanna, my supervisor who make a valuable

suggestions which helps in organizing the thesis, His critique also

helped forge my ideas in organizing this thesis.

Professor Saeed Al-Ghoul, making critical suggestions which

have gone a long way towards reshaping and restructuring my

research.

Special mention must also be made of Dr nameer El-Emam and

Dr Moayad Al-adhami.

I would also like to extend special acknowledgement to my

family, especially my father and my mother, my brothers and all

of my friends, for their encouragement and co-operation.

Your prayers and inspiration have been invaluable throughout my

research.

Raed Omar Al-Absi

iii

Table Of Contents

Subject Page

Dedication i

Acknowledgment ii

Table Of Contents iii

List Of Tables v

List Of Figures vi

List Of Abbreviations viii

Abstract ix

CHAPTER ONE : introduction 1

1.1 Research problem 2

1.2 why this problem ? (Motivations) 5

1.3 Research Contributions 5

1.4 Thesis Outline 6

1.5 Summary 6

CHAPTER TWO : Background 7

2.1 Introduction 8

2.2 Web Service definition(WS) 8

2.3 Web Services Architecture (WSA) 10

2.4 Web Service Description Language WSDL 16

2.5 Simple Object Access Protocol (SOAP) 22

2.6 Universal Description, Discovery and Integration (UDDI) 23

2.7 Web services benefits 24

2.8 Web services development challenges 24

2.9 Semantic Web Service 27

2.9.1 Objective of Semantic Web (SW) 27

2.9.2 Semantic Web Technologies 28

2.9.3 The Resource Description Framework (RDF) 29

2.9.4 Ontology Web Language For Services (OWL-S) 30

2.10 Literature Review (State Of the Art) 33

2.10.1 Overview 33

iv

2.10.2 A Semantic Approach for Transforming XML Data into

RDF Ontology
34

2.10.3 An Improved Semantic Annotation Method of Web Services

Based on Ontology
35

2.10.4 Discovery of Semantic Web Services Compositions based on

SAWSDL Annotations
36

2.10.5 Reverse Engineering Existing Web Service Applications 37

2.10.6 A framework for deriving semantic web services 37

2.10.7 Meta-Modeling of Semantic Web Services 38

2.10.8 ASSAM: A Tool for Semi-Automatically Annotating

Semantic Web Services
39

2.10.9 Summary 40

CHAPTER THREE : The Proposed Model 41

3.1 The Proposed Model 43

3.2 Extracting WSDL elements (including Datatypes) 44

3.3 WSDL DataTypes Descriptions 45

3.4 Proposed solutions for XSD DataTypes 57

3.5 Semantic Annotations 60

3.6 Case 1 : primitive datatypes 62

3.7 Case 2 : derived datatypes 65

3.8 : Summary 69

CHAPTER FOUR : Implementation And Evaluation 70

4.1 Implementation 71

4.2 Evaluation 74

4.2.1 Case Study 1 75

4.2.2 Case Study 2 80

CHAPTER FIVE : Conclusion and Future Work 86

5.1 conclusion 87

5.2 Future Work 89

References 90

v

List Of Tables

Table Number Table Title Page

Table (3.3) Primitive types according to W3C 46

Table (3.4) Derived types according to W3C 47

Table (3.5) Atomic VS Derived DataTypes 48

Table (4.1) Primitive and Complex XSD types

for Example(1)
79

Table (4.2) Primitive and Complex XSD types

for Example(2)
84

Table (5.1) Primitive Datatypes 88

Table (5.2) Derived Datatypes 88

vi

List Of Figures

Figure Number Figure Title Page

Figure (1.1) Lists programming in ASP.Net – Visual C# 3

Figure (1.2) WSDL file for Lists programming ASP.Net –

Visual C#
4

Figure(2.1) RPC invocation in the RPB-oriented Web

Services
11

Figure (2.2) Interactions between (service provider),(service

requester),(service registry)
14

Figure(2.3) The basic structure of a message definition 17

Figure(2.4) The basic structure of a portType 18

Figure(2.5) The basic structure of a binding element 19

Figure(2.6) The basic structure of a Port element 20

Figure(2.7) The basic structure of the service element 20

Figure (2.8) the main structure of the WSDL document 21

Figure(2.9) An example of a SOAP message 22

Figure (2.10) Service Ontology in OWL-S 32

Figure (3.1) The Proposed Model 44

Figure (3.2) Lists programming in ASP.Net – Visual C# 49

Figure (3.3) WSDL file for Lists programming ASP.Net –

Visual C#
49

Figure (3.4) Int & String programming in ASP.Net – Visual

C#
50

Figure (3.5) WSDL file for Integer & String programming

ASP.Net – Visual C#
50

Figure (3.6) Array programming in WCF 51

Figure (3.7) WSDL file for Array programming in WCF 52

Figure (3.8) Float programming in PHP 53

Figure (3.9) WSDL file for Float programming in PHP 53

Figure (3.10) Array programming in PHP 54

vii

Figure (3.11) WSDL file for Float programming in PHP 54

Figure (3.12) Integer & string programming in Java 55

Figure (3.13) WSDL file for Integer & string programming in

Java
55

Figure (3.14) WSDL file for Char programming in Java 56

Figure (3.15) Proposed solutions for XSD DataTypes 57

Figure (3.16) Enrichment Phase in the proposed model 58

Figure (3.17) When to make Annotations ? 59

Figure (3.18) Detecting 59

Figure (3.19) Header of the Annotation element 60

Figure (3.20) Element < Documentation > 61

Figure (3.21) Element < label > 61

Figure (3.22) Int & String programming in ASP.Net – Visual 62

Figure (3.23) WSDL file for Integer & String programming

ASP.Net – Visual C#
63

Figure (3.24) Array programming in WCF 65

Figure (3.25) WSDL file for Array programming in WCF 65

Figure (3.26) an interface providing the DataTypes 67

Figure (3.27) Element < Documentation > 68

Figure (3.28) Code generated in .Net - WebMethod 68

Figure (3.29) WSDL part for documentation element 68

Figure (4.1) The Proposed algorithm in PseudoCode 71

Figure (4.2) Provider DataTypes Determination 72

Figure (4.3) Adding Semantic Annotation to WSDL file 72

Figure (4.4) Cod of implementation 73

Figure (4.5) Analyzing Example(1) WSDL file 78

Figure (4.6) Analyzing Example(2) WSDL 84

viii

List Of Abbreviations

ACRONYM /

SYNONYM
Meaning

SOA Service Oriented Architecture

WS Web Services

XML Extensible Markup Language

XS XML Schema

WSDL Web Services Definition Language

WSA Web Services Architecture

UDDI Universal Description, Discovery and Integration

SOAP Simple Object Access Protocol

CASE Computer Aided Software Engineering

W3C World Wide Web Consortium

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

HTTP Hypertext Transfer Protocol

MEP Message Exchange Pattern

SW Semantic Web

OWL Web Ontology Language

RDF Resource Description Framework

SAWS Semantic Annotated Web Service

OWL-S Ontology Web Language For Services

SWSF Semantic Web Services Framework

WSMO Web Service Modeling Ontology

SAWSDL Semantically Annotating Web Service Descriptions

ASSAM Automated Semantic Service Annotation with

Machine Learning

ix

Abstract

In recent years, Web Services have become an important element in many areas, and the

ability to exchange information through Web services is a great example of its role and

its benefits and the ability to carry out the functions that may be used in the commercial

field, for example, at a high level.The description and the use of the Web services is

considered syntactic, this means that the knowledge of semantic Web services

themselves are located on the web services user to understand or learn by other means

before he decides if he want to use this service or not, and how it will be used.

This thesis is interested in the description of the Semantic Web Services and will be

centered on the ambiguity and misunderstanding in the use of the data types that are

used in a file written in XML language called WSDL (web service description

language) , the description of Web Services is saved in this file. The problem of the

ambiguity in the representation of the data types leads to many problems, for example

the difficulty of interpreting the data between the service provider and requester and this

leads to many errors in the merging the service or its configuration , another example is

the difficulties that may encountering the tools or the techniques that developing the

web services which works directly with the WSDL file, which is created automatically.

thus, there will be inconsistencies in the description of services for the different

techniques.

In this thesis, I will give a new way to try to solve this problem by adding semantics

descriptions to the data types used in the WSDL file to simplify dealing with this issue

in terms of the types of data .

Major scientific contributions to this message:

1. Adding semantic description to the Data types used in the WSDL file.

x

2. Improving the level of understanding of web services through the Service

Description for the Semantic Web.

 3. classifying the Data Types into two Categories (simple, derivative).

4. Simple data types are expressed clearly in the WSDL file and do not need to add

a semantic description.

5. Derived data types are ambiguity and does not expressed in a clear manner,

causing errors for service requester, so it needs a semantic description. Here it is

necessary to refer to the service provider to find out the type of data used in this case.

Key Words : Web Service, WSDL, UDDI, SOAP, XML, Semantic Web, OWL, RDF,

Primative DataTypes, Derived DataTypes, Annotation.

1

CHAPTER ONE

INTRODUCTION

2

Service oriented architecture (SOA) is a software paradigm used for creating highly

modular and distributed applications. Web services can implement an atomic functions

that could be composed into high level business processes(W.Thomas et al,2014). The

ability of exchanging data meaningfully through the web service is a great example of

the big role for the semantic interoperability to clarifying the benefits of the web

services (L.xitong et al,2009). In the recent years, the web services become very

important components in certain domains, but the description and the use of these web

services is syntactic , that’s mean, the semantics of the web services are rely to the users

to understand or to earn by other means before he decide whether and how to use the

service. Consequently, many opportunities exists to bridge this semantic gap using the

application that emerging semantic web and the technologies of the web service for

these domains, and the result is enriching and expanding a user’s service interactions.

This thesis is interested in the semantic description for the web service , the core of the

discussion here is about the misunderstanding and the ambiguity of the using of the

datatypes in the web service description language (WSDL) document which written in

XML language and containing the web service description.

1.2 Research problem :

A problem that is still facing Web services is that the XML Schema (XS) datatypes

system is not expressive enough to produce a comprehendible and unambiguous Web

services datatype specification.

The problem of inexpressiveness of the XML Schema based datatype specification had

resulted in some other problems such as:

3

 The difficulty to interpret the marshaled data between service provider and

requester. And consequently the difficulty faced by service requesters to

understand a Web service. This problem will result in that Web service are

integrated or composed in an erroneous way because requesters often misinterpret

the datatype requirement for using the underlying services.

 The difficulty faced by the Web service development technologies or tools to

produce an understandable data specification inside the auto-generated WSDLs.

And hence the inconsistencies of the resulted specifications for different

technologies.

 Web services development technologies use its custom datatypes to describe

datatypes that are not supported by XS and this may hinder the interoperability

and understandability attributes of Web services.

To illustrate the previous problem, let us consider the following example :

In Figure (1.1), we can see a code for generating web service programmed using

ASP.Net , from this code we can notice that it is using a List as a datatype

CLASS :

namespace WebServiceRaed

{

 public class Employee

 {
 public int ID { set; get; }

 public string Name { set; get; }

 }

}

Web Service :

public List<Employee> getEmployees()

 {

 List<Employee> I=new List<Employee>();

 I.Add(new Employee{ ID = 1, Name = "RAED" });

 I.Add(new Employee{ ID = 2, Name = "ABSI" });

 return I;

 }

Figure (1.1) : Lists programming in ASP.Net – Visual C#

4

Now look at the next Figure (1.2), it is a part of the WSDL document that having the

description for the previous code, we notice here that it is using Array Of (Object) as a

parameter.

In another example that using a Array as a datatype in the Code of the same

programming language ASP.Net , in the WSDL file it is using also Array Of (Object)

as a parameter.

Both of List and Array are defined in the same way (ArrayOf……., ArrayOf…….), both

of them are defined as an array datatype. The question here is how can the user

understand which type of data the operations needs, and how can the user distinguish

between the array datatype and list datatype?

<xs:element name="getEmployees">

 <xs:complexType/ >

 </xs:element>

 <xs:element name="getEmployeesResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1" name="getEmployeesResult"

type="tns:ArrayOfEmployee/ ">

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="ArrayOfEmployee">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="Employee" nillable="true"

type="tns:Employee/ ">

 </xs:sequence>

 </xs:complexType>

Figure (1.2) : WSDL file for Lists programming ASP.Net – Visual C#

5

1.2 why this problem ? (Motivations)

Web Services have many advantages, such as:

1. Increasing the reusability and consequently reducing the time and cost required to

build a Web based distributed application.

2. Facilitating the communication between heterogeneous applications over the

Internet.

3. Based on open standards.

WSDL document having a lot of problems because it is containing a large amount of

information, the most important problem is the complexity which we trying to solve it

among understanding the datatypes in it.

1.3 Research Contributions

The purpose of this research is to meet the following objective:

 Enhancing Web Service comprehension and understandability by Adding

Semantic description to the Web Service datatype specifications for different

platforms and IDEs, and to generate a better specification of the Web services

input and output messages operations parameters data type.

6

1.4 Thesis Outline

In addition to this Chapter 1 (Introduction), this thesis consists of 4 chapters, these

chapters are organized as follows:

Chapter 2 (WS Background), discusses the main components of Web Service and

explains them in detail (such as XML-Schema ,WSDL ,UDDI ,SOAP), then discussing

the (Semantic WS), give us some information about semantic web services objectives

and technologies, then we will discuss the Literature review, reviews general

approaches used to implement and to describe the functionality of Web Service which

the client uses to decide if the Web Service is applicable for his needs. Chapter 3 (The

Proposed model), presents the proposed method and how to implement our approach

on any Web Service. Chapter 4 (Implementation and Evaluation), which will introduce

the implementation of the proposed approach taking into account two cases mentioned

in the previous chapter, and how to deal with this cases, then I will introduce a case

study as an evaluation to my work. Chapter 5 (Conclusion and Future Work),

summarizes the main achievements of this thesis, presents the general conclusions and

suggests further research directions.

1.5 Summary

In this chapter, we discuss the importance of web services and the challenges facing the

understandability and how to solve the ambiguity problem that interested in the

datatypes in the WSDL document which having the web services descriptions, and give

a simple example to clarify this problem , and we have introduced in this chapter too the

importance of this problem and the contribution we aiming to achieve. We proposed an

approach based on adding Semantic Annotations to the WSDL file describing the

datatype as we will see in the next chapters.

7

CHAPTER TWO

BACKGROUND

8

2.1 Introduction

Service Oriented Architecture SOA is a model for organizing and utilizing distributed

capabilities that may be under the control of various ownership domains (MacKenzie et

al.,2006).The core of SOA is a design that developing software applications from a set

of services that exist in a distributed environment, and without the awareness of the

implicit implementation of the services (Erl et al., 2005). Services in SOA are well-

defined, independent and loosely coupled functionalities with an assurance on their

reusability and interoperability.

In service oriented architecture SOA we have two software that communicate with each

other, One is a Consumer software and another one is a provider software, Consumer

sends a request to the provider and provider sends a response back to the consumer.

2.2 Web Service definition(WS) :

Many Definitions for the web service had been proposed, for example . (Kreger et al.,

2001) defined the Web service as "an interface that describes a collection of operations

that are network accessible through standardized messages written by XML". In

addition, (Huhns et al., 2005) defined the Web Services as "an implementation or

understanding of the Service Oriented Architecture (SOA)".additionally (EL Bouhissi et

al.,2009) defined the Web Service as "a software components that allow access to

functionality via a Web interface network".

Web service is one of the presently well-adopted Web applications. Web service is the

software system which enables interactions between machines through a network. It is

widely deployed by, yet not limited to business organizations nowadays. The main data

format used for Web services is the Extensible Markup Language (XML).

9

We look at Web services as a way to disclose the functionality of the information

system and make it available through standard Web technologies. Using The standard

technologies decreasing heterogeneity, so that is it the key that facilitating application

integration.(Alonso et al., 2004).

According to the World Wide Web Consortium (W3C) Web service defined as "the

application software that enables interactions between machines".(D. Booth et al.,2004).

And as we said earlier, it is nowadays widely deployed by business organizations. It

enables a service provider to publish its available services on the Internet, while the

users can freely search and invoke these services via Internet. WS operates like the

traditional Web architecture does it is operates in server-client mode . However, WS not

like traditional Web architecture mainly in the feature of the loose coupling between

client and server via the use of (XML) format called Extension Markup Language.

XML is a general markup language known as ―the ASCII of the Web‖.

Using XML format, WS creating and sending the important information to its client,

and this is done Instead of generating HTML pages. The client could be any application

program that can operate the XML data. Transferring data is much shorter in XML

format than that in HTML format. Besides, it also allow client to easily carry out post-

processing towards the desired data, instead of the HTML page, that are received.(

Chang cheer er., 2010).

According to this thesis, Web Services(WS) are defined as a collection of applications

(interface application) or a collection of systems (endpoints) interacting with each other

by exchanging data and information over networks. Each service has its self-located,

self-describing and also self-operational properties.

10

2.3 Web Services Architecture (WSA)

The Web services architecture (WSA) is a standard architecture for software

applications to cooperate using interoperable and reusable functionalities over different

platforms. From the definition of the World Wide Web consortium (W3C) a Web

service is ―a software system designed to support interoperable Machine to Machine

interaction over a network‖. (D. Booth et al.,2004). The most important principle of the

Web services is the interoperability of services though different machines, platforms or

frameworks. Every Web service has a well-defined and self-contained functionality

which can be invoked by another service. To guarantee the interoperability for these

services a set of open standards is used to define the interface of the services as well as

the underlying communication between these services. These standards do not care

about how and where the services are implemented but they form the basis of the

interoperability within the WSA. Several key standards, such as SOAP and WSDL.(

Gibson Lam., 2012).

According to (Gibson Lam., 2012) Web services can be used in two different styles:

1. the RPC-oriented style

2. the document-oriented style.

1. RPC-oriented style :

the functionality of a remote procedure call (RPC)implemented and described by the

WS. Two roles in RPC will be invoked (service requester) and (service provider). The

service requester invokes the operation of the RPC, and the service provider contains

the implementation of the operation provided by the RPC and also defines the interface.

In Figure(2.1) we show the communication between the requester and the provider.

when the service requester invokes the a RPC func(X) from the service provider, it asks

the service provider for the interface of the RPC. Then, the service provider exposing

11

the interface that describes the service, to the requester. Then the requester builds an

invocation request of the RPC involving the required parameters and sends the request

to the provider. The result of the invocation is go back to the requester. The RPC Web

Services are defined and communicated using the open standards of Web Services.

Thus, they are reusable and interoperable regardless of the underlying implementation

of the operations provided by the RPC. Nevertheless there are an implicit requirement

that are common of the RPC interface between the requester and the provider, for

example, the name of operation and its parameters. This breaks the loose coupling

requirement in Service Oriented Architecture (SOA).

2. The document oriented style of the Web Services is used to implement a Service

Oriented Architecture.

Web service architecture based upon the interaction between three roles :

a. Service provider : the Developer and the implementer of the Web Service.

It is a software that providing a Web service, and including the following:

1. The application program

2. The middleware

3. The platform on which they run

12

The application or the system which introduces the service (J. Jiang et al, 2005). This

part plays the major role in a Web Service. When anyone wants to publish a

programmed service over network, he must initially program this service using one of

the programming languages such as Java, C# or other programming languages that

allow the creation of such software (J. Fu et al, 2011). The aim of such software

services is to facilitate interaction between clients and Web Services by making them

independent from the technologies with which they have been implemented (W. Sun et

al, 2009), and also to transfer interaction over network as application-to-application. In

this area it should also be said that these services providers cannot publish their services

over the network unless they publish a full description called Web Service Description

Language, which is automatically generated through the programming language tools

such as Apache Axis or .NET (R. Grønmo et al, 2004), used to generate these Web

Services itself.

b. Service requester (Service Consumer) : distributed application builder (a person).

It is the collection of software that requests the web service from the service

provider. Web services requester includes the following :

 The application program

 The middleware

 The platform on which they run

Service requester is the second most important part of the Web Service(Alshraideh

F, 2013), defined as client or user looking for an application or any type of operation

that he cannot get or apply through his system, so he seeks it via network by using

one of the web browsers to find the suitable published service which implements all

13

of his requirements. (W. Sun et al, 2009) and (J. Jiang et al, 2005). In this way, the

user can decide whether the service is suitable for his requirements.

The initial and basic step requires the requester to look for the WSDL document that

is always attached with the published service. This document has all the information

necessary to help the requester decide about the applicability of the Web Service for

his needs (A. Bellini et al, 2010).

c. service registry (service broker) : Storing the metadata about WS like the

name of Provider and the location of the contract.

The location of the service registry is in the centre, where service providers can

publish their service descriptions and where service requesters can find those service

descriptions.

this registry is an optional component of the WSA because both the service

requesters and providers can communicating without it in many situations. For

example, the company that provides a service can publish the service description

directly to the users of the service in a more than one way, e.g. offering the service

as a download from an FTP site.

Figure (2.2) illustrated the interaction between these roles :

14

Figure (2.2) Interactions between (service provider),(service requester),(service registry)

The mean characteristic of web service architecture is that is service provider software

publishes its service description and this description is placed in a certain directory

which called service registry, so all providers will put their service description in that

directory and the consumer software can make quires against this directory to find out

what services are available and how to communicate with the provider.

WSDL , is simply a language that is used to create service descriptions so before a

service description could be placed in a directory it has to be created in this special

industry excepted language is called WSDL.

SOAP simple object access protocol , it is a protocol to talk to the directory so service

provider will communicate with the directory using SOAP protocol in order to send

service description to the directory and consumer will query against this directory using

the same protocol as well.

15

So SOAP is simply a protocol that is used by service provider and consumer software to

talk to the directory is as simple as that and both WSDL and SOAP are industry

excepted language.

XML, service consumer software will now formulate its massage that needs to sent to

the provider software based on the service description.

So ,consumer software will do the query against this data base to find out which

services are available and how to communicate with this provider so based on the

description returned WSDL language an XML massage will be formed, so this massage

that this consumer will be sending to the provider will be written in XML language

extensible markup language which is again an industries tendered that is used between

two software to communicate with each other , so the tagged based language (looks

like go to your browser open up any web page and go to view web page source or view

source option or whatever that option is called in your browser and you can see the tag

based language ,html language is also a tag based language , XML looks very similar)

consumer software will formulate its massage in XML language , this massage will go

to service provider and also we have talked about that this massage will be based on the

definition that its residing in this directory , now the service provider will generate its

response back to consumer software and this response will be written in XML language

as will, again this response will be according to the specification that are stored in

service description.

16

2.4 Web Service Description Language WSDL

The Web Services Description Language (WSDL) is a language based on XML format

to describe Web Services (R. Chinnici et al.,2007), WSDL documents are used to

describe Web Service specifications such as location, functionality, datatypes of the

input and output parameter of the operations which this Web Service provides (S.

Hanna et al, 2010)

The requester reading the description that created by the provider if he want to

understand the Web service. But if there is no service registry such as RPC-oriented

WS, the requester retrieves the WSDL directly from the service provider. In UDDI

where is the service broker acting as a service registry(L. Clement et al, 2004), WSDLs

can be published to and retrieve from the registry. a list of WSDL files stored at the

registry and published by their service providers. The service requester can after that

search in the registry and retrieve the appropriate WSDL (Gibson Lam., 2012).

Web Services Description Language (WSDL) is inherently complex and difficult to

understand, even for developers. This difficulty and complexity in understanding

WSDL is greatly interesting to researchers (W. Sun et al, 2009). WSDL defines Web

Services as a network of ports that exchange messages between each other as request

and response (Requester, Provider) to get port types which are groups of operations.

The data format specification and concrete protocol for these ports must be subjected to

binding reuse.

Consumers – before they can interact with a Web service- must discover all of the

details described above before, and WSDL provides an XML grammar for describing

these details. When XML Schema Stopped, WSDL will picked up by providing a way

to group the messages into operations and operations into interfaces. (A. Skonnard et

http://www.w3.org/TR/wsdl

17

al, 2003) It also define bindings for each interface and protocol combination along with

the endpoint address for each one.

All of the information that is necessary to invoke the Web service will be involved in

the complete definition of WSDL file. Developers offering WSDL definitions to make it

easy for others to access their services.

Everything will be described in the WSDL about the service: operations of the service,

the messages of the service, the content of these messages, the grouping way of these

operations , and the exposing way for these groups, in terms of network protocols. So

that , in the WSDL file everything that another program needs in order to call the

service will be presented.

We can see that WSDL document has many parts which are listed as following (W3C,

2008) :

1- Messages .

This element defines an abstract message to serve the input or output of an

operation. Messages element consist of one or more part elements, every part is

associated with either an element (when using document style) or a type (when

using RPC style). Figure(2.3) The basic structure of a message definition is as

follows.(A. Skonnard et al, 2003) (* => (zero or more) , ? => (optional)) :

Figure(2.3) The basic structure of a message definition

Messages According to (W3C, 2008) it is XML-Based format defined as an

abstract set of data arranged in message format which implements the data

<definitions >

 <message name="nmtoken"> *

 <part name="nmtoken" element="qname"? type="qname"?/> *

 </message>

</definitions>

18

traveling from one endpoint to another by specifying the structure of the input

and output messages.

2- Operations .

XML-Based format defined as message queue , naming a method, or business

process that will accept and process the message. It is also defined as the SOAP

action and the way the message is encoded (W3C, 2008) .

3- PortType (Interfaces).

This element defining a set of operations, also called an interface in most

environments, A portType element may contains zero or more operation

elements .(A. Skonnard et al, 2003).

Port Type is an XML-Based format defined as an abstract set of operations

mapped to one or more endpoints, and also defined as description of the

interface of Web Service (W3C, 2008) .

 Figure(2.4) The basic structure of a portType is as follows (*=> (zero or more)):

 Figure(2.4) The basic structure of a portType

Every portType has a unique name to be possible to refer to it from elsewhere

in the WSDL definition. Every operation element have a combination

of input and output elements; and when you have an output element you can also

have a fault element.

<definitions >

 <portType name="nmtoken">

 <operation name="nmtoken" /> *

 </portType>

</definitions>

19

4- Binding .

XML-Based format defined as concrete protocol and data formats for the operations

and messages for a particular port type (W3C, 2008).

Binding element describeing the concrete details of using a specific portType with a

given protocol. The binding element having many extensibility elements as well as a

WSDL operation element for each operation in the portType it's describing. (A.

Skonnard et al, 2003).

Figure(2.5) The basic structure of a binding element is as follows (* => (zero or more)

, ? => (optional)) :

Figure(2.5) The basic structure of a binding element

A binding element has a unique name so you can refer to it from elsewhere in the

WSDL definition. The binding must also specifying which portType it's describing

through the type attribute.

<wsdl:definitions >

 <wsdl:binding name="nmtoken" type="qname"> *

 <-- extensibility element providing binding details --> *

 <wsdl:operation name="nmtoken"> *

 <-- extensibility element for operation details --> *

 <wsdl:input name="nmtoken"? > ?

 <-- extensibility element for body details -->

 </wsdl:input>

 <wsdl:output name="nmtoken"? > ?

 <-- extensibility element for body details -->

 </wsdl:output>

 <wsdl:fault name="nmtoken"> *

 <-- extensibility element for body details -->

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

</wsdl:definitions>

20

5- Port .

XML-Based format defined as a combination of a binding and a network address

,providing the target address of the service communication (W3C, 2008).

using a single address for binding, the Port element defines an individual endpoint.

Figure(2.6) The basic structure of a Port element is as follows

Figure(2.6) The basic structure of a Port element

6- Service

XML-Based format defined as a collection of related end points encompassing the

service definitions in the file; the services map the binding to the port and include

any extensibility definitions (W3C, 2008) .

Service element defines a collection of endpoints, or ports, that publish a particular

binding. (A. Skonnard et al, 2003) . Figure(2.7) The basic structure of the service

element is as follows:

Figure(2.7) The basic structure of the service element

<wsdl:definitions >

 <wsdl:service > *

 <wsdl:port name="nmtoken" binding="qname"> *

 <-- extensibility element (1) -->

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

<definitions >

 <service > *

 <port name="nmtoken" binding="qname"> *

 <-- extensibility element defines address details -->

 </port>

 </service>

</definitions>

21

Each port should have a name and assign it a binding. Then, inside the port element

you use an extensibility element to define the address details specific to the binding.

After discussing WSDL Parts, The main structure of a WSDL document will be as in

Figure (2.8) :

Figure (2.8) the main structure of the WSDL document

The combination of SOAP and XML schema used by WSDL to provide web

services over the Internet. A client program can read the WSDL file and determine the

available functions on the server. Any special datatypes used will be embedded in the

WSDL file in the form of XML Schema. And then The client can use SOAP to actually

call one of the functions listed in the WSDL.

<definitions>

<types>

 definition of types........

</types>

<message>

 definition of a message....

</message>

<portType>

 <operation>

 definition of a operation.......

 </operation>

</portType>

<binding>

 definition of a binding....

</binding>

<service>

 definition of a service....

</service>

</definitions>

22

2.5 Simple Object Access Protocol (SOAP)

(W3C, 2008) defines SOAP as " a lightweight protocol for exchanging structured and

typed information in a decentralized and distributed environment". This protocol forms

the standard of messaging of Web service Architecture (WSA). SOAP is an XML based

messaging protocol which is a extensible , standardized, and human-readable

serialization of data.

SOAP provides a message which can be exchanged in a different of transport protocols

such the (SMTP) Simple Mail Transfer Protocol (J. Klensin.,2001) and (HTTP) the

Hypertext Transfer Protocol (R. Fielding et al.,1999), between two nodes, (the SOAP

sender and the SOAP receiver) SOAP messages can exchanged. Exchanging The

message can be a one-way, a request/response interaction or a peer-to-peer conversation

according to the message exchange pattern (MEP). The SOAP Binding method is the

transmission of the message in the underlying protocol of the SOAP message exchange.

SOAP messages can be bound to different protocols. The most important used protocol

is HTTP because of the popularity of the protocol in the Internet (Gibson Lam., 2012).

In Figure(2.9) we can see an example of a SOAP message :

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-

envelope">

 <env:Header>

 <h:mailheader

xmlns:h="http://example.org/mailheader">

 <h:priority>1</h:priority>

 </h:mailheader>

 </env:Header>

 <env:Body>

 <m:mail xmlns:m="http://example.org/mail">

 <m:author>John Chan</m:author>

 <m:subject>Reminder</m:subject>

 <m:content>Remember the meeting is at

9am!</m:content>

 </m:mail>

 </env:Body>

</env:Envelope>

Figure(2.9) An example of a SOAP message

23

2.6 Universal Description, Discovery and Integration (UDDI)

The idea of UDDI started In 2000,by three companies IBM, Microsoft, and Ariba they

starting a project to create standards for discovering, describing, and consuming Web

services. The idea was for registries, named as UDDI registries, to managing

information about service implementations, service providers, and service metadata.

Providers, could then publish their information while giving consumers - anyone

needing a service - the ability to request the information to find services they needed

and to request the information about how the services are consumed. UDDI carry out

this interaction.(R. Richards., 2006).

Conceptually, a Provider can register three types of information into a UDDI registry.

 White pages

Basic necessary Data about a company, including business name, address, and contact

information. The importance of This information it allows consumers to determine your

service based upon your business identification. This is similar to searching either the

phone number or the business address when you know the name of the business

(Enterprise SOA , 2006).

 Yellow pages

It describing the service by classification the information. For instance, the phone

directory can provide Data to find any restaurant in Amman area. It let consumers to

discover any service by its categorization (taxonomy) (Enterprise SOA , 2006) .

 Green pages

It allow to describe the service offered by the business . containing a technical

information about the supported functions, behavior, and the service access point.

(Enterprise SOA , 2006).

24

2.7 Web services benefits

WS have many technological and business advantages,(S. Hanna et al, 2010) (Altova

Inc, 2006) :

 Interoperability - Web Services usually working outside of private networks,

giving the developers a non-proprietary way to their solutions. Services developed

to have a longer life time, and offering a good advantages on investment of the

developed service (S. Hanna et al, 2010).

 Usability - Web Services publishing the business logic of any systems over the

Web, so all of your applications having the freedom to chose the Web Services that

they need. Instead of starting from the beginning for each client, you only need to

include the additional application of business logic on the side of the client. This

allows you to use the language and tools you want to develop services code (S.

Hanna et al, 2010), (Altova Inc, 2006).

 Reusability - Increasing the reusability of the Web Services and accordingly

reducing the time and cost required to build a Web-based distributed application (S.

Hanna et al, 2010).

 Deployability - Web Services are deployed over all standard Internet technologies.

2.8 Web services development challenges

However, Web Service faces numerous challenges including, but it is not limited to the

following (S. Hanna et al, 2010) (Altova Inc, 2006) :

 There is a hindrance in Web services in some respects. Web services use plain

text protocols identifying data using a fairly verbose method. And the result of

that the Web service requests are more larger than the requests encoded with a

25

binary protocol. This large size is really an issue in the slow connections, or on

the busy connections (Altova Inc, 2006).

 The trustworthiness problem: The Service Requester can only see the contract

(WSDL) of a Web Service but not the source code. This fact has caused Service

Requesters to question the trustworthiness of Web Service because Service

Requesters do not trust Web Services that were implemented by others without

seeing the source code. (W. Tsai et al, 2005) mentioned that this problem is

limiting the growth of Web Service applications and that these applications will

not grow unless researchers meet this trustworthiness challenge. (J. Zhang,

2005) stated that the current methods and technologies cannot ensure Web

Service trustworthiness and that for Web Services to grow, researchers must

address this challenge. (S. Hanna et al, 2010).

 HTTP and HTTPS are simple protocols, but they not concerned with long-term

sessions. Typically, the connection may be disconnect while downloading a web

page having maybe some images .

 The selection problem: Service Requesters have no criteria to choose between

Web Services that accomplish the same task. (J. Zhang, 2005) stated that it is a

big challenge to choose the most appropriate Web Service from a "sea of

unpredictable Web Services". These problems and challenges appeared for more

than one reason, one of them is that the WSDL contract of a Web Service

describes the operation or the function that a Web Service provides and how to

bind to this Service. However, it does not describe the non-functional quality

attributes such as robustness, reliability or performance. (S. Hanna and A.

Alawneh, 2010).

26

 There is a problem with HTTP and HTTPS protocols, these protocols are

"stateless"—there is no knowledge between the client and the server because

there is no data being exchanged between them (no interaction). More

specifically, the server will never know that the client is no longer active if a

power failure happened when the client makes a request to the server and

receiving some information. The server needs to know of what a client is doing

and also to determine when a client is no longer active (Altova Inc, 2006).

 Vulnerability to invalid inputs by malicious Service Requesters: Since Web

Services are advertised in the Internet, any Service Requester can access this

Web Service and some of these might be malicious Requesters that aim to do

harm. The Web Input manipulation vulnerability is 59.16% of the overall Web

Services vulnerabilities (W. YU et al, 2006) and that is why Web Services

should be tested against this kind of fault to assess if a Web service is vulnerable

to input manipulation attacks in order to increase Web service trustworthiness.

(G. Myers, 2004) mentioned that testing that a program does what it is supposed

to do is only half the battle, the other half is to test whether the program does

what is not supposed to do. In other words, to check if a program is vulnerable

to invalid input.

27

2.9 Semantic Web Services

Researchers have made great efforts on defining rich and machine‐understandable

descriptions of service behaviors to enable sophisticated service search so that existing

services can be organized and utilized more effectively without human interventions(Ke

Hao,2013), Tim Berners Lee the inventor of (www) and the director of (W3C),

proposed the Semantic Web standards (Berners-Lee et al., 2001) and the concepts of

Semantic Web, a world where the information is processed directly and indirectly by

the machines. Describing rough data by means of metadata this let them to be

unambiguously interpreted by the computer, and the metadata are associated in a well

defined meaning to the entities that are involved.

The aims of The Semantic Web (Berners-Lee et al., 2001)(N.Shadbolt et al., 2006) is to

make these large amount of information on Web accessible to machines by using

annotation of the content of the Web using – a format understandable by machine- RDF,

and then, this information integrated through using of the ontology (Dieter Fensel,

2003), which could use Web Ontology Language OWL (L.Deborah et al., 2004).

However, these annotations indicate only to static knowledge, and the ontologies are a

static descriptions of background knowledge in a specific domain.

2.9.1 Objective of Semantic Web (SW):

 SW let the user to share, find and combine the information to transmit it from

one place to another very easily.(B. David,2002) people can use the Web to

carry out works such as finding the Italian word for " Winter ", reserving a

library book, and searching for the lowest price for a Laptop.

However, machines cannot do all of these works without human guidance,

http://en.wikipedia.org/wiki/Irish_language
http://en.wikipedia.org/wiki/Machine#Computing_machines

28

because the web pages are designed to be read by humans, not the machines.(B.

David,2002)

 SW making the current web more secure and more usable by showing the

information.(B. David,2002).

 It is easy for the users to use the Web for carrying out the works of finding the

folders or categories (B. David,2002).

 SW provides the directive for the machine to execute any task by providing the

interpreter that can interpret it, (B. David,2002). so more works will be

performed by machines like combining, finding, and acting upon information on

the web.

 Any task provided by the SW, the Machines can perform it and it involves

combining, finding, and acting on the information that is existing on the web.(

B. David,2002).

2.9.2 Semantic Web Technologies

One of the big disadvantages of using XML as a data model is that XML files do not

convey the meaning of the information contained in the document. XML schema allow

making constraints on the format, but not on the meaning of XML data. Exchanging

XML files over the Web is possible if the parties participating in the exchange agree

having the exact syntactical format (using XML Schema) of the data and the meanings

of the expression and structures into XML files. The SW (Berners-Lee et al., 2001)

allows representing and exchanging of information in a meaningful way, simplifying

automated description processing on the Web.

Ontologies are a connective structures consist of links between the resources of the

information that on the Web and connect these resources to a formal terminologies ,

29

these links are expressed using annotations on the Semantic Web (Dieter Fensel, 2003),

Ontologies forms the base of the Semantic Web, allowing machines to understand the

information through the links between the resources of the information's and the terms

in the ontologies (J. Bruijn et al.,2008). Moreover, ontologies facilitating the

interoperation between the resources of the information through the links to the same

ontology or links between ontologies.

There are two ontology languages for Semantic Web recommended by W3C, namely

Web Ontology Language OWL and the RDF schema. RDF providing a simple method

to represent any kind of metadata and data, and creating the links between the

annotation resources and resources with a connection to ontologies on the SW, while

OWL is used to define a Web ontologies, that is, conceptualizations of a particular

domain. OWL is a language that extends RDFS in an ontology way(J.de Bruijn et

al.,2008) .

Two ways we can using them to create semantic annotated web service (SAWS)(M.

Keyvan et al., 2012), the first one creating independent framework of the Web service

description then link it to the current standards of Web service , in another words

searching in OWL-S (Martin et al., 2004) and WSMO (Bruijn et al, 2005) . the second

way is adding semantic annotation into the current standards of the Web service , that’s

mean searching in WSDL-S(Akkiraju et al, 2005) and SAWSDL (J. Farrell et al.,2007)

2.9.3 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) it is the first language constructed to build

the semantic Web, RDF is a language for adding a metadata- machines can read it- to

the existing data on the Web.RDF is a framework to publish information on the Web

about anything. Anyone can describe the Web resources, such as the creation date,

30

subject, author and copyrights of any image (D.John et al., 2011).RDF is an XML

language format (J.de Bruijn et al.,2008), and from the definition of RDF when we say

Resource Description Framework then we have three important parts , first one the

Resources which is the essence of the Semantic Web, the Second part is the Description

of Resources and this is important for understanding. These descriptions could be

features or relations concerned with the resource, the third part is the Framework , and

this is mean it provides languages, syntax, models for these descriptions. (D.John et al.,

2011).

RDF Schema (RDFS) indicating the combination of RDF with RDF Schema , it is a

simple ontology language can defining the vocabularies that can be used with RDF.

RDFS Unlike XML Schema, which determine the combinations and order of tags in an

XML document, RDFS provides information only about the interpretation of the

statements given in an RDF data model. RDF Schema does not say anything about the

syntactical aspect of the RDF description. RDFS is an extension of RDF with a

vocabulary for classes definition, class hierarchies, property restrictions, and property

hierarchies (J.de Bruijn et al.,2008).

2.9.4 Ontology Web Language For Services (OWL-S) :

OWL-S (Martin et al., 2004) determining the upper ontology that describing the Web

service properties and capabilities in OWL to facilitating the automation of the Web

service tasks, including Web service execution, discovery, interoperation and

composition. According to IEEE P1600.1 (2003, March 12): ―An upper ontology is

limited to concepts that are generic, meta, philosophical and abstract, and thus it is

general enough to be address (at a high level) a broad range of domain areas. The

Concepts that are specific to given domains will not be included, however, this standard

31

can provide a set of general concepts and a structures upon which domain ontologies

could be constructed (e.g. medical, engineering, financial, etc..).‖

According to (M. Keyvan et al., 2012), the upper ontology of service divided into three

parts each part provides a basic type of information we must know about the service :

1. ServiceProfile (What the service does)

ServiceProfile enabling matchmaking and discovery by determining if the

service meets its needs. This profile including the nonfunctional and the

functional parts of the service. The functional parts including the information

of the transformation represented by the inputs and the outputs , and

including the changes happened in the state cause by the execution of the

service. The nonfunctional parts including the references to existing

ontolgies, the quality of the service , the provider information.

2. ServiceModel (how the service works)

It enabling the invocation of the service, monitoring, recovery and

composition. ServiceModel seeing the interactions of the service as a

process.

3. ServiceGrounding (How to access the service)

ServiceGrounding mapping the constructs of the process model to detailed

specifications of message protocols, formats , in other words, OWL-S

Mapping Atomic process to WSDL operations (inputs and outputs) to

WSDL message.

Figure 2.10 illustrates the three parts of the upper onology According to (M. Keyvan et

al., 2012) , oval representing an OWL class, and the arc representing the OWL property

:

32

OWL-S differentiate between two types of services, atomic service and composite

service. In atomic services there are a single computer program that can accessing the

Web, or a sensor, or a device invoked by a request message, and performs the message

task and maybe produces a single response to that requester. In atomic services there is

no continuous interaction between the user and the service. the complex or composite

services are in contrast of the atomic service it is built up from multiple more primitive

services it may require more interactions between the requester and the group of

services that are being used.

In my thesis I am concerned with using OWL-S , transforming WSDL document into

OWL-S , after that adding annotations to this ontology , these annotation to help the

requester to understand the web service comes from the provider , and trying to solve

WSDL DataType problem using this Semantic web method. In the next chapter we will

discussing some of the literature reviews for semantic web services and comparing

these studies with the subject of our thesis.

Described By … how it works

Presents .. What it does

Services

ServiceGrounding

ServiceModel

ServiceProfile

Supports …How to access it

Figure (2.10): Service Ontology in OWL-S

33

2.10 Literature Review (State Of The Art) :

Many researches and studies talk about web services, this field of study still need more

and more publications and articles to cover all sides that inform this field like building

web service , security in web services, semantic web services, and so on.

On my thesis , I am concerned with semantic web service , many researchers published

many publication discussing semantic web services , and a lot of concepts and

expressions rise during these research since 2001 when Tim Berners Lee the inventor

of the World Wide Web and director of the World Wide Web Consortium ("W3C")

proposed the concepts of Semantic Web (Berners Lee et al., 2001).

2.10.1 Overview

Semantic Web services was and still very important for the researchers in Web Service

field because of its important we discussed in last chapter, and many frameworks were

constructed in the recent years, Web service description Language Semantic (WSDL-S)

(Akkiraju et al, 2005), Web Ontology Language for Services (OWL-S) (Martin et al,

2004) , Semantic Web Services Framework (SWSF) (Battle et al, 2005), Web Service

Modeling Ontology (WSMO) (Bruijn et al, 2005), and the implementation of semantic

registry semantically annotating Web service descriptions SAWSDL (Farrell and

Lausen, 2007).

Both of OWL-S an WSMO Frameworks creating a semantic web that are independent

in its description and they link it in the current standards of the web service, while

WSDL-S and SAWSDL adding semantic annotation into the current standards of the

web service.

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/W3C

34

In this thesis we will survey some frameworks and researches that enabling semantic

web services and discuss it and find the limitations for each one and try to solve it in

this thesis.

2.10.2 A Semantic Approach for Transforming XML Data into RDF

Ontology

(T. Pham Thi et al, 2013), proposed an approach that aims to measure the similarity of

the duplicated elements in XML schema before transforming , redundancy in data

resulted from these duplicated elements in XML schema causing ambiguity in

transformation and the result may be not semantically richer than the source document .

 This approach transforms XML Data into RDF Ontology since RDF presents data by

using graphs of resources, duplicates we mentioned will be transformed into appropriate

RDF concepts .

We can summarized the proposed approach in two steps :

1. measuring the semantic similarity of duplicated element, and this is done after

the researcher find that there is two factors affect the similarity between

duplicated elements, particularly the children, and the ancestor. Solved by

combining them.

2. XML Schema to RDF Transformation , and here the researcher follow some

rules depends on classes and some properties that created from XML schema.

In This approach the researcher concerned in transforming XML data into RDF

ontology and did not measure or examine the effect of transformation on datatypes , and

did not solve this problem which I am trying to solve it in my thesis.

35

2.10.3 An Improved Semantic Annotation Method of Web Services

Based on Ontology.

(L. Zhang et al, 2008), presented a new method for semantic annotation , this method

based on Ontology, taking advantage of the similarity between WSDL and ontology to

annotate services.

This method eliminate some problems that faces similarity calculations between

temporary ontology (comes from mapping process of WSDL into OWL to generate the

corresponding OWL called (temporary ontology)) and domain ontology like the huge of

computational complexity and the lower of efficiency and the decreasing of accuracy.

The proposed method summarized in two steps :

1. Filtering out the related concepts to generate a concept set for the candidates

before similarity calculation, here we need to compute just the similarities

between a concept and its candidate set .

2. Raising the accuracy of the structural similarity algorithm by Setting different

weights to different sub-concepts .

As a result, this method raised the efficiency and accuracy in a greatly manner , and

the average accuracy is 82.5%. and we find this method guarantee the settling of the

semantic description of services.

We can criticize this work, Suppose one or more of these applications using this method

is used by one of the Datatypes not implemented clearly in WSDL, such as char, array,

array of objects. Here, the model which implements the Web Service before

composition will have ambiguity, but after it composes with others, inevitably the

ambiguity will increase, so that this approach is good and will work properly if all of the

datatypes of Web Services parameters are represented clearly. If one or more

parameters are represented ambiguously, surely it will face missed understanding for

36

Web Services requesters and developers. Our proposed approach seeks to overcome

these challenges and also to reach batter comprehension for Web Service functionality.

2.10.4 Discovery of Semantic Web Services Compositions based on

SAWSDL Annotations

(C. Guilherme et al, 2012), presented approach aims to automatic discovery and

composition of semantic web services at request time, combining services when one of

these services does not satisfy the requirements specified in the discovery request, to

identify this composition the researcher used SAWSDL (semantic annotation for WSDL

) to implement the proposed approach which called SWScomposer.

SWScomposer depends on the repository of the semantic web services and on the

compositions match the characteristics specified in a discovery request , this is achieved

by analyzing process between operations and the inputs and the outputs.

We can summarized the proposed approach in four steps :

1. Invoking a single operation provided by the web service

2. Extracting the semantic annotation from the WSDL description

3. Discovering and building the web services compositions and returns them to the

web services

4. Web Service returns the compositions to the requester, which can then invoke

the web services that integrate them.

This approach different from the last method because it aims to discovering the

semantic web service compositions , but didn't solve our problem which we try to solve,

so the same challenges of understandability are still present.

37

2.10.5 Reverse Engineering Existing Web Service Applications

(H. EL Bouhissi et al, 2009) proposed a novel approach based on reverse engineering

specifying web service according to the web service modeling ontology WSMO. This

approach is split in two stages:

1. reverse engineering to extract the useful information from the WSDL document.

2. engineering for constructer of the Web Service.

The proposed approach is adding a semantic to the Web Service according to Web

Service Modeling Ontology, to facilitate for the Web Service clients to discovery,

selection, composition, and also execution of the Web Service.

 A reverse engineering approach reduces the effort and cost to build a new Semantic

Web Service by adding a semantic layer to an existing Web Service using a description

file WSDL without referring to source code. In this case the semantic for Web Services

will be built depending on WSDL. As we mentioned earlier, the semantic for Web

Service will suffer with the same problems because the WSDL document may contain

one or more aforementioned dtatatypes, and that will lead to a misleading semantic for a

Web Service, resulting in the Web Service not having a good route for selection,

composition, discovery from the users because a user cannot understand the

functionality of the Web Service to decide if it is applicable for his purposes.

2.10.6 A framework for deriving semantic web services

WSDL provides the syntactic means for describing web service and very weak language

in providing a semantic basics, (B.David et al, 2006) developed a framework that

deriving semantic from syntactical description of the web service, this framework

construct the ontology for the defined technical services and transforming syntactical

web services to semantic web service.

38

Researchers following four strategies to adopted this framework :

4. theory building

5. scenario analysis

6. observation

7. framework development and evaluation

the developed framework stands on a philosophy and on the concepts of semantic web

service, interpreting, scoping and harmonizing the syntactical elements defining the web

service , this framework don't help us in solving the problem of datatype in WSDL

document, since it just driving the semantic from syntactic web service and dealing with

WSDL documents without any care about the mismatching of the parameters datatypes

so it will suffer the same problems of ambiguity to select, reverse engineering, reused

the Web Services.

2.10.7 Meta-Modeling of Semantic Web Services

This research discussed other manners for dealing with the understandability of the Web

Service, called Meta-Model. This manner is proposed by (R. Virgilio et al, 2010) , and

it allows interoperability at different levels of abstraction.

The Meta-Model Approach is summarized according to (R. Virgilio et al, 2010) in three

levels: a conceptual level, a logical level and a physical level which are illustrated as

follows:

1. A conceptual level, proposing a simple conceptual model where a set of

constructs properly represents semantic concepts. Each construct is used to

properly represent elements of documents, with the same semantics.

39

2. A logical level, implementing the conceptual model into a logical one. In this

case they used the relational model.

3. A physical level, defining the physical design of the logical representation of

previous level.

This approach is different from others in the literature, as it provides implementation

solution starting with the definition of a meta-representation of the chosen data model at

a conceptual level. The main challenges which we attempt to solve are not exceeded and

also we must note that the understanding of Web Service functionality by its users

depends on the parameters datatypes which are used to implement the Web Service

operations. This approach is not effective if the Web Service used one or more of the

aforementioned dtatatypes, as that will lead to a misleading comprehension for the Web

Service that should be avoided.

2.10.8 ASSAM: A Tool for Semi-Automatically Annotating Semantic

Web Services

In (H. Andreas et al, 2008), the authors introduce a mapping tool called Automated

Semantic Service Annotation with Machine Learning (ASSAM). ASSAM generates

OWL-S file from WSDL file, however, it suffers from the following limitations:

First, it introduces a list of different choices to the user to select the most appropriate

class that can represent a semantic definition for each datatype in the WSDL file. This

list is an unordered (unranked) list. So, the choosing process is difficult for any user.

And the second limitation is that it doesn't provide organization for the available

ontologies. And this could make problem if it used in a real Semantic Web service

system which could have a huge number of ontologies and concepts.

40

2.10.9 Summary

In this chapter we discussed a sample of some recent research which aims to understand

the Web service functionality , As shown the proposed approaches used Semantic Web

models to express Web service descriptions , but they have ignored dealing with the

operation input/output parameters datatypes. However the Web service description

remains unclear because the description of parameters datatypes is differently expressed

from tool to another, so the Semantic description will be different for the same Web

Service if programmed at different tools.

41

CHAPTER THREE

THE PROPOSED MODEL :

Extending Web Services Datatypes

Specification for Different Development

Platforms

42

We have seen in last chapters that there is no approach attempt to solve the problem in

defining the Web service operations parameters datatypes which causing the

inconsistency and the ambiguity in the Web services. All the previous approaches

solved the problems of the Web services understanding, reusing and comprehension by

using Semantic Web services, but these approaches ignored the important part which is

the needed data that must be used to bind with Web services, and this is my thesis

talking about.

WSDL mapping abstract messages to a concrete message using a declarative

information and the binding will be expressed to determined the port to post or read the

messages from. But WSDL is not expressive enough to determined the semantic

competitions or the interactions between protocols which we needed for the

compositions, OWL-S is in the contrast, it describing the Web services in expressions of

their ports and describing the Web service capabilities in expressions of the provided

abstract functions , the process model and the grounding which describing how the

service interact. So WSDL and OWL-S are complementary to each other : OWL-S give

us an abstract information about the operations and about the exchanged information ,

while WSDL give us how this abstract information mapped into messages .WSDL will

be involved in the specification of the OWL-S Grounding to provide the information

which will be bind to determine the ports.

 The proposed approach is could be accompanied with a tool in order to prove the

approaches utility and compare it with other approaches. This approach can answer the

major questions of this thesis, that is :

43

 Can we add a semantic description to the data specification that are produced

based on different Web services platforms (such as J2EE and .NET) and also

based on different IDEs such as Eclipse, Visual studio, and NetBeans.

 Can we investigate how different web service platform handle the datatype

specifications for a certain Web service operation and how we can enhance the

specifications to make it more understandable and reusable by requesters.

3.1 The Proposed Model

The proposed model can be explained using the following Figure (3.1) of the main

components of this model.

Figure (3.1) : The Proposed Model

44

Figure (3.1) based on the following abstract phases:

1. Extracting the XS based datatype specification inside a WSDL.

2. Analyzing the specification based on the producing platform and IDE in order

to specify the needed enhancements.

3. Enhancing the data specification based on the previous analysis.

4. Producing an enhanced, semantic, understandable and reusable data

specification for the Web service described by the analyzed WSDL.

The proposed approach analyzing the WSDL file , then extracting the parameters

needed for the Web service and then transforming the WSDL file to Ontology Web

Language For Services (OWL-S) document , then adding annotation that make the Web

service more clear to the requester.

3.2 Extracting WSDL elements (including Datatypes) :

The first step we have to extract the WSDL document, WSDL documents are

compulsorily published with Web Service; the provider cannot publish his own service

application until its description (WSDL) generated, so that any developer or user

wanting to know more about the operations or services then he can review the provided

WSDL document.

There are many ways to extract WSDL document, but here we are looking to make our

proposed approach to run automatically when the Web Service client, user, and also

developer want to bind with the Web Service and in the final stage give him a clear and

simple description for Web Service input/output parameters datatypes. The proposed

approach extracts the WSDL document and then extracts WSDL elements and the XSD.

Then the approach can distinguish between the input/output parameters datatypes which

may need more description and constraints with which do not need.

45

3.3 WSDL DataTypes Descriptions

Web service provider publishing the application and using parameters , these

parameters must clearly appear to the users without ambiguity; because any error in the

filling of these parameters will lead to Web Service failure which we always seek to

ensure does not happen. Therefore we are proposing an approach Extending Web

service Datatypes specification to reach better comprehension and reusing the Web

service functionality , which in turn leads users to operation understandability for all

Web Services and also to determine all the parameters datatypes which Web Services

need.

The W3C XML Schema Datatype Specification defined many datatypes for validating

the content of the element and the values of the attribute. These datatypes using for

validating only the scalar content of the XML elements, and not the mixed or non-scalar

content. The text located between the <opening> and </closing> tags, and the

attribute's value are often referred to as scalar data, or it could be a list of scalar data.

These datatypes are designed for use in the definition of the XML Schema.

According to W3C , Datatypes divided into two categories :

1. Primitive datatypes are those that are not defined in terms of other datatypes,

they are the primary dataTypess of the XSD, and acting as a base for defining

the other datatypes in XSD. It contains only values and there is no attributes or

elements.

2. Derived datatypes are those that are defined in terms of other datatypes, they are

derived from primitive datatypes and they could be built in or user defined e.g.

integer -> built in -> derived from -> decimal datatypes.

46

We will summarize all the primitive types and their description including a simple

restriction used in its specification in the following table (There are the 19 primitive

datatypes supported by the XML Schema Datatypes Specification) :

Primitive Types

Name type Description
String xs:string A sequence of Unicode characters

Boolean xs:boolean Values (True OR False)

Decimal xs:decimal A rational number

Float xs:float

Double xs:double

Duration xs:dateTime An instant in time - known at least to the

second and always includes a time zone.

URI xs:anyURI A Uniform Resource Identifier Reference.

(Absolute OR Relative), may have an
optional fragment identifier

Date A date, or partial date Dates SHALL be

valid dates. date is a union of the w3c
schema types of date (gYearMonth and

gYear).

DateTime xs:dateTime, A date, date-time or partial date.

 If hours and minutes are specified, a time

zone shall be populated. and
Seconds may be provided or may also be

ignored.

Dates shall be valid dates.

 xs:date,

 xs:gYearMonth,

 xs:gYear

 xs:gMonth

 xs:gDay

 xs:gMonthDay

Base64Binary xs:base64Binary A stream of bytes, Base64 are encoded

HexBinary xs:hexbinary represents arbitrary hex-encoded binary

data, a set of finite-length sequences of
binary octets

QName

xs:qname QName represents XML qualified names.

It is a set of tuples {namespace

name, local part}, where namespace
name is an anyURI and local part is

an NCName.

NOTATION

 represents the NOTATION attribute type,
it is the set of QNames of notations

declared in the current schema

Integer xs:int A signed 32-bit integer

Next table summarizing all the derived datatypes, these datatypes represented as

elements with a child with the name of the defined elements of the type (There are 25

built-in derived datatypes supported by XML Schema Datatypes) :

Table (3.3) : Primitive types according to W3C (http://www.w3.org/TR/xmlschema-2/)

http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-qname
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-localname
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-NSName
http://www.w3.org/TR/xmlschema-2/#anyURI
http://www.w3.org/TR/1999/REC-xml-names-19990114/#dt-localname
http://www.w3.org/TR/xmlschema-2/#NCName
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-NotationType
http://www.w3.org/TR/xmlschema-2/#QName

47

Derived Types

Name type Description

NormalizedString xs: normalizedString set of strings that do not contain the

carriage return, line feed nor tab characters

Token xs: token set of strings that do not contain the
carriage return, line feed nor tab characters,

that have no leading or trailing spaces and

that have no internal sequences of two or

more spaces

Language xs: language the set of all strings that are valid language

identifiers

NMTOKEN xs: NMTOKEN The set of tokens

that match theNmtoken production in XML

NMTOKENS xs: NMTOKENS the set of space-separated lists of tokens, of

which each token is in the ·lexical

space ofNMTOKEN

Name xs: Name the set of all strings

which match the Name production

of XML

NCName xs: NCName represents XML "non-colonized" Names

ID xs: ID represents the ID attribute type, An ID

attribute must have a declared default

of #IMPLIED or #REQUIRED

IDREF xs: IDREF IDREFS must match Names;

each Name must match the value of an ID

attribute on some element in the XML

document

IDREFS xs: IDREFS the set of (finite and non-zero-length

sequences) of IDREFs

ENTITY xs: ENTITY ENTITIES must match Names;

each Name must match the name of

an unparsed entitydeclared in the DTD

ENTITIES xs: ENTITIES the set of finite, non-zero-length sequences
of ENTITYs that have been declared

as unparsed entities in a document type

definition.

Integer xs:int the infinite set {...,-2,-1,0,1,2,...}

NonPositiveInteger xs: nonPositiveInteger the infinite set {...,-2,-1,0}

NegativeInteger xs: negativeInteger the infinite set {...,-2,-1}

Long xs: long an optional sign followed by a finite-

length sequence of decimal digits

Int xs: Int maxInclusive to be 2147483647

and ·minInclusive to be -2147483648.

Short xs: short maxInclusive to be 32767

and minInclusive to be -32768

Byte xs: byte maxInclusive to be 127 and minInclusive to

be -128

NonNegativeInteger xs: nonNegativeInteger the infinite set {0,1,2,...}

UnsignedLong xs: unsignedLong

UnsignedInt xs: unsignedInt

UnsignedShort xs: unsignedShort the value of maxInclusive to be 65535

UnsignedByte xs: unsignedByte the value of maxInclusive to be 255

PositiveInteger xs: positiveInteger the infinite set {1,2,...}

Table (3.4) : Derived types according to W3C (http://www.w3.org/TR/xmlschema-2/)

http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Nmtoken
http://www.w3.org/TR/xmlschema-2/#XML
http://www.w3.org/TR/xmlschema-2/#dt-lexical-space
http://www.w3.org/TR/xmlschema-2/#dt-lexical-space
http://www.w3.org/TR/xmlschema-2/#NMTOKEN
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-TokenizedType
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Names
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Names
http://www.w3.org/TR/2000/WD-xml-2e-20000814#dt-doctype
http://www.w3.org/TR/xmlschema-2/#dt-minInclusive

48

Next table illustrated the Atomic datatypes and the derived datatypes :

Primitive Types

Name Derived Atomic

String √

Boolean √

Decimal √

Float √

Double √

Duration √

URI √

Date √

DateTime √

Base64Binary √

HexBinary √

QName √

NOTATION √

Derived Types

Name Derived Atomic

NormalizedString string

Token normalizedString

Language token

NMTOKEN token

NMTOKENS NMTOKENS

Name token

NCName Name

ID NCNAME

IDREF NCName

IDREFS IDREF

ENTITY NCName

ENTITIES ENTITY

Integer decimal

NonPositiveInteger integer

NegativeInteger nonPositive

Long integer

Int long

Short int

Byte short

NonNegativeInteger integer

UnsignedLong nonNegative

UnsignedInt unsignedLong

UnsignedShort unsignedInt

UnsignedByte unsignedShort

PositiveInteger nonNegativeInteger

Table (3.5) : Atomic VS Derived DataTypes (D. Vint et al, 2003)

49

ASP.Net – Visual C# :

 LISTS Specification :

XML Schema Datatypes (XSD) in WSDL file Corresponding to Lists programming in

ASP.Net – Visual C# :

CLASS :

namespace WebServiceRaed

{

 public class Employee
 {

 public int ID { set; get; }

 public string Name { set; get; }

 }

}

Web Service :

public List<Employee> getEmployees()

 {

 List<Employee> I=new List<Employee>();

 I.Add(new Employee{ ID = 1, Name = "RAED" });

 I.Add(new Employee{ ID = 2, Name = "ABSI" });

 return I;

 }

Figure (3.2) : Lists programming in ASP.Net – Visual C#

<xs:element name="getEmployees">

 <xs:complexType/ >

 </xs:element>

 <xs:element name="getEmployeesResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1" name="getEmployeesResult"

type="tns:ArrayOfEmployee/ ">

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="ArrayOfEmployee">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="Employee" nillable="true"

type="tns:Employee/ ">

 </xs:sequence>

 </xs:complexType>

Figure (3.3) : WSDL file for Lists programming ASP.Net – Visual C#

50

The dataType (List) ASP.Net-Visual C# Platform in WSDL file is defined as

(ArrayOf……)

xs:complexType name="ArrayOfEmployee

 Integer & String Specification :

XML Schema Datatypes (XSD) in WSDL file Corresponding to Int & String

programming in ASP.Net – Visual C# :

[WebMethod]

 public string Philadelphia()

 {

 return "Philadelphia University Jordan";

 }

 [WebMethod]

 public int add(int x, int y)

 {

 return x + y;

 }

Figure (3.4) : Int & String programming in ASP.Net – Visual C#

< <xs:element name="PhiladelphiaResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1" name="PhiladelphiaResult" type="s:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="add">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />

 <xs:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />

 </xs:sequence>

 </xs:complexType>

 </xs:element> >

Figure (3.5) : WSDL file for Integer & String programming ASP.Net – Visual C#

51

The dataType (Integer and String) in ASP.Net-Visual C# Platform in WSDL file is

defined as (Integer … String) no change because it is a simple dataTypes .

xs:element minOccurs="0" maxOccurs="1" name="PhiladelphiaResult" type="s:string

xs: element minOccurs = "1" maxOccurs = "1" name = "x" type = "s:int

Windows Communication Foundation (WCF) :

We have found in the practical side within the building of the web service using WCF

that the WCF does not show the complex types and showing just the operations in the

WSDL document, and all the data structures are located in the XSD files which are

linked to the WSDL document, and by copying the URL's into the browser we can see

the complex type definitions.

 Array & String Specification :

XML Schema Datatypes (XSD) in WSDL file Corresponding to Array programming in

WCF :

[DataContract]

public class Test

{

 [DataMember(IsRequired = true)]

 public ArrTest[] array;

}

[DataContract]

public class ArrTest

{
 public DateTime? range1;

 public string range2;

}

Figure (3.6) : Array programming in WCF

52

The dataType (Array) in WCF Platform in WSDL file is defined as (ArrayOf ……)

xs:complexType name="ArrayOfArrTest

xs: element minOccurs = "0" maxOccurs = "unbounded" name = "array" nillable="true" type="tns:ArrTest

from the same example we can see that the dataType (String) in WCF framework in

WSDL file is defined as (String) no change because it is a simple dataTypes .

xs:element name="range2" nillable="true" type="xs:string

And here the problem , the object (ArrayOf ….)does not exist in the code where it is

generated from, so if I want to construct a client code from the WSDL file , then the

client doesn't know that this (ArrayOf …) is not true object at all.

< <xs:complexType name="ArrayOfArrTest">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="array" nillable="true"

type="tns:ArrTest"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="InvoiceBalance">

 <xs:sequence>

 <xs:element name="range1" nillable="true" type="xs:dateTime"/>

 <xs:element name="range2" nillable="true" type="xs:string"/>

 </xs:sequence>

</xs:complexType>>

Figure (3.7) : WSDL file for Array programming in WCF

53

PHP Web service Programming using (NetBeans IDE) :

 Float Specification :

During my searching on the internet it was very little persons developing web services

using PHP , most of them using C# or ASP , but PHP used more in creating WSDL files

as a bottom up approach (WSDL2PHP web service).

XML Schema Datatypes (XSD) in WSDL file Corresponding to Float programming in

PHP :

The dataType (Float) in PHP Platform in WSDL file is defined as (Float) no change

because it is a simple dataTypes .

<part name="R1" type="xsd:float"></part>

part name="sum1Return" type="xsd:float

<?php

 class CR1{
 /**

 * sum1s two numbers.

 * @param float $R1

 * @param float $R2

 * @return float

 */

 public function sum1($R1, $R2) {

 return ($R1+$R2);

 }

 }

 ?>

Figure (3.8) : Float programming in PHP

<message name="sum1">

 <part name="R1" type="xsd:float"></part>

 <part name="R2" type="xsd:float"></part>

 </message>

 <message name="sum1Response">

 <part name="sum1Return" type="xsd:float"></part>

 </message>

Figure (3.9) : WSDL file for Float programming in PHP

54

 Array Specification :

The dataType (Array) in PHP Platform in WSDL file is defined as (AnyType)

<part name="R1" type="xsd:anyType"/>

XSD:AnyType :

To store any type not of the primitive types in XML , WSDL using the xsd:anyType,

All the primitives dataTypes are derivatives of this Type and it is used as any XML

schema complex type.

<?php

class PHPARR {

 public $par1 = array();

 public $par2;

 /**

 * Making a PHParray.

 * @param mixed $R1
 * @param mixed $R2

 * @return array

 */

 public function PHPArray ($R1, $R2) {

 return array($R1, $R2);

 }

} ?>

Figure (3.10) : Array programming in PHP

<message name="PHPArrayIn">

<part name="R1" type="xsd:anyType"/>

<part name="R2" type="xsd:anyType"/>

</message>

<message name="PHPArrayOut">

<part name="return" type="soap-enc:Array"/>

</message>

Figure (3.11) : WSDL file for Float programming in PHP

55

Java Web service Programming in (Eclipse & Netbeans axis2 support):

 Integer & String Specification :

XML Schema Datatypes (XSD) in WSDL file Corresponding to Integer & string

programming in WCF :

The dataTypes (Integer & String) in Java Platform in WSDL file is defined as (int ..

String) no change because it is a simple dataTypes

public abstract class Def{

 public Def() {}

 public int R1;

 private int R2;

 private int[] R3;

 }

 public class Camefrom extends Def{

 public int R4;

 private string R5;

 }

Figure (3.12) : Integer & string programming in Java

<xsd:complexType name="Def" abstract="true">

 <xsd:sequence>

 <xsd:element name="R1" type="xsd:int"/>

 <xsd:element name="R2" type="xsd:int"/>

 <xsd:element name="R3" minOccurs="0" maxOccurs="unbounded"

type="xsd:int"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Camefrom">

 <xsd:complexContent>

 <xsd:extension Def="ns:Def">

 <xsd:sequence>

 <xsd:element name="R4" type="xsd:int"/>

<element name="R5" nillable="true" type="xsd:string"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

Figure (3.13) : WSDL file for Integer & string programming in Java

56

xsd:element name="R4" type="xsd:int

element name="R5" nillable="true" type="xsd:string

 Char Specification :

The dataType (char) in Java Platform in WSDL file is defined as (unsignedShort)

xs: element name = "return" type = "xs: unsignedShort

in this section we illustrated a comparisons between platforms which building the Web

Service (Asp.Net, Java, PHP, WCF, C#, Net Beans, Eclipse) and we found that there are

two categories of the dataTypes : primitive DataType and Complex DataTypes

(Drived), the first category is simple and the WSDL file can express it without any

difficulties, the second category is complex, WSDL file cannot express it as simple as

the first category, so WSDL using another Types like (AnyTpe, ArrayOf……,

Unsigned….) to build the XML file, These differences create misunderstandings for the

Web Services requesters, clients, users and also developers because these datatypes are

<xs:complexType name="charExample">

 <xs:sequence>

 <xs:element name="arg0" type="xs:unsignedShort" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="charExampleResponse">

 <xs:sequence>

 <xs:element name="return" type="xs:unsignedShort"/>

 </xs:sequence>

</xs:complexType>

Figure (3.14) : WSDL file for Char programming in Java

57

not implemented in the same and formal way as we have seen in char datatype Figure

3.16. But here in our thesis we suggest to implement our proposed approach on .NET

tool as case study.

3.4 Proposed solutions for XSD DataTypes :

In this thesis We proposed more than one solution to extend the web service DataTypes

in WSDL file , three solutions are proposed :

1. Using unified modeling language (UML) by a graphical definitions

for the web service (discussed by (Alshraideh F, 2013)) .

2. XML Annotations

3. Semantic Annotations using (OWL-S)

Proposed solutions for
XSD DataTypes

Using unified
modeling

language (UML)

XML
Annotations

Semantic
Annotations

using (OWL-S)

Figure (3.15) : Proposed solutions for XSD DataTypes

58

Now we can draw the Enrichment Phase in the proposed model clearly assigning the

two proposed solutions as in Figure 3.16

When to make Annotations ?

If the WSDL file have a simple dataTypes then no annotation to be added. The

enrichment part will have the same implementation for datatype as it is in original

WSDL document with no annotations. Otherwise the approach will back to Web

Service provider by sending to him an message as interface, asking him to select from a

datatypes list which datatype he given for the operation which written its name in the

interface. After the provider select the parameter datatype then the approach can add the

selected parameter datatype to the enrichment schema .

Figure (3.16) : Enrichment Phase in the proposed model

Enrichment Phase

Annotated WSDL

XML

Annotations

Semantic

annotations

59

But what if the service Provider did not answer, or his answer needs

more time ?

Here we can make detection against the Web Service, there are many algorithms

searching on detecting web service e.g (L.Carolin et.al 2007) he stated that detection

could be executed

1. fully automatically without human intervention

2. semi automatically with human feed back

3. manually by human programmer.

Yes No
XSD.DataTypes=

(Array, byte,

char….Derived)

Ask Provider No Annotations

Analyzing WSDL

Add Annotations

Figure (3.17) : When to make Annotations ?

Figure (3.18) : Detecting

60

3.5 Semantic Annotations :

There are many Semantic languages can help us to annotate the WSDL file , for

example we can use Resource Description Framework (RDF), Web Ontology Language

(OWL), Semantic Annotations for WSDL (SAWSDL) and so on. We will use OWL-S

language, this ontology is built on top of the OWL describes the services of the

semantic web, and it is widely used and proposed by W3C. OWL-S language is

convenient to the problem of web services inter-operability and composition, for the

representation and the description of the web service and the request.

To make a semantic annotation using OWL language we can use the <Annotation>

element :

 Element : Annotation

This element is placeholder for more than one way of annotations such

as <Label> and <Documentation>. specially, it can take the element (xsd:any)

See Figure (3.19).

 Element < label > : it provides a human-readable name for the annotated

element , See Figure (3.20).

 Element < Documentation > it provides a human-readable description

for the annotated element, See Figure (3.21).

<Annotation>

 Content: (Label | Documentation | xsd:any)

</Annotation>

Figure (3.19) : Header of the Annotation element

61

Now we can use this element to dealing with the types of Datatypes in the WSDL file to

make semantic annotations according to the classification we did in our approach.

<owlx:Annotation>

 <owlx:Documentation>Using Semantic OWL ontology</owlx:Documentation>

</owlx:Annotation>

Figure (3.20) : Element < Documentation >

<owlx:Annotation>

 <owlx:Label> Semantic OWL </owlx:Label>

</owlx:Annotation>

Figure (3.21) : Element < label >

62

3.6 Case 1 : primitive datatypes

In this case, the datatypes are implemented in a formal way and the datatypes are

implemented as it is without any changes, so there is no need for any enrichment. The

new WSDL document generated by our proposed approach will have the same XSD

datatypes without any modification to the original WSDL document. The enrichment

part will have the same implementation for the datatypes with no changes, as the

datatypes are primitive and no need for annotations.

The next example shows how the .NET tool implements Integer and String datatypes as

a case study and also shows how the proposed approach deals with this case

Example :

Integer & Sting in ASP.Net – Visual C#

XML Schema Datatypes (XSD) in WSDL file Corresponding to Int & String

programming in ASP.Net – Visual C# as Figure (3.23) :

[WebMethod]

 public string Philadelphia()

 {

 return "Philadelphia University Jordan";

 }

 [WebMethod]

 public int add(int x, int y)

 {

 return x + y;
 }

Figure (3.22) : Int & String programming in ASP.Net – Visual

C#

63

The dataType (Integer and String) in ASP.Net-Visual C# Platform in WSDL file is

defined as (Integer … String) no change because it is a simple dataTypes .

xs:element minOccurs="0" maxOccurs="1" name="PhiladelphiaResult" type="s:string

xs: element minOccurs = "1" maxOccurs = "1" name = "x" type = "s:int

The proposed approach will firstly extract the WSDL document and then extract the

XSD part, and finally check if the datatype is primitive or not. In this example the

approach will skip the third and forth steps of our proposed model because there is no

need for any annotations or constraints. The parameter (Integer OR String) is given its

type Integer Or String without any ambiguity. The following steps summarize how the

approach working :

< <xs:element name="PhiladelphiaResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="1" name="PhiladelphiaResult" type="s:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="add">

 <xs:complexType>

 <xs:sequence>

 <xs:element minOccurs="1" maxOccurs="1" name="x" type="s:int" />

 <xs:element minOccurs="1" maxOccurs="1" name="y" type="s:int" />

 </xs:sequence>

 </xs:complexType>

 </xs:element> >

Figure (3.23) : WSDL file for Integer & String programming ASP.Net – Visual C#

64

Step 1:

Extract the WSDL document for the (public int add(int x, int y) method and for the

String Datatype ,which shown in Figure 3.23 .

Step 2:

Extract the parameter datatypes XSD as:

a. < xs:element minOccurs="1" maxOccurs="1" name="x" type="xs:int" /> (Input

parameter).

b. < xs:element minOccurs="1" maxOccurs="1" name="x" type="xs:int"/> (Output

parameter).

c. < xs:element minOccurs="0" maxOccurs="1" name="PhiladelphiaResult"

type="s:string />

In this phase the approach can be distinguished that these are a primitive Datatypes and

don't needs more description because it is simple and clear and the requester can know

that it is Integer Or String datatypes as it is.

Step 3:

No annotations to be added. The enrichment part will have the same implementation for

datatype as it is in original WSDL document with no annotations.

65

3.7 Case 2 : derived datatypes

In this category, datatypes cannot be addressed until back to the Web Service provider

itself. The approach can execute step 1 and step 2 and then checking about the datatype

classification. In the previous category (primitive datatypes) the approach can address

the problem automatically; but here it stops and asks the Web Service provider about

which datatypes the provider specified for Web Service operation parameter datatypes.

Example :

Array & String Programming in WCF

XML Schema Datatypes (XSD) in WSDL file Corresponding to Array programming in

WCF :

[DataContract]

public class Test

{
 [DataMember(IsRequired = true)]

 public ArrTest[] array;

}

[DataContract]

public class ArrTest

{

 public DateTime? range1;

 public string range2;

}

Figure (3.24) : Array programming in WCF

< <xs:complexType name="ArrayOfArrTest">

 <xs:sequence>

 <xs:element minOccurs="0" maxOccurs="unbounded" name="array" nillable="true"

type="tns:ArrTest"/>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="InvoiceBalance">

 <xs:sequence>

 <xs:element name="range1" nillable="true" type="xs:dateTime"/>

 </xs:sequence>

</xs:complexType>>

Figure (3.25) : WSDL file for Array programming in WCF

66

The dataType (Array) in WCF Platform in WSDL file is defined as (ArrayOf ……)

xs:complexType name="ArrayOfArrTest

xs: element minOccurs = "0" maxOccurs = "unbounded" name = "array" nillable="true" type="tns:ArrTest

And here the problem , the object (ArrayOf ….)does not exist in the code where it is

generated from, so if I want to construct a client code from the WSDL file , then the

client doesn't know that this (ArrayOf …) is not true object at all.

Both of list and array are defined in the same way (ArrayOf……., ArrayOf…….), both

of them are defined as an array datatype. The question here is how can the user

understand which type of data the operations needs, and how can the user distinguish

between the array datatype and list datatype? So that the proposed model can answer

these questions by referring to the service provider itself to determine the specific

datatype, and then presenting it for a requester in a simple and clear way. The following

steps summarize how the approach working:

Step 1:

Extract the WSDL document for Web Service. The example in Figure 3.27 illustrates

this step.

Step 2:

Extract the parameters datatypes XSD as:

a. < xs:complexType name="ArrayOfArrTest "/>

b. < xs:element minOccurs="0" maxOccurs="unbounded" name="array"

nillable="true" type="tns:ArrTest "/>

67

Step 3:

Now, the approach will back to Web Service provider by sending to him a message as

interface, asking him to select from a datatypes list which datatype he given for the

operation which written its name in the interface. If the provider didn’t answer we can

make detection against the web service as mentioned in Fig(3.18). After the provider

selects the parameter datatype then the approach can add the selected parameter

datatype to the enrichment schema.

Step 4:

Now we can mapping between the chosen parameter and the semantic one , this

operation could be done by using if statement or by storing the OWL-S semantic

statements in a table to simplified the mapping process.

Figure (3.26): an interface providing the DataTypes

68

Step 5:

 Adding the new Annotation element to the WSDL file in the right place according to

the operation name and the parameters in this operation, thus, a new Annotated WSDL

file will be created .

This Documentation element provides a human-readable description for the annotated

element.

Here In Figure (3.28) an Figure (3.29) we can understand the documentation element

how it works, the code in .Net programming is

The part of WSDL file containing the documentation element here in Figure (3.29)

<owlx:Annotation>

 <owlx:Documentation>this parameter is Array </owlx:Documentation>

</owlx:Annotation>

Figure (3.27) : Element < Documentation >

 [WebMethod(Description = "Identifying Your DataTypes from the Providers ")]

 public List<Employee> getEmployees()

Figure (3.28) : Code generated in .Net - WebMethod

< wsdl:operation name="getEmployees">

 < wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Identifying Your DataTypes from the Providers

 </wsdl:documentation>

 < wsdl:input message="tns:getEmployeesSoapIn" />

 < wsdl:output message="tns:getEmployeesSoapOut" />

 </wsdl:operation>

Figure (3.29) : WSDL part for documentation element

69

3.8 : Summary

In this chapter I have described the problem that this thesis trying to solve, the proposed

model and how to use my model in solving this problem using semantic annotations,

starting from the analyzing the WSDL file and extracting the datatypes used in it, then

classifying of the datatypes used in WSDL files to a primitive and derived datatypes,

and presented an example for each one in different platforms, and taking a case study

for every one showing how my proposed model deals with it. The part of the WSDL file

resulted from the proposed approach gives the user a clear look to the datatypes used in

it without any ambiguity or complexity with the help of the provider.

70

CHAPTER FOUR

IMPLEMENTATION AND

EVALUATION

71

In this chapter I will introduce the implementation of the approach taking into account

the two cases mentioned in the previous chapter, and how to deal with this cases, then I

will introduce a case study as an evaluation to my work.

4.1 Implementation

The approach running automatically when the provider want to bind the web service to

do its process , this approach will be executed according to the following pseudocode in

Figure (4.1) :

This algorithm starting in opening the WSDL file for writing and then reading and

extracting the Operation name and its DataTypes . we can see here the tow cases in If

statements, where is the first IF statement telling us that the primitive datatypes will do

nothing in the Annotated WSDL file , but the next IF statement Calls the function

Function Main

Open " WSDL " file for output

While not EOF do:

Read every line in " WSDL "

Display (Operation Name, XSD_Type)

If XSD_Type ={String OR Boolean OR Decimal OR Int OR Float OR

Double OR DateTime … etc } then No changes will done.

Elseif XSD_Type={AntType OR ArrayOF* OR UnsignedShort } then

Call: Function Derived_XSD with Operation Name and XSD_Type

Call: Function Annotation with String

End While

Endfunction

Figure (4.1) : the Proposed algorithm in PseudoCode

72

named (Derived_XSD) which ask the provider about the type of the used DataType here

as we will see next in Figure (4.2).

This function ask the service provider to determine the type of the unknown Parameter

used in WSDL file , and this is done by a list of Datatypes and just click on the suitable

parameter to back to the main function with the known parameter.

Next step is calling the function Annotation as in the following Figure (4.3)

Function Derived_XSD(string)

messageBox contains

"Please Select the Parameter from the following list of DataTypes"

ListOfDataTypes

Return string

Endfunction

Figure (4.2) : Provider DataTypes Determination

Function Annotation()

Open tag Print "owlx:Annotation"

Open tag Print " owlx:Documentation"

Print String

Close tag Print " owlx:Documentation"

Close tag Print " owlx:Annotation"

Endfunction

Figure (4.3) : Adding Semantic Annotation to WSDL file

73

This function opening tags of Annotation element and the opening the documentation

tag in it , then it print the Semantic annotation , after that a closing tags are printed to

both of the documentation and Annotation elements .

Next we can see a part of Code of implementation in Figure (4.4) :

define('DS' , DIRECTORY_SEPARATOR);

 $fieldNameAtr = 'name';

 $fieldTypeAtr = 'type';

 $wsdlPath = 'wsdl.files' . DS . 'WSDLs' . DS;

 $dataTypes = array(

 'integer' => 'integer integer integer integer integer integer integer',

'nonNegativeInteger' => 'nonNegativeInteger nonNegativeInteger

nonNegativeInteger nonNegativeInteger ',

 'struc' => 'struc strucstruc struc struc struc struc',

 'string' => 'string string string string string',

 'notype' => 'notype notype notype notypenotypenotype',

 'int' => 'int int int int'

);

 // for development usage:

 define('DIR_PATH' , $wsdlPath);

Figure (4.4) : Cod of implementation

74

4.2 Evaluation

We will evaluate our work using a case study, Case studies can be particularly very

good for understanding how different elements are suitable together and how different

elements (implementation, context and other factors) have produced the observed

impacts.

Rather than using large samples to examine a limited number of variables, case study

methods involve an in-depth, longitudinal examination of a single instance or event.

So that we will illustrate now two examples as a case study of a WSDL files , these files

we analyzing them and extracting their services , SOAP bindings(Operation bindings

with the input and output binding), PortTypes(Operations and their inputs and outputs),

and messages they have(datatypes), then adding the annotations to the unknown

DataTypes.

75

WSDL Analyzer :

WSDL Example(1) :

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tns="http://tempuri.org/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

targetNamespace="http://tempuri.org/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>

 <s:schema elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">

 <s:element name="GetFamilyInfoByDiaryId">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name="id"

type="s:int" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name="GetFamilyInfoByDiaryIdResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1"

name="GetFamilyInfoByDiaryIdResult" type="tns:FamilyS" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:complexType name="FamilyS">

 <s:sequence>

 <s:element minOccurs="1" maxOccurs="1" name="id"

type="s:int" />

 <s:element minOccurs="0" maxOccurs="1" name="DoorCard"

type="s:string" />

 </s:sequence>

 </s:complexType>

 </s:schema>

 </wsdl:types>

 <wsdl:message name="GetFamilyInfoByDiaryIdSoapIn">

 <wsdl:part name="parameters"

element="tns:GetFamilyInfoByDiaryId" />

 </wsdl:message>

 <wsdl:message name="GetFamilyInfoByDiaryIdSoapOut">

 <wsdl:part name="parameters"

element="tns:GetFamilyInfoByDiaryIdResponse" />

 </wsdl:message>

 <wsdl:portType name="FamilyServiceSoap">

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <wsdl:input message="tns:GetFamilyInfoByDiaryIdSoapIn" />

 <wsdl:output message="tns:GetFamilyInfoByDiaryIdSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="FamilyServiceSoap"

type="tns:FamilyServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <soap:operation

soapAction="http://tempuri.org/GetFamilyInfoByDiaryId"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

76

 </wsdl:message>

 <wsdl:portType name="FamilyServiceSoap">

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <wsdl:input message="tns:GetFamilyInfoByDiaryIdSoapIn" />

 <wsdl:output message="tns:GetFamilyInfoByDiaryIdSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="FamilyServiceSoap"

type="tns:FamilyServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <soap:operation

soapAction="http://tempuri.org/GetFamilyInfoByDiaryId"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="FamilyServiceSoap12"

type="tns:FamilyServiceSoap">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <soap12:operation

soapAction="http://tempuri.org/GetFamilyInfoByDiaryId"

style="document" />

 <wsdl:input>

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="FamilyService">

 <wsdl:port name="FamilyServiceSoap"

binding="tns:FamilyServiceSoap">

 <soap:address

location="http://www.efamily.cn/WebService/FamilyService.asmx" />

 </wsdl:port>

 <wsdl:port name="FamilyServiceSoap12"

binding="tns:FamilyServiceSoap12">

 <soap12:address

location="http://www.efamily.cn/WebService/FamilyService.asmx" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

77

<wsdl:service name="FamilyService">

 <wsdl:port name="FamilyServiceSoap" binding="tns:FamilyServiceSoap">

 <soap:address

location="http://www.efamily.cn/WebService/FamilyService.asmx" />

 </wsdl:port>

 <wsdl:port name="FamilyServiceSoap12" binding="tns:FamilyServiceSoap12">

 <soap12:address

location="http://www.efamily.cn/WebService/FamilyService.asmx" />

 </wsdl:port>

 </wsdl:service>

Service :

Name : FamilyService

Port : FamilyServiceSoap

Port : FamilyServiceSoap12

<wsdl:binding name="FamilyServiceSoap" type="tns:FamilyServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <soap:operation soapAction="http://tempuri.org/GetFamilyInfoByDiaryId"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

SOAP Binding :

Name : FamilyServiceSoap

Operation Binding : GetFamilyInfoByDiaryId

Input Binding

Output Binding

<wsdl:binding name="FamilyServiceSoap12" type="tns:FamilyServiceSoap">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <soap12:operation

soapAction="http://tempuri.org/GetFamilyInfoByDiaryId" style="document" />

 <wsdl:input>

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

SOAP 1.2 Binding :

Name : FamilyServiceSoap12

Operation Binding : GetFamilyInfoByDiaryId

Input Binding

Output Binding

<wsdl:portType name="FamilyServiceSoap">

 <wsdl:operation name="GetFamilyInfoByDiaryId">

 <wsdl:input message="tns:GetFamilyInfoByDiaryIdSoapIn" />

 <wsdl:output message="tns:GetFamilyInfoByDiaryIdSoapOut" />

 </wsdl:operation>

 </wsdl:portType>
PortType :

Name : FamilyServiceSoap

Operation: GetFamilyInfoByDiaryId

Input

Output

78

<wsdl:message name="GetFamilyInfoByDiaryIdSoapIn">

 <wsdl:part name="parameters" element="tns:GetFamilyInfoByDiaryId" />

 </wsdl:message>

Message :

Name : GetFamilyInfoByDiaryIdSoapIn

Parameters : GetFamilyInfoByDiaryId

<wsdl:message name="GetFamilyInfoByDiaryIdSoapOut">

 <wsdl:part name="parameters" element="tns:GetFamilyInfoByDiaryIdResponse" />

 </wsdl:message>

Message :

Name : GetFamilyInfoByDiaryIdSoapOut

Parameters : GetFamilyInfoByDiaryIdResponse

Figure (5.5) : Analyzing Example(1) WSDL file

79

Form this example we can now extract the XSD types :

Primitive (simple) XSD types

Element Name Type
GetFamilyInfoByDiaryId Id int

Element Name Type

FamilyS Id int

 DoorCard string

All the DataTypes used here is Primitive DataTypes

Here no changes to the WSDL file since there is no derive DataTypes

(AnyType, Unsignedshort, ArrayOfObject)

Table (4.1) : Primitive and Complex XSD types for Example(1)

80

WSDL Example(2) :

<?xml version="1.0"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tns="http://tempuri.org/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

targetNamespace="http://tempuri.org/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <<wsdl:types>s:schema elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">

 <s:element name="GetAllNames">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="prefixText"

type="s:string" />

 <s:element minOccurs="1" maxOccurs="1" name="count"

type="s:int" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name="GetAllNamesResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1"

name="GetAllNamesResult" type="tns:ArrayOfString" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:complexType name="ArrayOfString">

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="unbounded"

name="string" nillable="true" type="s:string" />

 </s:sequence>

 </s:complexType>

 </s:schema>

 </wsdl:types>

 <wsdl:message name="GetAllNamesSoapIn">

 <wsdl:part name="parameters" element="tns:GetAllNames" />

 </wsdl:message>

 <wsdl:message name="GetAllNamesSoapOut">

 <wsdl:part name="parameters" element="tns:GetAllNamesResponse"

/>

 </wsdl:message>

 <wsdl:portType name="AutoSuggestDoctorNameWebServiceSoap">

 <wsdl:operation name="GetAllNames">

 <wsdl:input message="tns:GetAllNamesSoapIn" />

 <wsdl:output message="tns:GetAllNamesSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

81

 <wsdl:binding name="AutoSuggestDoctorNameWebServiceSoap"

type="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="GetAllNames">

 <soap:operation soapAction="http://tempuri.org/GetAllNames"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="AutoSuggestDoctorNameWebServiceSoap12"

type="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"

/>

 <wsdl:operation name="GetAllNames">

 <soap12:operation soapAction="http://tempuri.org/GetAllNames"

style="document" />

 <wsdl:input>

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="AutoSuggestDoctorNameWebService">

 <wsdl:port name="AutoSuggestDoctorNameWebServiceSoap"

binding="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap:address

location="http://www.plasticsurgery.com/services/AutoSuggestDoctorNa

me.asmx" />

 </wsdl:port>

 <wsdl:port name="AutoSuggestDoctorNameWebServiceSoap12"

binding="tns:AutoSuggestDoctorNameWebServiceSoap12">

 <soap12:address

location="http://www.plasticsurgery.com/services/AutoSuggestDoctorNa

me.asmx" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

82

<wsdl:service name="AutoSuggestDoctorNameWebService">

 <wsdl:port name="AutoSuggestDoctorNameWebServiceSoap"

binding="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap:address

location="http://www.plasticsurgery.com/services/AutoSuggestDoctorName.asmx" />

 </wsdl:port>

 <wsdl:port name="AutoSuggestDoctorNameWebServiceSoap12"

binding="tns:AutoSuggestDoctorNameWebServiceSoap12">

 <soap12:address

location="http://www.plasticsurgery.com/services/AutoSuggestDoctorName.asmx" />

 </wsdl:port>

 </wsdl:service>

Service :

Name : AutoSuggestDoctorNameWebService

Port : AutoSuggestDoctorNameWebServiceSoap

<wsdl:binding name="AutoSuggestDoctorNameWebServiceSoap"

type="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="GetAllNames">

 <soap:operation soapAction="http://tempuri.org/GetAllNames"

style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:binding name="AutoSuggestDoctorNameWebServiceSoap12"

type="tns:AutoSuggestDoctorNameWebServiceSoap">

 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="GetAllNames">

 <soap12:operation soapAction="http://tempuri.org/GetAllNames"

style="document" />

 <wsdl:input>

 <soap12:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap12:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

SOAP binding :

Name : AutoSuggestDoctorNameWebServiceSoap

Operation Bining :

 Name : GetAllNames

 Input binding : Output binding:

Operation Bining :

 Name : AutoSuggestDoctorNameWebServiceSoap12

 Input binding : Output binding:

83

<wsdl:portType name="AutoSuggestDoctorNameWebServiceSoap">

 <wsdl:operation name="GetAllNames">

 <wsdl:input message="tns:GetAllNamesSoapIn" />

 <wsdl:output message="tns:GetAllNamesSoapOut" />

 </wsdl:operation>

 </wsdl:portType>

PortType :

Name :

AutoSuggestDoctorNameWebServiceSoap

Operation:
 Name : GetAllNames

 Input:

 Output:

<wsdl:message name="GetAllNamesSoapIn">

 <wsdl:part name="parameters" element="tns:GetAllNames" />

 </wsdl:message>

Message :

Name :

GetAllNamesSoapIn

<wsdl:message name="GetAllNamesSoapOut">

 <wsdl:part name="parameters" element="tns:GetAllNamesResponse" />

 </wsdl:message>

Message :

Name : GetAllNamesSoapOut

<<wsdl:types>s:schema elementFormDefault="qualified"

targetNamespace="http://tempuri.org/">

 <s:element name="GetAllNames">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="prefixText"

type="s:string" />

 <s:element minOccurs="1" maxOccurs="1" name="count" type="s:int"

/>

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:element name="GetAllNamesResponse">

 <s:complexType>

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="1" name="GetAllNamesResult"

type="tns:ArrayOfString" />

 </s:sequence>

 </s:complexType>

 </s:element>

 <s:complexType name="ArrayOfString">

 <s:sequence>

 <s:element minOccurs="0" maxOccurs="unbounded" name="string"

nillable="true" type="s:string" />

 </s:sequence>

 </s:complexType>

 </s:schema>

 </wsdl:types>

types :

Name : VerNoticiaResponse

prefixText: xsd : string

count: xsd : int

GetAllNamesResult: xsd : ArrayOfString

84

Form this example we can now extract the XSD types :

Complex XSD types

Element Name Type

VerNoticiaResponse prefixText string

 count int

VerNoticia AnyType
GetAllNamesResult ArrayOfString

We can see here there are primitive and derived DataTypes , No changes to the

primitive DataTypes , But the derived DataTypes, we will ask the service provider to

determine the intended DataType .

Table (4.2) : Primitive and Complex XSD types for Example(2)

Figure (4.6) : Analyzing Example(2) WSDL file

85

Next step, a semantic annotation will be inserted in the WSDL file clarifying the type of

this ataType

Service Provider response : ArrayOf String Array

The code here in WSDL file will be

<owlx:Annotation>

<owlx:Documentation> Array </owlx:Documentation>

</owlx:Annotation>

Service Provider response : AnyType Byte

The code here in WSDL file will be

<owlx:Annotation>

<owlx:Documentation> Byte </owlx:Documentation>

</owlx:Annotation>

86

CHAPTER FIVE

CONCLUSION AND FUTURE WORK

87

In this thesis we have proposing an approach, the output of this approach is a WSDL

document having semantic annotations , these annotations clarifying the datatypes used

in the original WSDL document which wasn’t understandable for the complex datatypes

used in it and consequently we can reach better comprehension for the web service

functionality.

5.1 conclusion

Our approach analyzing WSDL document and then extracting the datatypes used, we

have divided the datatypes into two categories, primitive datatypes accounted 19

datatypes, and derived datatypes accounted 25 datatypes. Our problem was interested

in the derived datatypes, this category causing ambiguity to the WSDL document, and

the user will be confused about the right datatypes he should use. Then the approach

asking the provider to determine the kind of the datatypes , and the approach adding a

semantic annotation helping the user of the web service.

As a summary the approach is based on the following :

1. analyzing WSDL document and extracting all the datatypes used in it.

2. Dividing the extracted datatypes into two categories (primitive datatypes and

derived datatypes). Table (5.1) shows the primitive ones and Table (5.2) shows the

derived ones.

88

Primitive Datatypes : This Category includes the datatypes can easily be understood by

service requester. Table (5.1) .

Derived Datatypes : This Category causing the ambiguity for thr web service because it

is difficult to understood by the requester, so according to our approach we should ask

the provider to determine the type of it . Table (5.2).

Table (5.1) : Primitive Datatypes Table (5.2) : Derived Datatypes

Name type Name type
String xs:string NormalizedString xs:

normalizedString

Boolean xs:boolean Token xs: token

Decimal xs:decimal Language xs: language

Float xs:float NMTOKEN xs: NMTOKEN

Double xs:double NMTOKENS xs: NMTOKENS

Duration xs:dateTime Name xs: Name

Uri xs:anyURI NCName xs: NCName

Date ID xs: ID

 IDREF xs: IDREF

DateTime xs:dateTime, IDREFS xs: IDREFS

 xs:date, ENTITY xs: ENTITY

 xs:gYearMonth, ENTITIES xs: ENTITIES

 xs:gYear Integer xs:int

 xs:gMonth NonPositiveInteger xs:
nonPositiveInteger

 xs:gDay NegativeInteger xs: negativeInteger

 xs:gMonthDay Long xs: long

 Int xs: Int

 Short xs: short

Base64Binary xs:base64Binary Byte xs: byte

HexBinary xs:hexbinary NonNegativeInteger xs:

nonNegativeInteger

QName xs:qname UnsignedLong xs: unsignedLong

NOTATION UnsignedInt xs: unsignedInt

Integer xs:int UnsignedShort xs: unsignedShort

 UnsignedByte xs: unsignedByte

 PositiveInteger xs: positiveInteger

89

3. Adding Semantic Annotation according to the datatypes category where :

 Primitive datatypes : no changes will be done , it will be remain as it is in the

annotated WSDL document.

 Derived datatypes : asking the provider , then adding annotation for the new

WSDL document.

5.2 Future Work

The main contributions of this thesis is Adding Semantic description to Web Service

datatype specifications for different platforms and IDEs and Enhancing Web Service

comprehension and understandability. There are several possible future research

directions that could be extended from this thesis such as :

1. In this thesis we use OWL(Ontology Web Language) as a semantic language, so

it’s a good thing and more useful in future to use another semantic languages

such as SAWSDL, WSMO, and so on.

2. Enhancing the approach to Work in a backward direction (WSDL to Code),

although it is a big direction, but it could increasing the understandability for the

web service.

3. Merging between Semantic annotations and UML (Unified Modeling Language)

to Enhance the Web Service comprehension and understandability.

4. We are depending on ASP.Net in this thesis , the future work can use another

programming languages such as Visual basic , C#, Java, etc.

90

References

91

References

Aaron Skonnard, (2003). Understanding WSDL, Northface

University available at : http://msdn.microsoft.com/en-

us/library/ms996486.aspx.

Alexandre Bellini, Antonio Francisco do Prado, Luciana Aparecida

and Martinez Zaina, (2010). Top-Down Approach for Web Services

Development, Fifth International Conference on Internet and Web

Applications and Services.

Andreas Heb, Eddie Johnston and Nicholas Kushmerick, (2008).

(ASSAM) A Tool for Semi-Automatically Annotating Semantic Web

Services, in Proceedings of 12th International Conference on Web

Technologies, pp. 470–475.

Arthur Barstow, Mark Burstein, James Hendler, Vincent Marcatt,

David Martin, Drew McDermott, Deborah L. McGuinness, Sheila

McIlraith and Jeff Pollock, (2004). OWL Web Ontology Language for

Services (OWL-S), W3C Member Submission 22 November 2004.

Available at: http://www.w3.orgl SubmissionlOWL-S.

Che-Wei Chang, (2010). Realization of resource efficient

embedded web service using representational state transfer (REST) packing

and Roll-Back streaming XML (RBSTREX) parser. Multimedia

University, Malaysia.

Dan Vint, (2003). XML Schema - DataTypes Quick Reference.

available at : http://www .xml.dvint.com.

David Bell, Sergio de Cesare, Nicola Iacovelli, Mark Lycett and

Antonio Merico, (2006). A framework for deriving semantic web services,

Department of Information Systems and Computing, Brunel University,

Uxbridge, Middlesex UB8 3PH, UK, Springer Science + Business Media,

LLC.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer,

Michael Champion, Chris Ferris and David Orchard, (2004). Web Services

Architecture, W3C Working Group Note 11 February 2004, available at :

http://www.w3.org/TR/ws-arch.

http://msdn.microsoft.com/en-us/library/ms996486.aspx
http://msdn.microsoft.com/en-us/library/ms996486.aspx
http://www.w3.orgl/
http://www.w3.org/TR/ws-arch

92

David Booth, (2002). Fundamentals of the Semantic Web, W3C

Fellow / Hewlett-Packard Paris.

Deborah L. McGuinness and Frank van Harmelen, (2004). OWL

web ontology language overview, W3C Recommendation 10 February

2004, Available at : http://www.w3.org/TR/owl-features.

Dhanya Aravind, Passarawarin Supthaweesuk and Weider D,

(2006). Yu. Software Vulnerability Analysis for Web Services Software

Systems. Proceedings of the 11th IEEE.

Dieter Fensel, (2003). Ontologies: Silver Bullet for Knowledge

Management and Electronic Commerce, 2nd edition. Springer-Verlag,

Berlin.

Erin Cavanaugh, Altova Inc, (2006). Web services: Benefits,

challenges, and a unique, visual development solution, Altova. Inc. l 900

Cummings Center, Suite 314-T l Beverly, MA, 01915-6181.

Gibson Lam, (2012). Extending the Web Services Architecture

(WSA) for Video Streaming, The Hong Kong University of Science and

Technology.

Glenford Myers, Corey Sandler and Tom Badgett, (2004). The Art

of Software Testing, ISBN 0-471-04328-1, John Wiley. Neumann, P.

Principled assuredly trustworthy compostable architecture.

Guilherme C. Hobold and Frank Siqueira, (2012). Discovery of

Semantic Web Services Compositions based on SAWSDL Annotations,

IEEE 19th International Conference on Web Services.

Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju,

(2004), Web Services concepts, Architectures and applications, Springer

Verlag, ISBN 3-540-44008-9.

Heather Kreger, (2001). Web Services Conceptual Architecture,

International Business Machines Corporation (IBM) group.

Houda El Bouhissi and Mimoun Malki, (2009). Reverse

Engineering Existing Web Services Applications, 16th Working

Conference on Reverse Engineering, IEEE /WCRE.2009.35.

http://www.w3.org/TR/owl-features

93

Jia Zhang and Liang-Jie Zhang, (2005). Editorial Preface: Web

Services Quality Testing, International Journal of Web Services Research,

April-June 2005.

Jicheng Fu, Wei Hao, Farokh B. Bastani, and I-Ling Yen, (2011).

Model-Driven Development: Where Does the Code Come From?, Insights

Learned From a Case Study, Fifth IEEE International Conference on

Semantic Computing.

Joel Farrell, Carine Bournez, Tomas Vitvar and Jacek Kopecky,

(2007). Semantic Annotations for WSDL and XML Schema, W3C

Candidate Recommendation IEEE,. Available at:

http://www.w3.orgITRisawsdll. January 2007.

John Domingue, Dieter Fensel and James A, (2011). Hendler.

Handbook of Semantic Web Technologies, Springer Heidelberg Dordrecht

London New York, © Springer-Verlag Berlin Heidelberg.

John Klensin, (2001). Simple Mail Transfer Protocol, IETF,

availale at : http://www.ietf.org/rfc/rfc2821.txt.

John McGovern. Enterprise Service-Oriented Architectures, (2006).

Working with Registry and UDDI. pp 151-188.

John T. E. Timm and Gerald C. Gannod, (2007). Specifying

Semantic Web Service Compositions using UML and OCL, IEEE

International Conference on Web Services (ICWS 2007)0-7695-2924-0/07

$25.00 ©, IEEE.

Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel,

Martin Hepp, Uwe Keller, Michael Kifer, Birgitta König-Ries, Jacek

Kopecky and Michael Stollberg, (2005). Web Service Modeling Ontology

(WSMO), W3C Member Submission 3 June 2005. Available at:

http://www.w3.orgiSubmissionlWSMO.

Jos de Bruijn, Dieter Fensel, Uwe Keller, Michael Kifer, Holger

Lausen, Reto Krummenacher, Axel Polleres and Livia Predoiu, (2005). The

Web Service Modeling Language – WSML, W3C Member Submission 3

June 2005 Available at: http://www.w3.org/Submission/WSML.

http://www.ietf.org/rfc/rfc2821.txt
http://www.w3.orgisubmissionlwsmo/
http://www.w3.org/Submission/WSML

94

Juanjuan Jiang and Tarja Systa, (2005). UML-Based Modeling and

Validity Checking of Web Service Descriptions, Proceedings of the IEEE

International Conference on Web Services (ICWS’05).

Ke Hao, (2013). Semantic Search of Web Services. University of

California, IRVINE.

Ken Laskey, Francis McCabe, Peter F Brown and Rebekah Metz,

(2006). OASIS Reference Model for Service Oriented Architecture V 1.0.

OASIS, available at :http://www.oasis-

open.org/committees/download.php/19679/soa-rm-cs.pdf.

Keyvan Mohebbi , Suhaimi Ibrahim and Norbik Bashah Idris,

(2012). Contemporary semantic Web service frameworks : an overview

and comparisons, International Journal on Web Service Computing

(IJWSC), Vol.3, No.3, September 2012.

Letz Carolin, vorgelegt von and aus M¨unster, (2007). Web Service

Detection in Service-oriented Software Development: A Semantic

Syntactic Approach.

Luc Clement, Andrew Hately, Claus von Riegen and Tony Rogers,

(2004). UDDI Version 3.0.2. OASIS, UDDI Spec Technical Committee,

http://uddi.org/pubs/uddi_v3.htm.

MacKenzie Matthew, Laskey Ken, McCabe Francis, Brown Peter

and Metz Rebekah, (2006). Reference Model for Service Oriented

Architecture 1.0 , Committee Specification 1, 2 August 2006.

Michael Huhns and Munindar P, (2005). Singh. Service-Oriented

Computing: Key Concepts and Principles, IEEE Internet Computing, (Vol.

9, No. 1), January-February 2005.

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall, (2006). The

semantic web revisited, IEEE Intelligent Systems, 21(3):96–101, May/June

2006.

Pham Thi Thu Thuy, Young-Koo Lee and Sungyoung Lee, (2013).

A Semantic Approach for Transforming XML Data into RDF Ontology, ©

Springer Science, Business Media New York, 2013 .

Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan,

Marc-Thomas Schmidt, Amit Sheth and Kunal Verma, (2005). Web

http://uddi.org/pubs/uddi_v3.htm

95

Service Semantics (WSDL-S), W3C Member Submission, November

2005. Available at: http://www.w3.org/Submission/WSDL-SI.

Robert Richards, (2006). Universal Description, Discovery, and

Integration (UDDI), Pro PHP XML and Web Services, DOI 10.1007/978-

1-4302-0139-7_19, © .

Roberto Chinnici, Jean-Jacques, Arthur Ryman and Sanjiva

Weerawarana, (2007). Web Services Description Language (WSDL)

Version 2.0 Part 1: Core Language, W3C, availale at :

http://www.w3.org/TR/wsdl20.

Roberto De Virgilio, (2010). Meta-Modeling of Semantic Web

Services, IEEE International Conference on Services Computing.

Roy Gronmo, David Skogan, Ida Solheim and Jon Oldevik, (2004).

Model-driven Web Service Development, International Journal of Web

Services Research, 1(4), Oct-Dec 2004.

Roy Thomas Fielding, JIM GETTYS, JEFFREY C. MOGUL, HENRIK

FRYSTYK NIELSEN, LARRY MASINTER, PAUL J. LEACH and TIM BERNERS-

LEE, (1999). Hypertext Transfer Protocol HTTP/1.1. IETF, available at

:http://www.ietf.org/rfc/rfc2616.txt.

Samer Hanna and Ali Alawneh, (2010). An Approach of Web

Service Quality Attributes Specification, Communications of the IBIMA

Journal (ISSN: 1943-7765) .

Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof,

Michael Gruninger, Richard Hull and Michael Kifer, (2005). Semantic web

services framework (SWSF) overview, World Wide Web Consortium,

Member Submission SUBM‐SWSF‐20050909, September 2005.

Thomas Erl, (2005). Service-Oriented Architecture: Concepts,

Technology & Design, Prentice Hall p. 792. ISBN 0-13-185858-0.

Thomas Weise Steffen Bleul, M. Brian Blake and Steffen Bleul,

(2014). Semantic Web Service Composition: The Web Service Challenge

Perspective, Web Services Foundations, Springer, 2014.

Tim Berners-Lee, James Hendler, and Ora Lassila, (2001). The

semantic web. Scientific American, 284(5):34–43, May 2001.

http://www.w3.org/Submission/WSDL-SI
http://www.w3.org/TR/wsdl20
http://dret.net/biblio/authors#HenrikFrystykNielsen
http://dret.net/biblio/authors#HenrikFrystykNielsen
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-185858-0

96

W3C, (2008). XML schema part 2 : Datatypes, Second edition,

W3C Recommendation, available at : http://www.w3.org/TR/2008/WD-

xmlschema11-2-20080620, December 2008.

Wei-Tek Tsai, Yinong Chen and Ray Paul, (2005). Specification-

Based Verification and Validation of Web Services and Service-Oriented

Operating Systems, 10th IEEE International Workshop on Object-oriented

Real-time Dependable Systems (WORDS 05), Sedona, pp. 139 – 147,

February 2005.

Weijun Sun, Shixian Li Defen Zhang and YuQing Yan, (2009). A

Model-driven Reverse Engineering Approach for Semantic Web Services

Composition, World Congress on Software Engineering, DOI

10.1109/WCSE.2009.403.

Xitong Li, Yushun Fan, Stuart Madnick, and Hongwei Zhu, (2009).

An Approach to Composing Web Services with Context Heterogeneity,

IEEE International Conference on Web Services.

ZHANG Lei, YANG Xiaoying, YUAN Yanni and SUN Bo, (2008).

An Improved Semantic Annotation Method of Web Services Based on

Ontology, ISECS International Colloquium on Computing,

Communication, Control, and Management. IEEE.

http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620
http://www.w3.org/TR/2008/WD-xmlschema11-2-20080620

 ملخص

 ػُصش يٓى فٙ كثٛش Web Servicesفٙ انسُٕاد الأخٛشح، أصجحذ خذيبد انٕٚت

يٍ انًدبلاد، ٔانقذسح ػهٗ رجبدل انًؼهٕيبد يٍ خلال خذيبد انٕٚت ْٕ يثبل ػظٛى

ػهٗ دٔسْب ٔفٕائذْب ٔقذسرٓب ػهٗ رُفٛز ٔظبئف يٕحذح قذ رسزخذو فٙ انًدبل انزدبس٘
 .يثلا ػهٗ يسزٕٖ ػبل

، ثًؼُٗ أٌ يؼشفخ (syntactic)إٌ ٔصف خذيبد انٕٚت ٔاسزخذايٓب ٚؼزجش َحٕ٘
رقغ ػبرقٓب ػهٗ يسزخذو خذيخ انٕٚت نكٙ ٚفٓى أٔ (semantic)دلالاد خذيبد انٕٚت

ٚزؼهى ثٕسبئم أخشٖ قجم أٌ ٚقشس ْم سٛسزخذو ْزِ انخذيخ أو لا، ٔكٛف سٛكٌٕ

 . اسزخذايٓب
 semantic description forْزِ انشسبنخ رٓزى فٙ انٕصف انذلانٙ نخذيبد انٕٚت

the web service ٔسٛكٌٕ يحٕسْب ػٍ انغًٕض ٔسٕء انفٓى فٙ اسزخذاو إَٔاع

 حٛث ٚزى حفع ٔصف خذيبد XMLانجٛبَبد انزٙ ٚزى اسزخذايٓب فٙ يهف يكزٕة ثهغخ
 .web service description language (WSDL)انٕٚت فّٛ ٔٚسًٗ

يشكهخ انغًٕض فٙ رًثٛم إَٔاع انجٛبَبد رؤد٘ إنٗ يشبكم ػذٚذح يُٓب صؼٕثخ رفسٛش

 ْٔزا ٚؤد٘ إنٗ أخطبء فٙ requester ٔغبنجٓب providerانجٛبَبد ثٍٛ يزٔد انخذيخ

ديح أٔ ركٍٕٚ انخذيخ ٔيٍ انًشبكم أٚعب انصؼٕثخ انزٙ قذ رٕاخٓٓب أدٔاد أٔ رقُٛبد
 انز٘ ُٚشأ رهقبئٛب ٔثبنزبنٙ WSDLرطٕٚش خذيبد انٕٚت انزٙ رؼًم يجبشش يؼم يهف

 .سزكٌٕ ُْبك رُبقعبد فٙ ٔصف انخذيبد نًخزهف انزقُٛبد

سُقذو فٙ ْزِ انشسبنخ غشٚقخ خذٚذح نًحبٔنخ حم ْزِ انًشكهخ يٍ خلال إظبفخ دلالاد

 نزجسٛػ انزؼبيم يغ ْزا انًهف يٍ WSDLرفسش إَٔاع انجٛبَبد انًسزخذيخ فٙ يهف

 .َبحٛخ إَٔاع انجٛبَبد

 :انًسبًْبد انؼهًٛخ انشئٛسٛخ نٓزِ انشسبنخ

 لإَٔاع انجٛبَبد انًسزخذيخ فٙ semantic description إظبفخ ٔصف دلانٙ .1
 .WSDLيهف

 .رحسٍٛ يسزٕٖ فٓى خذيبد انٕٚت يٍ خلال ْزا انٕصف انذلانٙ نخذيخ انٕٚت .2

 (ثسٛطخ ، يشزقخ)رقسٛى إَٔاع انجٛبَبد إنٗ يدًٕػزٍٛ .3
 ٔلا حبخخ لإظبفخ ٔصف WSDLإَٔاع انجٛبَبد انجسٛطخ ركٌٕ ٔاظحخ فٙ يهف .4

 .دلانٙ نٓب

إَٔاع انجٛبَبد انًشزقخ غبيعخ لا ٚؼجش ػُٓب ثطشٚقخ ٔاظحخ ، رسجت أخطبء نطبنجٙ .5
ُْٔب لا ثذ يٍ انشخٕع نًزٔد انخذيخ نًؼشفخ . انخذيخ ْٔٙ رحزبج نهٕصف انذلانٙ

 . َٕع انجٛبَبد انًسزخذيخ فٙ ْزِ انحبنخ

ذوسيغ مواصفاخ أنواع الثياناخ لخذماخ الوية لمخرلف الأنظمح المرطورج

 (لغاخ الثزمجح)

ذقذيم

رائذ ػمز ػثذ رتو الؼثسي

إشزاف

سامز حناّ . د

 درجح ػلى الحصول لمرطلثاخ اسرتماالاً الزسالح ىذه قذمد

الحاسوب ػلم في الماجسريز

 الؼليا والذراساخ الؼلمي الثحث ػمادج

فيلادلفيا جامؼح

 2014ذموس

