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 لتحليل بروتوكولات التشفير ةنحسم الرياضيةSpi لغة ال 

 

 

 الملخص   

 

مثل  تحليلتصميم و  دواتأ تطوير على الباحثين من كثيرال متنوعة فعمل لاختراقات التشفير بروتوكولات معظم تتعرض

أكثر الأدوات المثنية  و من .و السرية التوثيقمثل  منيةالأ الخواص ناضممن  لتحققو ذلك من أجل ا, تبروتوكولاال هذه

 .تبروتوكولاال هذهمثل  تحليلو ذلك لدقتها و صلابتها في تصميم و  المنهجيات الشكلية بفعاليتها هي

 

 باضافة الرياضيةPi لغة ال ل ستكمالكا نوغورد و العبادي ة من الباحثينقدمالم الرياضيةspi لغة ال تعتبر 

 .التشفير بروتوكولات تحليلتصميم و  هاماستخدلا,التشفير عمليات

 

المعرفة  حيث قاموا بوضع الكثير من الفرضيات, عملوا على تحسين هذه اللغةيوجد الكثير من الباحثين الذين 

 .اتالمقيد و الافتراضات تلك مع تتطابق لا التي الحقيقية النظم مع لتعاملل التطرق دونالعمليات و  بيئة مسبقا لتقييد

 

 نحو خطوة كونلتو ذلك  الرياضيةspi لغة ال ل محسنة كلغة الرياضيةPh-spi لغة ال  قدمنا الأطروحة، هذه في

القائمة و تمكن من  العمليات في حدث كل تقييمعلى  تهاقدرب حيث تمتاز الرياضيةPh-spi لغة ال . ةالآلي و ةرمزيلغة 

 .مفتوحة اتالبيئ للتعامل مع المناسب القرار اتخاذ

 

مع القدرة على  ,مفتوحة بيئة في فعليامطبقة  البروتوكولات على تحليل على قادرة تقييم دالة استتحداثقمنا ب حيث

 الأمنية الخصائص لإثباتقادرة على تحقق من ا كذلك ,سلوكال بيئة مفتوحة متغيرة مع للتعامل المناسبة القرارات اتخاذ

 .والسرية التوثيق مثل الرئيسية

 

مجموعة من المكونات في للتمكن من احتواء  مهيكلةتكون الرياضية  ,Ph-spi لغة ال  فيالرسائل بناء , كما أن

, المتناظر غير والتشفير الرقمي التوقيع البعثرة، ودالة الزمني، الطابعمن  كلعلى  شملتكما أنها . رسالة رمزية واحدة

 .الحقيقية التطبيقية بروتوكولاتجميع ال في الحال هو كما
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IMPROVED SPI CALCULUS FOR REASONING 

ON CRYPTOGRAPHIC PROTOCOLS 

 

 

Abstract   

 

Most of cryptographic protocols are subjects to very subtle attacks. Therefore, many 

researchers have developed tools to model and analyze protocols to guarantee their security 

properties. 

 

Among these developed tools, the spi calculus has proved to be a powerful formal 

methods have useful for analyzing and reasoning on cryptographic protocols. 

  

However, such research work assumed that the environment will be restricted to 

some predefined rules and assumptions without solving the case of interacting with real 

systems that matched with such restrictions.  

 

In this thesis, we introduced an improved version of spi calculus called the Ph-spi 

calculus. Such calculus provides the ability for evaluating each action in the running 

processes and making suitable decision to be more suitable with open environment.  

 

Therefore, we have enhanced the evaluation function to make it capable for making 

suitable decisions to handle the open and changeability in environment behaviors as well as 

evaluating and validating every action in protocol processes for proving the main security 

properties as authentication and confidentiality.  

 

In the Ph-spi calculus, the message is structured to be the same as in real protocols 

that have a tuple of messages. Also, it includes all operators needed for such protocols such 

as timestamp, hash function, digital signature and asymmetric key cryptosystem. Hence, Ph-

spi calculus ready is to be used for real protocols such as e-commerce protocols.  

  

Keywords: Cryptographic protocol, Cryptographic protocol analysis, spi calculus, 

evaluation function, testing equivalence. 



 

 

 

 

 

 

Chapter I: 

 

INTRODUCTION 
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1.1   Background 

 

The Handbook of Applied Cryptography defines communication protocol as a multi-

party algorithm, defined by a sequence of steps precisely specifying the actions required 

of two or more parties in order to achieve a specified objective (A. Alfred, et al. 2001). 

 

Over the years, the problems of network security have become more and more 

complex. Solving these problems usually requires the design of protocols that rely on 

cryptographic systems to hide some secret information: these protocols are 

“cryptographic.” 

 

The use of cryptographic protocols is widely spread – Transport Layer Security 

(TLS, formerly SSL) and Secure Shell (SSH) are common cryptographic protocol used 

to secure connections over the Internet. However, they assumed to be secured by 

protocols using cryptographic methods as encryption or digital signatures, promising 

security properties as secrecy or authentication.  

 

Establishing security in these applications can be divided into two main areas, 

cryptography which is the art and science of writing a text encrypted by a key to prevent 

an attacker from the ability to access and modify the plaintext. The second area is the 

cryptographic protocol, also known as security protocols, that is used to achieve the 

authentication of agents or nodes, establishing session keys between nodes, ensuring 

secrecy, integrity, non-repudiation, and authentication properties. These protocols 

involved on the exchange of messages between nodes, often requiring the participation 

of a trusted third party or session server. Typically they make liberal use of various 

cryptosystems, such as symmetric and asymmetric encryption, hash functions, and 

digital signatures and timestamps are also used. 
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1.2   Cryptographic Protocols 

 

Cryptographic protocols are protocols that use cryptography to distribute keys and 

authenticate principals and data over a network. The network is usually assumed to be 

hostile, in that it may contain intruders who can read, modify, and delete traffic, and 

who may have control of one or more network principals. A cryptographic protocol 

must be able to achieve its goals in face of these hostile intruders. Because of this, such 

protocols are often subject to nonintuitive attacks which are not easily apparent even to 

a careful inspector. Many of these attacks do not depend upon any flaws or weaknesses 

in the underlying cryptographic algorithm, and can be exploited by an attacker who is 

able to do no more than the basic operations listed above, but in any arbitrary order. 

Other attacks may depend upon subtle properties of the cryptographic algorithms, or on 

statistical analysis of message traffic, or on some combination of the above. 

 

Designing and analyzing cryptographic protocols is a very challenging problem. 

In open environment, such as the Internet, protocols should work even under worst-case 

assumptions, namely messages may be eavesdropped or tampered with by an attacker 

(also called the intruder or adversary) or dishonest or careless principals. Surprisingly, 

severe attacks can be conducted even without attacking and breaking cryptography, but 

rather by attacking communication itself. These attacks exploit weaknesses in the 

protocol’s design whereby protocols can be defeated by cleverly manipulating and 

replaying messages in ways not anticipated by the designer. (S. Matsuo et al. 2009) This 

includes attacks such as: man-in-the-middle attacks, where an attacker is involved in 

two parallel executing sessions and passes messages between them; replay attacks, 

where messages recorded from previous sessions are played in subsequent ones; 

reflection attacks, where transmitted information is sent back to the originator; and type 

flaw (confusion) attacks, where messages of different types are substituted into a 

protocol (e.g., replacing a name with a key). Typically, these attacks are simply 

overlooked, as it is difficult for humans, even by a careful inspection of simple 

protocols, to determine all the complex ways that different protocol sessions could be 

interleaved together, with possible interferences coming from a malicious intruder (S. 

Matsuo et al. 2009). 
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Historically, the security analysis of cryptographic protocols has consisted of 

testing their resistance to different attacks imagined by the designer. A protocol could 

be believed very secure at the start and, after that, modified several times because of the 

discovery of some weaknesses. This type of analysis does not prove the protocol 

security. Recently, some methods for formally verifying the security of cryptographic 

protocols have begun to be researched but, in most cases, they can only be applied to 

special kinds of protocols (I. Fléchais. 2005). 

 

What is needed are methods to speed up the development and analysis of 

cryptographic protocols. Moreover, if these methods are to be used to certify protocols, 

then they must be mathematically precise, so that exact statements are possible about 

the scope and significance of the analysis results. This role can be filled by formal 

methods. 

 

Over the last two decades, the security community has made substantial 

advances in developing formal methods for analyzing cryptographic protocols and 

thereby preventing the kinds of attacks mentioned above.  

 

In recent years, formal methods have been proven to be a useful in the area of 

analysis cryptographic protocols because its allow one to do overall analysis which 

covers different paths the attackers can take. 

 

1.3   Formal Methods 

 

A formal method owes much to the security community among other fields of 

appliances. In the United States, the National Security Agency was a major source of 

funding in the 70s and early 80s for formal methods research and development. Results 

included the development of formal security models, tools for reasoning about security, 

and applications of these tools to proving systems secure. In return, security provided a 

challenging research application for the formal methods utilization. 
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Until the late 1980s, cryptographic protocols were only analyzed by informal 

reasoning. If a protocol claimed to achieve the goal of confidentiality, researches were 

prompted to study the protocol in detail and decided whether this is true (M. Tschantz 

and J. Wing. 2009). 

 

 The literature shows that formal approaches can significantly help to detect 

protocol flaws, as well as to yield general principles of secure protocol design. Some 

approaches lack expressiveness or automation; others are just too complicated to use on 

realistic protocols. Informal reasoning indeed retains its importance: it is crucial to 

grasp the semantics of a protocol design beyond its bare representation as a sequence of 

messages; it may find simple flaws and minor weaknesses of a protocol more quickly 

than formal reasoning; it is easier to follow for a non-experienced audience; it helps to 

develop formal approaches. For more details concerning the process algebra and 

oprtational semantics you can refer to Appendix A. 

 

1.4   Process Environment 

 

Many research works have been attempted to develop an operational semantics to 

evaluate the interactions between protocol processes and the environment. Some of 

them had built their work to fit with closed environment with special case protocols (R. 

Focardi and M. Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010) others 

construct their work with a predefined environment (restricted environment) ( H. Al-

Refai 2009, J. Borgstrom, 2009). Unfortunately, no work assumed the open 

environment. 

 

This section provides a detail definition for each type of these environments and 

what protocols are suitable to use. 
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1.4.1 Closed Environment 

 

The processes cannot trigger any action out of their scope or boundary. This means that 

the channels are initiated to be in that boundary and no one outsider can interact with 

these channels. Figure-1.4.1.1 shows such environment. 

 

 

Figure 1.4.1.1 Closed Environment 

 

Here, the sender A, the server S and the receiver B used restricted channels chAS. chAB 

and chSB between them. These channels cannot be accessed by outsiders. 

 

1.4.2   Restricted Environment 

 

It differs from the closed environment by that the outsiders can get access to the 

channels but with predefined rules and assumptions. Means that there is a possible 

channels used to allow the processes in the protocol to interact with the environment out 

of the scope or boundary. Figure-1.4.2.1 shows such case. 

 

S 

B A 
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Figure-1.4.2.1  Restricted Environment 

 

 

1.4.3   Open Environment 

 

From the environment types mentioned above, it seem clear that the security controls 

can achieved easily, since the environment are already defined and the interactions with 

the outsider is not allowed or restricted. 

  

In the case of an open environment the channels are public as in real protocols 

used in the Internet. Means they are interacts with all processes in the environment 

without closing or restricting them. Such type of environment needs for additional 

functions to be built in the syntax and the operational semantics to trace each action 

taken by the processes then to decide wither to proceeds or terminate that process in 

case of any attack. Figure-1.4.3.1 show that the interactions with the environment is 

open and channels are public for use of all.  

 

S 

B A 
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Figure 1.4.3.1  Open Environment 

 

The behaviors of such type of environment are changeable where the knowledge 

can be observed from the process actions in the protocol.  

  

These protocols often rely on special security tokens such as numbers used only 

once, called nonces, or fresh keys generated by principals of the protocol the 

environment assumed to unknown them. In closed and restricted environment, this case 

is approved since all actions are controlled in that environment.  

 

Moreover, as the size of the messages exchanged in such a protocol and thus the 

recursion depth of the principals’ computations is not explicitly bounded by the 

protocol’s description that needs a mechanism to provide the principals with the 

possibility to generate an unbounded number of nonces and fresh keys. 

 

In coming section (1.5), we will give a simple example to show how protocol 

processes can be described by π-calculus. We use π-calculus as a basis to spi calculus. 

 

 

S 

B A 



9 
 

 
 

1.5   Simple Example using π-calculus 

 

 

The π-calculus is a model of computation for concurrent systems (R. Milner et al, 

1992). The syntax of π-calculus lets represent processes, parallel composition of 

processes, synchronous communication between processes through channels, creation 

of fresh channels, replication of  processes, and nondeterminism. 

 

We will give the definitions of these processes, then a simple example will be 

used to show their roles. 

 

A process is an abstraction of an independent thread of control. A channel is an 

abstraction of the communication link between two processes. Processes interact with 

each other by sending and receiving messages over channels. 

 

Let P and Q denote processes. Then 

 P | Q denotes a process composed of P and Q running in parallel. 

        denotes a process that waits to read a value x from the channel a and 

then, having received it, behaves like P. 

         denotes a process that first waits to send the value x along the channel a 

and then, after x has been accepted by some input process, behaves like P. 

        ensures that a is a fresh channel in P. (Read the Greek letter “nu” as 

“new.”) 

    denotes an infinite number of copies of P, all running in parallel. 

       denotes a process that behaves like either P or Q. 

 0 denotes the inert process that does nothing. 

 

All concurrent behavior that you can imagine would have to be written in terms of 

just the above constructs. 
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S 

A 

 

B 

 

1. new Channel     2. new Channel     

3. data on new Channel     

The coming example had been used by (M. Abadi and A. Gordon 1997, 1998). 

Channels can be established in different ways. In this example we describe the Wide 

Mouthed Frog protocol as the abstract level, which has the basic structure shown in 

Figure 1.5.1. 

 

 

 

 

 

 

Figure 1.5.1: The Wide Mouthed Frog protocol 

 

This version is abstract in that we deal with channels instead of keys; it is simplified 

in that channel establishment and data communication happen only once. In chapter III 

we show how to treat keys and how to allow many instances of the protocol, with an 

arbitrary number of messages. 

 

Informally, we may write this protocol as follows: 

 

Message 1                    

Message 2                    

Message 3                  
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Here     is a channel that A and S share initially,     is a channel that S and B share 

initially, and     is a channel that A creates for communication with B. After passing the 

channel     to B through S, A sends a message M on    . Note that S does not use the 

channel, but only transmits it. 

 

Using π-calculus, we formulate this protocol as follows:  

 

)B|S|)M(A()c()c(::)M(Inst

)y(F.)y(x.)x(c::B

)x(c.)x(c::S

)c(on)c(c)c(::)M(A

SBAS

SB

SBAS

ASABASAB









 

Here, we write F(y) to represent what B does with the message y that it receives. 

The restrictions on the channels ASc , SBc , and ABc  reflect the expected privacy 

guarantees for these channels. The most salient new feature of this specification is the 

use of scope extrusion: A generates a fresh channel ABc , and then sends it out of scope 

to B via S.  

For discussing authenticity, we introduce the following specification: 

))M(B|S|)M(A()c()c(::)M(Inst

)M(F.)y(x.)x(c::B

)x(c.)x(c::S

Mc.)c(c)c(::)M(A

Spec
SBAS

Spec

SB
Spec

SBAS

ABABASAB
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According to this specification, the message M is communicated “magically": the 

process F is applied to the message M that A sends independently of whatever happens 

during the rest of the protocol run.  

  

Proposition 1.5.1: We obtain the following authenticity and secrecy properties (M. 

Abadi and A. Gordon, 1998): 

 

Authenticity:                 

 

Secrecy:          

 

Again, these properties hold because of the scoping rules of the π-calculus. 

 

We believe that the example just given is rather encouraging. It indicates that the π-

calculus is a natural language for describing some security protocols. In particular, the 

restriction operator and scope extrusion allow convenient representations for the 

possession and communication of channels. 

 

We do not wish to claim that the π-calculus did not enable us to describe all security 

protocols, even at an abstract level. For example, some protocols rely on asymmetric 

channels (channels of the kind implemented with public-key cryptography). It may be 

possible to represent such asymmetric channels in the π-calculus but extending the π-

calculus may be simpler and more effective. However, the restriction operator and 

scope extrusion should be useful for describing security protocols even in extensions of 

the π-calculus. 

 

.Mallfor,)M(Inst)M(Inst
Spec



.MandMallfor,)M(F)M(Fif)M(Inst)M(Inst 
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Nevertheless, the π-calculus is yet too abstract to explicitly represent cryptographic 

operations that are an important ingredient of security protocols. To fill this gap, the spi 

calculus (M. Abadi and A. Gordon, 1998) defined as an extension of the π-calculus with 

primitives for encryption and decryption.  

 

The spi calculus introduced by M. Abadi and A. Gordon as an extension of the 

π-calculus with cryptographic primitives has been used for cryptographic protocols 

modeling. In the spi calculus the protocols are stated as processes and the properties are 

proven using notions of protocols equivalence, (Abadi and Gordon 1998). 

 

Many researchers tried to enhance the original work of Abadi and Gordon (M. 

Abadi and A. Gordon 1998) such as (R. Focardi and M. Maffei, 2004, Y. Gu et al, 2005, 

A. Tiu and J. Dawson, 2010) but their works cannot be applied on real protocols but on 

research cases protocols, where the most researchers for spi calculus focused on these 

types of protocols.  

 

In this thesis, we have introduced a improved version of spi calculus; which we 

called Ph-spi calculus, with an enhanced syntax and semantics that is capable of 

representing real protocol running in an open environment.  

 

The analysis of protocols in such type of environment cannot be built according 

to pre-defined assumptions and restrictions that enforce the interactions between the 

processes presenting the protocol and processes presenting such environment to be 

bounded to these definitions. 

 

However, most of the research works in the analysis of cryptographic protocols 

(R. Focardi and M. Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010); 

including the research work in spi calculus, assumed the environment as an arbitrary 

process to run in restricted mode, while the real environment is inherently open by 
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nature; providing equal availability of knowledge; without restriction of freedom of 

thought or information. Also, such environment is more complex to be managed or 

controlled by set of restriction and assumption. 

 

The closed and restricted environments consider the correspondence between 

two different process pairs for their equivalence to prove the confidentiality and 

integrity properties without considering the unexpected behavior in the real case of 

environment including the number of transitions and the expanding in running 

processes. From the work in the literature, what they have to do is to restrict that 

environment to behave as their model needs without solving the case of interacting with 

real systems that matched with such restricted assumptions. Some of these restrictions 

concern the used channels where the channel cannot be restricted to only specific 

participants or couldn’t be assumed as a same for all of them. Also, during the 

expansion of the processes, the processes concern generation of a fresh names for 

replacing all free occurrences in internal actions taken in transition, these names 

assumed to be generated for once, in case of extended process the names should be 

freshly generated with each extend and evaluated everywhere they can be used. 

 

Some of resent works had been attempt to conjugate the role of the environment 

with the running processes to integrate a protocol as a system. Hence, a process pair of 

(P, Q) is drawn to be further analyzed in terms of the triples (e, P, Q) of process pair 

and an environment argument.  

 

Therefore, when two processes can resist the same attacks from the 

environment, they argue that they are testing equivalent and should in some way be 

indistinguishable to the attackers that is to prove the confidentiality and integrity 

properties. But still the environment defined according to their set of assumptions. 

 

So, the improved Ph-spi calculus use to construct an automated function in order 

to evaluate each action in the running processes for deciding a suitable reaction for any 
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emerged changes in the knowledge of the environment, this evaluation function help us 

to get free from these restrictions that exist in previous works and give the Ph-spi 

calculus the ability of running in an environment where the behavior of such 

environment is unpredictable. 

 

1.6   Research Motivation 

 

The current spi calculus did not proved to be suitable for real protocols or even capable 

to interact with an open environment. 

 

Therefore, our motivation is to introduce an improved version of spi calculus 

called Ph-spi calculus capable to reasoning on the real protocols running in an open 

environment. For that, we have constructed an evaluation function that used for 

evaluating and validating every action in protocol processes and making suitable 

decisions during the interaction with open environment. Also it is a powerful descriptive 

calculus for proving the main security properties as authentication and confidentiality . 

 

The improved calculus ready to be used for real protocols such as e-commerce 

protocols, which it includes all operators needed for such protocols such as timestamp, 

hash function, digital signature and asymmetric key cryptosystem as well as the 

messages are structured to be same as in real protocols that have a tuple of messages. It 

is used to trace and analysis such protocols for deciding there correctness. 

 

1.7 The Problem Statement 

 

Current spi calculus suffered from several limitations, these limitations due to number 

of restrictions and assumptions they have built in their work in order to reach specific 
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approaches for a specific type of environment and protocols. Theses limitations are 

briefly discussed by the following: 

 

I. The current spi calculus dealt with transferring a single unstructured message for 

sending each message in a single action, where a tuple of messages is mostly 

needed in implementing real protocols. Such as, for sending timestamp, user 

identity, user certificate and its validation date from the user to the merchant all 

in one output action. 

 

II. The encryption/decryption operations assumed to not disclose any of their 

knowledge to the environment. This assumption in case of closed and restricted 

environment. 

 

III. The current researchers (H. Al-Refai, 2009, J. Borgstrom, 2009) did not provide 

suitable solutions for input transitions, not even for finite processes. The tracing 

and evaluation for each of those inputs is not considered.  

 

IV. The freshness of generated names and variables (such as channels, variables 

used in mapping for substitution, keys, timestamp …etc.) assumed to be bonded 

in a running process. This in case of dealing with known environment (closed or 

restricted) and they restrict these names and variables to be bounded without any 

evaluation to validate if the environment observe or learn any knowledge for 

those names and variable. This case will be discussed in chapter III Definitions 

(3.2.1.1), (3.2.1.4), (3.2.1.5), (3.2.1.6) and (3.2.1.7). 

 

V. Some researchers added a Boolean guard, but they did not evaluate the formula 

to guarantee its correctness (H. Al-Refai, 2009, J. Borgstrom, 2009).  
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The limitations shown above define the following set of problems: 

 

1. Current spi calculus presented by different researchers (R. Focardi and M. 

Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010)  is not suitable for 

open environment. 

 

2. Current researches in spi calculus are incapable of evaluating the actions in the 

running processes and couldn't make suitable decisions with a changeable 

behavior of the open environment. Their works didn’t have any ability for 

deciding the validity of protocol processes running in open environment that 

needs for automated function for evaluating each action taken by the processes.  

 

3. Some researchers built an evaluation function (H. Al-Refai, 2009, J. Borgstrom, 

2009), but they didn’t overcome the complicated message structures that involve 

hash functions, timestamp and public key cryptography which are mostly needed 

for open environment in applicable protocols. They did not support tuple of 

messages (series of messages) such case of sending multi-messages in a single 

transaction. They did not evaluate the freshness of generated keys and names. 

 

4. Complexity of the nested encryption/ decryption operations.  

 

1.8 Objective of the Research: 

 

Our main objective is to build an improved version of Spi calculus, Ph-spi calculus, to 

solve all mentioned problems. 



08 
 

 
 

I. The needs from this improved version of Spi calculus to give the ability for 

evaluating each action in the running processes and making suitable decision to 

be more suitable with open environment. 

 

II. We need this improved version of calculus to be a step toward automated 

symbolic language with an evaluation functions. 

 

III. We need this improved version of calculus to solve the problem of tuple (series) 

of messages we built partial map function then apply the evolution function on 

it. 

 

IV. Also, we need this improved version of calculus to include special functions that 

mostly used in real cryptographic protocols such as timestamp, hash function, 

and digital signature. 

 

1.9 Research Methodology: 

 

 Based on most of the related work in reasoning on cryptographic protocols. 

 

 Then, we apply the current spi calculus on one of the real protocols, to define the 

lack of current versions of the calculus spi to be appropriate for such 

real protocols. 

 

 Then, after we introduce a needed parameters and operators to build an 

improved version of the spi calculus to make it a step toward automated 

symbolic language with an evaluation function. Also, to give this calculus the 

ability for evaluating each action in the running processes and making suitable 

decision to be more suitable with open environment. 
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 Finally, we used this improved calculus to analyze and reasoning on 

cryptographic protocol intended to prove the soundness and correctness using 

case study.   

 

 

 

Figure 1.9.1  Research Methodology 

 

 

1.10 Overview of the Thesis: 

 

This thesis organized as follows: 

 

Chapter II will cover research undertaken in the related literature with some analysis 

and comparisons and at the end we will give a comparisons table between them. In 

Chapter III we will introduce our enhanced calculus called Ph-spi calculus with the 

evaluation function. Chapter IV will present an example and a case study to prove the 

functionality of this enhanced calculus. And in the last Chapter V, we will conclude this 

thesis by summarizing the results and findings from the test collections. It also provides 

suggestions for further research work.  



 

 

 

 

 

 

 

 

 

Chapter II: 

 

LITERATURE REVIEW 
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2.1   Introduction 

 

Most of research works in formal methods has been focused on analysis of discrete 

system. This is understandable with regard to the fact that many security problems in 

protocol analysis can be formulated in terms of the properties of a discrete system. 

Secure data exchanges between several principals are often subject to attack by an 

intruder.  Such an intruder can do any sequence of a finite set of operations such as 

intercepting data, concatenating and non-concatenating data, encrypting and decrypting 

data, and so forth. However, some sort of discrete formal analysis can enable us to 

avoid attacks especially since attacks are often non-intuitive, exploitations of protocol. 

For this reason, formal methods are useful for the analysis of the security of 

cryptographic protocols. They allow one to do a thorough analysis of the different paths 

intruders can take, and to specify precisely the environmental assumptions that have 

been made.  

 

In 1997, the spi calculus introduced as a new approach to formal cryptographic 

protocol analysis, the spi calculus proposed as an extension of the -calculus (R. 

Milner. 1992). The spi calculus is a process calculus designed for the description and 

formal verification of cryptographic protocols. The spi calculus enables us to consider 

cryptographic issues in more detail. In spi calculus, protocols represented as processes 

and state their security properties in terms of protocol equivalence.  

 

In this chapter, we will cover research undertaken in the areas related to the 

scope of the framework of this thesis and reviewed in the previous chapter. 
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2.2   Spi Calculus Literature 

 

The spi calculus presented in (M. Abadi and A. Gordon 1998) as an extension of the π-

calculus used to analyze and formally verify of cryptographic protocol. They present 

simple and poor language where restriction and scope extrusion play a central role on 

this version of spi calculus, so their work can be applied only on simple case study 

protocol. 

 

Many researchers tried to enhance spi calculus by made it applicable to specific 

techniques or protocols. Others tried to solve the problems of the language requirements 

to be suited for use in an open environment. The following is summary of the most 

recent work: 

- Gordon and Jeffrey introduced an enhanced version of spi-calculus (A. Gordon 

and A. Jeffrey 2003), they used type and effect system to prove the authenticity 

properties for cryptographic protocols based on asymmetric cryptography, the 

idea behind their work is to identify formally via subtyping separately the 

notions of public and tainted types, this identification formalize the way nonces 

increase the degree of trust in data and support different styles of nonce 

handshake via challenge/ response types. However, their work suffered from 

several limitations; such that the authors define a type for the nested encryption 

operation, this type cannot model some form of nested encryption; such as 

“sign-then-encrypt” or “encrypt-then-sign”. Also, their model did not solve the 

problem of input transition; they considered any opponent to be untrusted and 

did not include some of cryptographic operations such as hash function, digital 

signature and timestamp. Also, the authors assume that cryptographic algorithms 

provide perfect integrity and confidentially properties this assumption makes the 

model incapable to detect key-compromise attacks.  

 

- (C.Bodei et al. 2003), the authors presented LYSA calculus as an enhanced 

version of the spi calculus that used one global communication channel where 
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all the processes had access to this channel to eliminate any unjustified 

protection provided by the restricted channels. On the other hand, LYSA 

calculus only supported symmetric cryptography protocols and its syntax did not 

support other cryptographic function such, asymmetric cryptography, hash 

function and timestamp. Also, the authors had taken in their mined perfect view 

of cryptography so, their language cannot detect key-compromise attacks. 

 

- (R. Focardi and M. Maffei, 2004), the authors introduced to enhance spi 

calculus, the authors proposed -spi calculus as a combining of the original Spi 

calculus (M. Abadi and A. Gordon, 1998) with some feature of LYSA-calculus 

(C.Bodei et al, 2003). The authors added tags to the calculus to index the 

message exchange, and provide primitive for declaring process identities and 

long-term keys. On the other hand, the authors argue that the analysis of flawed 

protocols in -spi calculus failed when validating suggesting possible attacks. 

Also, the syntax of the -spi calculus did not include some basic cryptographic 

operators that used in most of real cryptographic protocols such as; hash 

function, digital signature, and message digest.  

 

-  (Y. Gu et al, 2005), the authors introduced a new version of the spi calculus, 

called SPC calculus as an executable model for description and analysis of the 

security protocols. Security properties like secrecy and authenticity can be 

formulated as equations, where equality is interpreted as bisimulation 

equivalence on abstractions. However, their works suffers of set of problems 

concerning the structure of output messages and they argue that their work is 

simple and do not consider the active environment possesses infinite messages. 

Also, their work is not ready to take into account the symbolic method.  

 

-  (C. Haack A. Jeffrey, 2006a), the authors presented Pattern-matching spi 

calculus, by using pattern-matching as a primitive their language is capable of 

describing complex data dependencies, their work considered one way to solve 
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some of the problem mentioned in Chapter I, but the using of type system 

caused a huge complexity to their language, this made pattern-matching spi 

calculus inapplicable on real protocols.  

 

- (C. Haack and A. Jeffrey, 2006b), Haack and Jeffrey proposed another work to 

enhance the spi calculus, the authors presented the timed-spi calculus their work 

gave the ability of reading global clock by adding timestamp to a simple typed 

spi calculus for detecting key-compromise attacks. But, their model cannot 

distinguish between the times needed for the attacker to crack short term keys 

and the amount of time that takes to timeout, the authors assumed that the 

timeout is less than the time needed for the intruder can crack this key. Also, 

their work suffer from several limitation, where timed spi calculus allows only 

representations of symmetric encryption and it did not support other 

cryptographic techniques such as public key, hash function, message digest and 

digital signature.  

 

-  (J. Borgstrom, 2009), the author introduce an enhanced version of spi calculus 

sound with respect to concrete hedged bisimilarity, also, he introduced a smooth 

extension of the message algebra of the spi calculus, treating complex keys and 

public-key cryptography in a uniform fashion. On the other hand, his work did 

not solve the problem of complexity of composite messages and the way of 

applying encryption/decryption for these messages in a nested fashion which is 

needed for most transaction in real protocol in open environment and he didn’t 

include validation function that validate all the processes in the protocol. Also, 

he argues that the issues of finding appropriate decompositions and deciding 

symbolic consistency still remain.  

 

-  (H. Al-Refai, 2009), the author presented Spi-H-calculus as an extension of the 

spi calculus, and he had introduced evaluation function to validate the actions on 

the running processes. The Spi-H-calculus was built to be compatible with evade 
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bisimulation as enhancement of framed bisimulation. However, his model could 

not be applied on real protocols such as e-commerce protocols; he did not 

include all operators needed for such protocols such as timestamp, hash 

function, digital signature and asymmetric key cryptosystem. Finally, the 

messages in the Spi-H-calculus are not structured messages to be same as in real 

protocols that have a tuple of messages.  

 

-  (A. Tiu and J. Dawson, 2010), the authors consider a version of the spi calculus 

where the message language allows only representations of symmetric 

encryption and pairing. They argue that their work and proof methods used to 

establish the correctness of those procedures can be extended uprightly to cover 

more complicated message structures which involve simple 

constructor/destructor languages such as natural numbers, hash functions and 

public key cryptography. Also, their work did not coincide with open 

bisimulation and they argue that: their decision procedure is complex and cannot 

fit with dynamic change in an open environment. Also, their work is 

implemented just to fit with restricted case study protocols (not real 

implemented protocols) and to be used in bisimulation techniques for finite spi 

processes. 

 

 

2.3   Conclusion  

 

 

Many researchers (R. Focardi M. Maffei, 2004, C. Haack A. Jeffrey, 2006a, 2006b, J. 

Borgstrom, 2009, A. Tiu and J. Dawson, 2010) had been attempted to enhance spi 

calculus based on (M. Abadi and A. Gordon 1998) for the purpose of analyzing and 

reasoning of cryptographic protocol for achieving an optimized level of security. 
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Based on our set of objectives, although analysis of related work had been 

conducted. Table 2.3.1 shows the link between the current research and the statement of 

the problems as discussed in the first chapter. 

 

Table 2.3.1: Related Work 

 Problems Problem-1 Problem-2 Problem-3 Problem-4 

Pre. Research  

A. Gordon and A. Jeffrey 2003 X X X  

C. Bodei et al. 2003 X X X X 

R. Focardi and M. Maffei, 2004  X X X 

Y. Gu et al, 2005 X X X X 

C. Haack A. Jeffrey, 2006a X X   

C. Haack A. Jeffrey, 2006b X X X  

J. Borgstrom, 2009  X X X 

H. Al-Refai, 2009 X  X X 

A. Tiu and J. Dawson, 2010 X X X X 

T. Kahsai, 2006 X X X X 

 



 

 

 

 

 

 

 

Chapter III: 

CONTRIBUTION: 

THE Ph-SPI CALCULUS 
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3.1   Introduction 

 

Spi calculus was introduced in (M. Abadi and A. Gordon. 1998) as an approach for 

description and analysis of cryptographic protocols. It is an extension of -calculus 

(Milner 1992). 

 

Such spi calculus provides more detailed descriptions of cryptographic protocols 

than π-calculus. While π-calculus enables the representation of channels, spi calculus 

also enables the representation of the channel implementations in terms of 

cryptography. So, the main difference between -calculus and spi calculus is that the 

latter includes cryptographic primitives such as encryption and decryption.  

 

In spi calculus, the protocols are stated as processes and their properties are 

proved using notions of protocols equivalence, (Abadi and Gordon 1998). For instance, 

we can say that a protocol keeps a piece of data X secret by stating that the protocol with 

X is equivalent to the protocol with X  , for every X  . Here, equivalence means 

equivalence in the eyes of the environment. The environment can interact with the 

protocol, attempting to create confusion between different messages or sessions. This 

definition of equivalence yields the desired properties for most of the security 

applications.  

 

In this chapter, we will introduce an improved version of spi calculus called Ph-

spi calculus, as a step toward automated symbolic language with evaluation functions. 

This function is capable for making suitable decisions to handle the open environment 

as well as evaluating and validating every action in protocol processes for proving the 

main security properties as authentication and confidentiality. 

  

Here, Ph-spi calculus is ready to be used for real protocols; it includes all 

operators needed for such protocols such as timestamp, hash function, digital signature 

and asymmetric key cryptosystem. The message is structured to be same as in real 

protocols that have a tuple of messages. 

 

 



29 

 

3.2   The Ph-Spi Calculus 

 

This section gives the syntax and operational semantics of the Ph-Spi calculus to 

improve the original works of (M. Abadi and A. Gordon. 1998) followed by the work of 

(H. Al-Refai. 2009) that includes an evaluation function.  

 

3.2.1   Syntax 

 

This section introduces the language of Ph-spi calculus. Names and operators are the 

basic constructs the syntax of Ph-spi calculus. Other structures are built based on them. 

Protocol model, is representative structure of Ph-Spi-calculus. In this structure 

messages, expressions, logical formula and processes define the attributes needed to 

express all the objects and the activities driven in establishing protocols. Tables 3.1.a 

and 3.1.b summarize the syntax of Ph-spi calculus as given in (H. Al-Refai. 2009). The 

bolded expressions, guards and processes are newly added. 

 

Names N range over communication channels, data (variables or clear texts and 

a message) or keys. Along the declaration, names are used alternatively through the 

syntax regardless of their representations. Any name would be tagged to the type by its 

appearance order.  

 

Notation 1: We reserve the lower case letters a, b, ch to denote channels and k, l to 

denote keys and m, n to denote messages. 
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Expressions are those descriptions that are obtained by applying encryption, 

decryption, paring and projection operators to names and ciphertext. For example, the 

expression  is a plaintext, when it is encrypted using the value  as a key, the overall 

actions would be given by )(Enc , yielding that  as a plaintext is encrypted under the 

key , conversely the decryption action Dec{} stands to decrypt the ciphertext using 

the value of  as a key. We assume that a key should be a name and the encryption 

action uses shared key in a simple and nested modes. 
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Definition 3.2.1.1: Let P represent the running process, Q for any other process running 

in the environment, and  e  represent the knowledge of the environment then the set of 

all free names known to the environment is defined by  , such that,          

              . 
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Definition 3.2.1.2: Let P represent the running process, Q for any other process running 

in the environment, and  e  represent the knowledge of the environment then the set of 

all free variable known to the environment is defined by  , such that,          

              . 

 

Logical formulae generalize the usual equality operator of the -calculus by 

conjunction and negation. Moreover we introduce some new predicates let η :P ,  

]:[ N  , ]:[ M  and  N: . The predicate let η:P means η time is evaluated as a valid 

current time of process P, and the predicate ]:[ N  which tests for the format of the 

argument  , whether it evaluates to a name or not, and the predicate ]:[ M  which test 

for the argument , whether it evaluates to a compound ciphertext or not, and with 

“Let” construct that binds the value of some expression  to a name z, and  N:  

which tests for the format of the argument  , if it is bounded in the process P and not 

belong to names in  any other processes in the environment, such as 

  )()(( QbnPfn . 

 

There are other expressions denote hash function and the encryption/ decryption 

using public and private keys: 

 

 Hash function:   
 
  hashing of 

 
. The hashing function assumed to be perfect 

and noninvertible. 

 

     
  

 
   Encrypt the structured message 

 
 using a public key   . 

 

     
  

 
   Encrypt the structured message 

 
 using a secret key   . 

 

     
  

 
   Encrypt the structured message  

 
  that signed digitally by public 

key   . 
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Definition 3.2.1.3:    A finite set of terms, T = {t1, t2,…., tn}. (H. Al-Refai, 2009). 

 

Following the work of (H. Al-Refai. 2009), the difference to the old version of 

spi calculus is that we assumed the set T to be defined, so that we can associate each 

state to a term t. In order to define the notion of state we have to introduce the definition 

of finite multisets. 

 

Definition 3.2.1.4:    A finite multiset   over a set L is a map             such that 

 - 1
(M 1) is finite. We define the following operations on finite multisets: (H. Al-Refai, 

2009). 

 

(a) The difference of the multisets   and   is the multiset  |  where                       

( | )(l) = max ( 0,   (l)  -   (l)); 

 

(b) The union of two multisets   and   is the multiset  where                           

(  )(l) =   (l) +  (l); 

 

(c) We say that l >  iff   (l) > 0. 

 

We define formally our notion of state as follows: 

 

Definition 3.2.1.5: We define a state,   Ttt  , to be a family of multisets indexed 

by the terms, where each t represents the local state of the term t. We denote the set of 

all states by   from (H. Al-Refai. 2009). 

 

A first approach to the definition of state would be a family of sets. If we 

consider each t as a set, we were restricting the possibility of a principal to have many 

copies of the same term. We want to deal with the possibility of existing several inputs 

of the terms and verify that our system has the desired properties for input transitions.  

 

Definition 3.2.1.6: The participant         only accepts the fresh key     generated by 

S as server. 
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If two processes can be made equal by conflict-free renaming of bound names 

then they are alpha-equivalent. Substitutions  are mappings  x  from names x to 

messages , following the usual assumption that name-capture is avoided through 

implicit alpha conversion. Substitutions are applied to processes, expressions and 

guards very simply as for example, P x
 
replace all free occurrence of x in P by  , 

possibly renaming bound names in P avoiding name capture. 

 

Definition 3.2.1.7: A substitution  is a finite partial map from the set of names N to the 

set of messages M; {Mi /xi }.  

 

The definition shows the effect of applying a substitution  to a process P. This 

is essentially to replace each free occurrence of each name (i.e.; x) in P by (xi) = Mi , 

for some xi and Mi . The mapping must, however, be done in such a way that unintended 

capture of names by binders is avoided. Substitutions are applied to processes, 

expressions and guards in straightly, i.e. P ii xM
 
replace all free occurrence of xi in P 

by Mi , possibly renaming bound names in P avoiding name capture. 

 

Definition 3.2.1.8: (-convertibility)  

1. If the name w does not occur in the process P, then P{w/z} is the process 

obtained by replacing each free occurrences of z in P by w. 

2. A change of bound names in a process P is the replacement of a subterm x(z).Q 

of P by x(w).Q{w/z}, or the replacement of subterm vz Q of P by vw Q{w/z}, 

where in each case w does not occur in Q. 

3. Processes P and Q are -convertible, P = Q, if Q can be obtained from P by a 

finite number of changes of bound names. 

 

Remark: we have use the symbol ‘=’ for -convertibility because we intend to identify 

-convertibility processes. In our spi calculus, the entities of interest are the   

equivalence classes of processes modulo -convertibility. 
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The domain and co-domain of  are denoted as dom() and range() respectively 

.Let n()=  )M(n)(dom
)(rangeM


  When a tuple of distinct names  

),...,,( 21 nxxxx


 and a tuple of messages  ),...,,( 21 nMMMM 


 are given , the 

substitutions mapping of each xi to Mi will be convenient. Usually, a tuple is a set of its 

component.  xM


  is the substitution    which represents union of    and  xM


 . 

Such case is referred to as   extends . 

 

Processes are diverse forms of processes that have a distinct function for each. A 

process could be built using a set of operators that include standard -calculus (Milner 

et al. 1992) and four new ones; symmetric and asymmetric cryptosystem, Boolean 

guards, timestamp and structured message. However, process forms are used to explain 

the following:  

 

 0, is a null process that dose nothing. 

 

 An input process; ( n1 ,  , ... ).P represents input of a generic message x along 

the channel  : the only useful case is when  is a name , otherwise the whole 

process is stuck . 

 

 An output process P).,( n1  , ...  represents out of  along the channel  .The only 

useful case is when  is a name and  is a message, otherwise the whole process 

is stuck. 

 

 Non-deterministic choice P + Q: can behave either as P or Q; the choice might 

either be triggereazd by the environment, or by internal computations of P or Q.  

 

 Parallel composition P | Q; is the parallel execution of P and Q. 

 

 Restriction (n)P: creates a new name a which is only known to P. 

 

 Replication !P behaves like many unbounded copies of P running in  parallel, 

i.e. P | P | P |  …. . 
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 Boolean Guard P behaves like P if the formula is logically true, otherwise is 

stuck. 

 

 Encryption/Decryption let z = (  1 , …..,  2 ) in P: referring to definitions 

3.2.2.6, 3.2.1.6 and 3.2.1.7 attempts evaluation of : if the evaluation succeeds, 

the result bound to z within P, in other words, the process will attempts to 

encrypt/decrypt z with the key ᶯ.If z has the form {M1, …, Mn}k, then the process 

behaves as the process P, where each i  has been replaced by Mi, ie. as the process 

P{M1/x1, ……., Mn/xn}.otherwise the whole process is stuck. 

 

 Timestamp: the process let T:P means T time is evaluated as a valid current time 

of process P. 

 

 

Usual calculus abbreviate ( a)( b) P into ( a, b) P, and )(NM .0 into )(NM . In 

the Ph-spi calculus, processes are identified up to renaming of bound names. Bound 

names are the entities that are enclosed within a process definition P, and not those that 

have explicitly been tagged with any other outside the process. So the closed process 

will then be defined as the process that has no free variables; Proc is used to define a set 

of closed processes. For that we will propose in our operational semantics an evaluation 

function to validate if the bound names did not disclosed with an environment out of the 

process definition. 

 

Let fn(P) denote the set of free names in P and fv(P) is the set of free variables in 

P , and alpha-equivalence arises as expected , n(P) is fn(P)  bn(P). In this context, 

similar notations are used for formulae, expressions and messages. 
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3.2.2   Operational Semantics  

 

In (Abadi and Gordon 1998), there are two operational semantics presented for spi-

calculus - the reaction relation and the commitment relation. The reaction relation is an 

adaptation of a similar idea introduced by Milner. The definition of reaction is rather 

elegant, but not convenient for proofs (because it relies on an auxiliary notion of 

structural equivalence). Therefore, an alternative characterization of reaction is provided 

defining the commitment relation, in style of (R. Milner 1999). We will present both as 

in (Abadi and Gordon 1998). For more details see appendix A.1. 

 

However, to provide a calculus to be toward automation, this needs for two main 

evaluation functions are used (H. Al-Refai. 2009). The first is utilized for expressions 

while the second is used for Boolean Guards. These two evaluations are denoted as 

follows: 

 

-  For an expression   )(: MsymboldistinctaiswhereM   , where ( . ) 

is represent an expression. 

 

-  For an evaluation of a Guard   .oninductionbydefinedis,ff,tt:   where 

is represent guard. 

 

The evaluation function is defined recursively according to tables 3.2, and 3.3. 

We have introduced one new expression {           } and four Boolean guards {         

        
 
                              } evaluations. In these two tables, it is 

obvious that expression evaluations rely on the implementation of let and guard only. 

Hence, the decryption is bounded along this evaluation scheme. 

 

The evaluation function performs a tracing to every process action in the 

protocol for deciding either to proceed or terminate that process. The role of each 

function is indicated in the tables. For example: 
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Evaluated as: the plaintext η is evaluated as a message and belong to the defined 

set of messages M and the key  evaluated as a name and belong to the defined set of 

names N, if these conditions success the operation evaluated to be valid otherwise 

terminate the process. 

 

 

TABLE 3.2: Expression evaluation in the Ph-spi calculus 
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TABLE 3.3  Boolean Guard evaluation in the Ph-spi calculus 

 

 

 

Table 3.4 shows, most of the operational semantics of the Ph-Spi-calculus used 

in our work is similar to the work of (H. Al-Refai, 2009). Let and guard items are used 

as primitive rules driven to decrypt messages. A process P behaves like P provided 

  

  

 
 
 

 

  

 
 
 

 
 

 
 

 

 
 
 

 
 
    

 
 
 

 

  
 

 

 

   

  
  

  
 

   

 

 
 

 

   

  
 
 
 

 
 
 

  

   

 

otherwise ff 

if tt 
] [ 

otherwise ff 

if tt 
] : [ 

otherwise ff 

      )   ( bn (.) fn if tt 

] : [ 

otherwise ff 

if tt 
] : [ 

otherwise ff 

            if Tt 

 P : let 

otherwise ff 

           ( bn (.) fn N x and 

M if 
i 

x 
i 

M 

in 
i i 

z let 

tt tt 

   )  P   ( ( fn N 

M 

M 

    and   N 

N 

N 
N 

M 

     
  

 
 

  

 

 
 

 

  

  

    

  

  



40 

 

that  evaluates to true, otherwise, P is stuck. A process let z = (  1 , …..,  2 ) in P  

provided that the evaluation of  succeeds;  otherwise, let z = (  1 , …..,  2 ) in P  is 

stuck.  If z has the form {M1, …, Mn}k, then the process behaves as the process P, where each i  

has been evaluated by Mi, ie. as the process P{M1/x1, ……., Mn/xn}.otherwise the whole 

process is stuck. 

 

Rule (E-OUT) details the case when the environment receives a message M and 

updates its knowledge accordingly, and for the sake of a transition to occur, all channels 

are supposed to be well announced to the environment. 

 

Rule (E-INP) details the case, when the environment sends a message M to the 

process. Message m is not arbitrary and the expression  describes how this message is 

built out of the environment and of the names b


to define M. Creation of new names b


is recorded by  xb


, and in this case a must belong to the knowledge of the 

environment to explain its announcement. 

 

In table 3.4, the evaluation function is built in the operational semantic to strengthens 

the validation rules of the language. For more details see appendix A.1. 
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TABLE 3.4  The Operational Semantics of the Ph-Spi calculus  
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3.3   Conclusion: 

 

In this chapter, we have introduced an improved calculus that called Ph-spi calculus it is 

a symbolic language that to be toward an automated language. Therefore, we have built 

an evaluation function to validate the process actions in each step of the protocol. In the 

next chapter, this improved calculus will be used to formulate a simple example that had 

been used by many researchers such as (M. Abadi A. Gordon. 1998), then a case study 

will be given, using kerberos protocol. 
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4.1   Introduction 

 

In previous chapter, we have presented the Ph-spi calculus that supports real protocols 

such as e-commerce protocols running within open environment. Our calculus includes an 

evaluation function that used for validating process actions and all operators needed such 

as timestamp, hash function, digital signature and asymmetric key cryptosystem. The 

message is structured to be same as in real protocols that have a tuple of messages. 

 

In this chapter, we will apply our proposed Ph-spi calculus to an example that is 

used in many research works to prove the soundness of our proposed calculus (R. Focardi 

and M. Maffei, 2004, H. Al-Refai, 2009, A. Tiu and J. Dawson, 2010). Then, in the next 

section we will apply our proposed calculus on kerberos protocol with a tuple of 

messages as a case study.  

 

Example 4.1.1: 

 

The first example with cryptographic is extremely basic. In this example, we 

consider two principals A and B that share a key    ; in addition, we assume there is a 

public unsecure channel cAB that A and B can use for communication. The protocol simply 

depicts that A sends a message M under the key     to B, on a channel η. 

 

     shared key between A and B. 

  Message   M. 

A   B :           on channel η  
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In Ph-spi calculus: 

 

                         

                                 

                            

 

In this example, the freshness of the generated key         is guaranteed by the 

evolution μ to be bounded in process P and not disclosed out of the scope of P. this can be 

by the use of the evaluation function for bound names as: 

          to means that μ is a name bounded by P and                    

 

Now, after proving the freshness of the key    , we have to evaluate the 

encryption process           doing that using the evaluation at the encryption defined 

in our evaluation function, such as :                     the evaluation will check if   evaluated as 

         M to mean that   should be constructed as a message and the key μ 

evaluated as        N means that the key should be a name, otherwise the whole 

process will stack ┴.  

 

Form the above example, and by comparing it with the same one in abadi work 

(M. Abadi, A. Gordon 1998), we found that, by using our version of spi calculus we can 

solve some of the earlier problems concerning the freshness of generated names and 

guarantee of the bound names to be closed in the process domain. 
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Note, the old versions of spi calculus use the same example, but they assume the 

channel is restricted to be used only by A and B. 

 

For B attempts to evaluate   as: if the evaluation succeeds; the process will behave 

as{M/x} where       M  and    N                  , where (.) for any other 

processes running in the open environment, then the result bound to z within P, otherwise 

the whole process stack ┴.  

 

Now, we use the following specification. 

                                     

                                              

                                    

 

And we obtain the properties: 

 

Authenticity:                            , for all   and  '. 

 

For more details and proof, reader can refer to Appendix A.1. 
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4.2   Case Study: The KERBEROS Protocol 

 

The Kerberos protocol (Figure 4.2.1) is a key distribution protocol between a client and 

an applied server which is based on Needham- Schroeder protocol. We only consider a 

version taken for this protocol proposed in (M. Burrow et al. 1990) and (M. Boreale et al. 

2000). We consider such protocol which has a structured message that contains set of 

elements in a single transaction to prove one of our contributions. That is, one of the 

improvements for the language we have introduced in this work concern such case.  

 

 

Figure 4.2.1:  Kerberos protocol 

 

The system in our case has two agents   (initiator) and λ (responder) that each one 

of them share long term key with a server S              , where   communicate with 

the server S to establish new connection with λ. The symbols used in our case study are 

shown in Table 4.2.1. 
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Table 4.2.1   Case study symbols 

Symbol Represent 

  Initiator 

  Responder 

    Initiator ID 

    Responder ID 

  Is a Message 

  Is a key 

  Is a timestamp 

   Responder Certificate  

  Public channel 

 

 

Informally, this protocol is shown below: 

Message 1        :             

Message 2        :                             

Message 3        :                        
 

Message 4        :                
 

 

First of all, to implement such protocol in Ph-spi calculus we consider the run of 

the protocol under the hypothesis that the old session key possible has been released to 

the environment. So, the new generated keys should not release any of this knowledge to 

the environment till the running session completely finished and evaluate the knowledge 

gained previously by the environment for old keys in previous sessions.  
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In the following we present some notational shorthand, in order of convenience, 

which define the outputted messages that will be sent through public channels: 

 

 
 
                          

 
 
           

 
 
                             

 
 
                        

 
 
                

 
 
                          

 

 
 
 denotes the old message including the old timestamp (nonce)    and session 

key μ supposed to be known by the environment.    indicates that it is a new 

certificate awarded by the Kerberos server S to the initiator  . 

 

The specifications are similar to (M. Boreale et al. 2000). Firstly, we have to describe 

the implementation of this protocol in the Ph-spi calculus in order to formally give the 

specification. 
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Where: x derived from the partial-map function as: 

      
 

        
 
                             

      
 

        
 
                                         

      
 

        
 
                           

      
 

        
 
                     

 

The evaluation function will verify the freshness of all generated nonces, as well 

as the encryption/decryption operations and validate the structure of messages, the bound 

names projection of structured messages; all of these empower the analysis and tracing of 

the protocol. As well as prove later in this chapter. Therefore, the specification will be 

followed simply for verifying authentication and secrecy as we will prove later in this 

chapter. 

 

The specification of kerb is formally described as: 
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Proof: 

To prove the authentication property, the set of names should be all distinct from each 

other and not known by the environment. For example we can prove the validity of 
 
, 

such as: 

 Firstly, we evaluate the freshness nonce    as a timestamp by           and 

           that means ιs is freshly generated as a name and bounded in the running 

process. Such that, the   is valid timestamp if      N and                    

for the running process P and any other process Q in the environment. 

 

 The same for evaluating    by           for    is valid if     N and      

              for the running process P and any other process Q in the 

environment. 

The encryption process evaluated as           
                  that is, it valid if 


 
                                       and              N and                                   

for P is a running process and for any other process Q in the environment. 

According the definition 4.2.1, and by evaluating for the input transactions  
 

 

we can observe that  
 

               and each x of them is distinct from the 

others. 

 

Now, the evaluation of all actions in     and S in kerb can verify the 

authentication property for kerb and         . 

 

Definition 4.2.1: The participant         only accept the fresh key     generated by S. 
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For any case, where the evaluation function result an error that will signal to break 

the process  . 

 

This will prove that kerb and          are testing equivalence (≃) which mean 

that the authentication property proved. 

 

Definition 4.2.2: Secrecy: the keys         and     are never released. 

Formally, it holds that  

         ≃           

 

Where   represent "eavesdropping", for whom passively grab or learned from the 

messages known to the environment. 

 

                        

 

Mean that   contains all free names and all names collected previously from all 

sessions possibly learned or disclosed accidently by the environment excluding the bound 

names generated to be closed in running process. For more details, reader can refer to 

Appendix A.1. 



 

 

 

 

 

 

Chapter V: 

 

CONCLUSION AND FUTURE WORK 
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Cryptographic protocol is a protocol that used to protect computer systems and network 

transactions from malicious attacks. The design of such protocols had been known to be 

very hard due to their complexity. 

 

However, cryptographic protocols are subject to many subtle attacks, so many 

researchers attempts to develop tools to model and analyze these protocol to check if it 

can guaranty the security properties. Formal method proved to be a useful method for 

the analyzing such protocols because its allow one to do overall analysis of the different 

path the intruders can take, and the ability of formal analysis to reveal previously 

unknowing attack, and precisely specify the environmental assumptions. In this thesis 

we will concern on enhancement of the spi calculus, which is formal tool used to 

analyze security protocols. 

 

Many researchers tried to enhance the original work of Abadi and Gordon (M. 

Abadi and A. Gordon 1998), but most of their works built over some restriction and 

assumption that made the language fit to specific protocols.  

 

In this thesis, we presented an improved version of spi calculus called Ph-spi 

calculus to be step toward symbolic automated language with evaluation function. This 

function is capable for making suitable decisions to handle the open and changeability 

in environment behaviors as well as evaluating and validating each action in the running 

processes and making suitable decision to prove the main security properties as 

authentication and confidentiality.  

 

The Ph-spi calculus ready to be used for real protocols such as e-commerce 

protocols, it includes all operators needed for such protocols such as timestamp, hash 

function, digital signature and asymmetric key cryptosystem. The message is structured 

to be same as in real protocols that have a tuple of messages. 

 



44 
 

In future work, we plan to apply the Ph-spi calculus on real protocol that based 

on asymmetric key. Also, we are planning to apply one of the bisimulation techniques, 

such as framed bisimulation, evade bisimulation … etc, to prove the soundness of our 

calculus. 
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Appendix A.1 

Details of Process Algebra and Operational Semantic 

 

A.1.1   Process Algebra 

 

Process algebras are executable specification languages for the description of 

concurrent systems, or processes. Their behavior is represented by a set of atomic 

Input ,Output and Silent actions that they can perform, each independently and in 

interaction with each other. A specification composes these actions via a few basic 

operators, like sequentialization (or prefix), parallel composition, and 

nondeterministic choice usually allowing communications. Furthermore there are 

some scope operators, such as restrictions and hiding. Process algebras are, usually, 

interpreted on an interleaving model, making concurrency not directly observable. 

In computer science, the process calculi (or process algebras) are a diverse 

family of related approaches for formally modeling concurrent systems. Process 

calculi provide a tool for the high-level description of interactions, communications, 

and synchronizations between a collection of independent agents or processes. They 

also provide algebraic laws that allow process descriptions to be manipulated and 

analyzed, and permit formal reasoning about equivalences between processes (e.g., 

using bisimulation).  

 

Process algebras have been often given an operational semantics in SOS 

(Structural Operational Semantics) style. The behavior and evolution of a program 

(process) are described through a transition system. So, computations are formally 

defined as paths in the transition system. (for more details, refers to Appendix A). 

 

Classical process algebras (among the others CCS (Milner 1989), CSP 

(Brookes et al. 1984), ACP (Bergstra and Klop 1984), Meije (Austry and Boudol 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Concurrent_system
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Bisimulation
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1984)) have been successively extended to cope with the possibility to exchange 

names (name passing) and processes (Higher Order calculi) in communications. 

These features express mobility, i.e. the dynamic change of the control structure of 

processes, and are present in the π-calculus (Milner et al. 1992), HO-π (Saniorgi 

1992), the join calculus (Fournet et al. 1996), the ambient calculus (Nielson et al. 

1999), the spi-calculus (Abadi and Gordan 1998) and many others. 

 

A protocol is described as a process in process algebra, such as CSP and CCS, 

or, more recently in the π-calculus (Milner 1999; Milner et al. 1992) and the spi-

calculus (Abadi and Gordan 1998). The desired security property is then studied by 

checking its specification on all its computations.  

 

Remarkably, the semantics of process algebras is often given in a logical style, 

by defining a transition system (akin to a graph with labeled arcs, whose nodes 

represent states). So computations are formally defined as paths in the transition 

system. Moreover, the transition system associated with a protocol has often a finite 

number of states, in which case the analysis is mechanizable and provides complete 

answers. Considerable research has been done in recent years using various process 

algebras (without mobility) and equivalences, e.g., to establish properties about the 

information flow and to detect flows in protocols (Focardi and Gorrieri 1997). More 

recent work extends the above to study the foundations of secure mobile code; e.g. the 

works on the spi-calculus (Abadi and Gordan 1998).  

 

Process algebras offer a pure framework to study concurrent and distributed 

systems and, in turn, the security issues connected to them. Systems are specified as 

expressions of the calculus, called processes. Processes are obtained by combining via 

a few operators (sequential and parallel composition, nondeterministic choice, 

declarations) the basic actions of sending and of receiving messages between 

processes along channels. Furthermore, there are some scope operators, such as 

restrictions and hiding. 
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By focusing on the essence of interactions among processes, these calculi 

make their well-established theory available to inquiry the subtle aspects of 

communications, in which security problems or flaws often hide. In this aspect, 

process algebras furnish a common background, where comparing different 

formulations and models for the same property is possible. 

 

Among process algebras, the π-calculus (Milner 1999; Milner et al. 1992), a 

foundational calculus based on the notion of name passing, seems particularly suitable 

to address security problems, especially to model the usage of secret information. In 

its setting, names - that represent values, or messages, and also channels - can be 

created and passed. Processes can only communicate on the channels they know: for 

them, learning the name of a channel amounts to possessing the capability to 

communicate on the channel. A process can extend its communication possibilities, 

via an explicit mechanism of the calculus, called scope extrusion, which enlarges the 

scope of names. Consequently, the semantic rules may explicitly control the access to 

channels and to data. 

 

Nevertheless, the π-calculus is yet too abstract to explicitly represent 

cryptographic operations, which are an important ingredient of security protocols. To 

fill this gap, Abadi and Gordon defined the spi-calculus (Abadi and Gordan 1998), an 

extension of the π-calculus with primitives for encryption and decryption. 

 

The π-calculus is a model of computation for concurrent systems. The syntax 

of π-calculus lets you represent processes, parallel composition of processes, 

synchronous communication between processes through channels, creation of fresh 

channels, replication of processes, and non-determinism.  
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A.1.2   Operational Semantics 

 

The operational semantics gives one of the major approaches, to the formal semantics. 

Introduced in the sixties, (McCarthy 1963; Lucas 1971), it describes the meaning of a 

programming language in terms of elementary steps on an abstract machine, 

formalized as transitions between states. Behaviors are graphically represented as 

transition systems, i.e. oriented graphs, where nodes represent states (or 

configurations) and arcs represent transitions between states. Transitions may be 

labeled by additional information on the activity performed. 

 

Operational semantics provides quite a natural and intuitive way to understand how a 

program behaves. This aspect, joint with the simplicity of its mathematical basis, 

makes operational semantics helpful both in the design and implementation phases. 

 

The main drawback is instead that the meaning of programs is not directly modeled, 

because it necessarily passes through their execution sequences. Therefore it is more 

difficult to reason about programs themselves, without concern of implementation and 

execution problems. This may lead to a lack of structure and of compositionality, i.e. 

the possibility to give the semantics of a construct in terms of the semantics of its 

components. Compositionality, essential for making the semantic definitions finite, 

appears in this framework only in the seventies, (De Bakker 1972), leading Plotkin 

(1981) to propose a structural approach. 

 

 

A.1.2.1   Structural Approach 

 

The introduction of Structural Operational Semantics or SOS (Plotkin 1981) arises 

from the cross-fertilization with denotational techniques, borrowing from them 

notions such as compositionality and abstract syntax. The semantics of compound 

constructs is defined in terms of the semantics of their components, following the 

various syntactic possibilities, i.e. it is syntax-directed. Transitions are deduced in a 

logically - based way, by inducing on the syntactic constructs. Transitions themselves 

are defined using axioms and inference rules of the form  
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Conclusion

Premises

 

 

where, if the premises are satisfied, so does the conclusion. From a formal point of view, this 

amounts to having a logically - based proof system, that, in particular, provides a reliable 

support to the development of automatic tools. (for more details, refers to Appendix A) 

 

The structural operational semantics, still preserving the simplicity of the 

traditional operational semantics, exploits compositionality, making specifications 

modular and modules suitable for re-use. 

 

Finally, it is sufficiently general to allow tuning the level of abstraction, 

without drastically changing the method. 

 

A.1.2.2   Enhanced Operational Semantic 

 

Descriptions of systems need to be more detailed and concrete in the implementation 

phase. They require considering also information on the external environment, 

concerning architecture and topology. Aspects, such as locality or causality, become 

of interest, from this point of view. In particular, locality-based semantics model 

distributed systems according to their physical or geographical distribution, localizing 

each activity in the site it is performed. 

 

To capture this kind of low-level information, one often resorts to true 

concurrent models, because the interleaving ones only capture more extensional 

aspects. Unfortunately, the non-interleaving approach presents a more difficult formal 

treatment (Reisig 1985). This little excursus shows that both approaches are essential 

to understand distributed systems, for complementary reasons. 
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Different strategies have been used to integrate the two philosophies (e.g. 

(Degano & Montanari 1987)). Some extensions to transition systems towards true 

concurrency have been presented, among which that of Proved transition systems 

(Degano & Priami 1992, 1999, 1996) (See Section 3.2). A proved transition is labeled 

by an encoding of its deduction tree or proof term. Proved transition systems can be 

considered as a sort of logogrammatic representation of computations, containing all 

the possible encodable information. From this concrete and unifying model, 

interleaving in style, it is possible to retrieve a large number of different semantic 

models by abstracting from undesired information (Bodei et al. 1998; Bodei & Priami 

1997; Degano & Priami 1999). Aspects like causality or locality may be retrieved in 

this way. This approach has the advantage that the theory, the techniques and the tools 

valid for the interleaving models are still applicable. 

 

A.1.3   The Reaction Relation 

 

Based on (Abadi and Gordan  1998), we define the reaction relation in three phases. 

In the first one, we have the definition of the reduction relation, >. In the second one, 

we define what is called structural equivalence of two processes, ≡, whereas in the 

third one, we present the definition of the reaction relation, →. 

 

Definition A.1.3.1 The reduction relation, >   Proc× Proc, is defined as the least 

relation on closed processes defined by the following rules: 

 

(RedRepl)                      !P   >   P | !P 

 

(RedMatch)        [M is M] .P  >   P 

 

(RedPair)                              let (x, y) = (M, N) in P   >   P[M/x][N/y] 
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(RedZero)                            case 0 of 0: x suc(P): Q  >   P 

 

(RedSuc)                      case suc(n) of 0: x suc(P): Q >   Q[n/x] 

 

(RedDecrypt)                           case {t}k of {x}k in P >  P[t/x] 

 

Informally, we say that two processes are structural equivalent if one can be 

transformed into the other using the rules below. 

 

Definition A.1.3.2 The structural equivalence, ≡  Proc×Proc, is defined as the least 

relation on closed processes that satisfies the following equations and rules: 

 

(StructNil)         P | 0 ≡   P 

 

(StructComm)       P | Q ≡   Q | P 

 

(StructAssoc)           P | (Q | R) ≡   (P | Q) | R 

 

(StructSwitch)    ( m ) ( n ) P ≡   ( n ) ( m ) P, if mn  

 

(StructDrop)               ( m ) 0 ≡    0 
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(StructExtrusion)     ( m ) (P | Q) ≡ P | ( m )Q, if  m   fn(P) 

 

 

   

   

 
   

 StructResStructPar

sStructTranStructSymm

StructReflStructRed
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PP

QPQP

PP
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 |||

 

 

We are now ready to define the reaction relation of two closed processes. The 

previous relations were defined to allow the rearrangement of processes so that the 

reaction could be possible. 

 

Definition A.1.3.3 The reaction relation on closed processes, →  Proc × Proc, is 

defined as the least relation on closed processes that satisfies the following axiom, 

 

   xMQPQxcPMc |.|.     (ReactInter), and the following rules: 

 

 

 
   

 ReactResReactPar

tReactStruc
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PP
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A.1.4   Commitment Relation in the Spi-calculus 

 

In order to define the commitment relation, we need two new syntactic forms -

abstractions and concretions. An abstraction is an expression of the form (x).P where 

x is a bound variable and P is a process. When F is the abstraction (x).P and M is a 

term, we write F(M) for P[M/x]. 

 

A concretion is an expression of the form ( n


 )
PM

 where M is a term; P is 

a process and n


 are names that are bound in M and P. We will use C and D for 

concretions. 

 

We define an agent as an abstraction, a concretion or a process. We will use 

the variables A and B when representing agents, and define fv(A) and fn(A) as the sets 

of free variables and free names of an agent A, respectively. The definitions of fv(A) 

and fn(A) are the expected extensions of the Notation 1, Definitions 3.2.1.1 and 

3.2.1.3. 

We now have to extend restriction and composition to arbitrary agents. We 

will do this using the following rules: 
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RfnnifPRMnPMnR

otherwisePmMn

MfnmifPMnm
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RfvxifPRxPxR
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In the first and third equations, we also suppose that . We define 

the dual composition A | R symmetrically. 

 

The interactions of an abstraction F = (x).P and a concretion C = ( n


 )
PM

, F@C and C@F, are defined as the processes: 

 

    

    .xMP|Qn::F@C

;Q|xMPn::C@F









 

 

Intuitively, these processes represent the interaction of P and Q. It is the same 

as P and Q running in parallel and communicating using the same channel c. 

 

We will now define how transitions work in Spi-calculus. 

 

 nm
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Definition A.1.4.1 We say that   is a barb if it is a name m (representing an input) or 

a co-name m  (representing an output). We say that   is an action if it is a barb or the 

silent action  . 

 

Now we are able to introduce the commitment relation as in (Abadi and 

Gordan 1998). 

 

Definition A.1.4.2 The commitment relation, →, is written AP 
, where P is a 

closed process,   is an action and A is a closed agent, and is defined inductively by 

the following rules: 
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 sReCommL
AmPm

m,mAP

CommLPar
Q|AQ|P
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CommRPar
A|PQ|P

AP




























 

Whenever AP 


, and the action   is a name, then A is an abstraction, 

when   is a co-name, A is a concretion, and when   is  , A is a process. Therefore 

the commitment relation indexed by   is a binary relation on Proc. We write 

QP 


when there exists a process R such that QRand 
 RP . 

 

 

Proposition A.1.4.1 QPiffonlyandifQP 


. 

 

Proof: 

For the backwards direction suppose RP 


 and QR  , then RP   and then 

QP   by (React Struct).  We can show that QP   implies that there exists R such 

that RP 


 and QR   by induction on the derivation of QP  . The only 

interesting case is (React Struct). Suppose that QP   follows from 

QQandQP,PP  . By induction hypothesis, QP 


 with QQ  .  

 

By Definition A.1.4.2, structural equivalence is a strong bisimulation, so 

RP 


 for R such that QR  . This with the previous equation gives QR   as 

required. 


