

IMPROVED SPI-CALCULUS FOR REASONING

ON CRYPTOGRAPHIC PROTOCOLS

"Master Thesis"

By

Saleh Mansour Bani Hani.

Supervisors

Dr. Hasan Al-Refai. Dr. Mourad Maouche.

This Thesis was Submitted in Partial Fulfillment of the Requirements for

the Master’s Degree in Computer Science

Deanship of Academic Research and Graduate Studies

Philadelphia university

June 2012

 الرياضية محسنة لتحليل بروتوكولات التشفيرSpi لغة ال

 إعداد

 صالح منصور بني هاني

 المشرف

 حسن الرفاعي. د

 المشارك المشرف

 مراد معوش. د

 .في علم الحاسوب الماجستير درجة على الحصول لمتطلبات استكمالا الرسالة هذه قدمت

 العلياعمادة البحث العلمي والدراسات

 جامعة فيلادلفيا

 2102، حزيران

IMPROVED SPI CALCULUS FOR REASONING ON

CRYPTOGRAPHIC PROTOCOLS

By

Saleh Mansour Bani Hani

Supervisor

Dr. Hasan Al-Refai

Co-Supervisor

 Dr. Mourad Maouche

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree In Computer Science.

Deanship of academic Research and Graduate Studies

Philadelphia University

June , 2012

IV

DEDECATION

I dedicate this work to

my beloved family

V

AKNOWLEDGMENT

I would like to thank all those people whose were true sources of inspiration,

knowledge, guidance and help to me throughout the period of my master research. In

particular, my extreme appreciation and thanks goes to my supervisors Dr. Hasan Al-

Refai and Dr. Morad Mouach for their constant encouragement, guidance, motivation

and support. My deepest appreciation goes to all my teachers at the department of

Compute Science, and special thanks to Philadelphia University for giving me the

chance of continue my studies.

Also, my final words are reserved to my family: my father, my mother, my sisters and

my brother. Thank you all for the love and support.

Saleh Bani-Hani

VI

TABLE OF CONTENTS

Page

DEDICATION IV

ACKNOWLEDGMENT V

TABLE OF CONTENTS VI

LIST OF TABLES VIII

LIST OF FIGURES IX

LIST OF SYMBOLS X

 XI الملخص

ABSTRACT XII

CHAPTER I INTRODUCTION

1.1 Background 2

1.2 Cryptographic protocols 3

1.3 Formal Methods 4

1.4 Process Environment 5

 1.4.1 Closed Environment 6

 1.4.2 Restricted Environment 6

 1.4.3 Open Environment 7

1.5 Simple Example using π-calculus 9

1.6 Research Motivation 15

1.7 The Problem Statement 15

1.8 Objective of the Research 17

1.9 Research Methodology 18

1.10 Overview of the Thesis 19

CHAPTER II LITERATURE REVIEW

2.1 Introduction 21

2.2 Spi calculus Literature 22

2.3 Conclusion 25

VII

CHAPTER III CONTRIBUTION: THE Ph-SPI CALCULUS

3.1 Introduction 28

3.2 The Ph-Spi Calculus 29

 3.2.1 Syntax 29

 3.2.2 Operational Semantic 37

3.3 Conclusion 42

CHAPTER IV PROOFS AND CASE STUDY

4.1 Introduction 44

4.2 Case Study: The KERBEROS Protocol 47

CHAPTER V CONCLUSION AND FUTURE WORK 52

REFERENCES 56

APPENDICES 61

VIII

LIST OF TABLES

Table No. Pages

2.3.1 Related Work 26

3.1.a The Syntax of the Calculus 30

3.1.b The Syntax of the Calculus 31

3.2 Expression evaluation in the Ph-spi calculus 38

3.3 Boolean Guard evaluation in the Ph-spi calculus 49

3.4 Operational semantics of the Ph-spi calculus 41

4.2.1 Case study symbols 48

IX

LIST OF FIGURES

Figure No. Pages

1.4.1.1 Closed Environment 6

1.4.2.1 Restricted Environment 7

1.4.3.1 Open Environment 8

1.5.1 The Wide Mouthed Frog Protocol 10

1.9.1 Research Methodology 19

4.2.1 Kerberos Protocol 47

X

LIST OF SYMBOLS

- Latin Symbols -

 alpha

B beta

 gamma

 delta

E epsilon

Z zeta

H eta

 theta

I iota

K kappa

 lambda

M mu

N nu

 xi

O omnicron

 pi

P rho

 sigma

T tau

Y upsilon

 phi

X Chi

 Psi

 Omega

XI

 لتحليل بروتوكولات التشفير ةنحسم الرياضيةSpi لغة ال

 الملخص

مثل تحليلتصميم و دواتأ تطوير على الباحثين من كثيرال متنوعة فعمل لاختراقات التشفير بروتوكولات معظم تتعرض

أكثر الأدوات المثنية و من .و السرية التوثيقمثل منيةالأ الخواص ناضممن لتحققو ذلك من أجل ا, تبروتوكولاال هذه

 .تبروتوكولاال هذهمثل تحليلو ذلك لدقتها و صلابتها في تصميم و المنهجيات الشكلية بفعاليتها هي

 باضافة الرياضيةPi لغة ال ل ستكمالكا نوغورد و العبادي ة من الباحثينقدمالم الرياضيةspi لغة ال تعتبر

 .التشفير بروتوكولات تحليلتصميم و هاماستخدلا,التشفير عمليات

المعرفة حيث قاموا بوضع الكثير من الفرضيات, عملوا على تحسين هذه اللغةيوجد الكثير من الباحثين الذين

 .اتالمقيد و الافتراضات تلك مع تتطابق لا التي الحقيقية النظم مع لتعاملل التطرق دونالعمليات و بيئة مسبقا لتقييد

 نحو خطوة كونلتو ذلك الرياضيةspi لغة ال ل محسنة كلغة الرياضيةPh-spi لغة ال قدمنا الأطروحة، هذه في

القائمة و تمكن من العمليات في حدث كل تقييمعلى تهاقدرب حيث تمتاز الرياضيةPh-spi لغة ال . ةالآلي و ةرمزيلغة

 .مفتوحة اتالبيئ للتعامل مع المناسب القرار اتخاذ

مع القدرة على ,مفتوحة بيئة في فعليامطبقة البروتوكولات على تحليل على قادرة تقييم دالة استتحداثقمنا ب حيث

 الأمنية الخصائص لإثباتقادرة على تحقق من ا كذلك ,سلوكال بيئة مفتوحة متغيرة مع للتعامل المناسبة القرارات اتخاذ

 .والسرية التوثيق مثل الرئيسية

مجموعة من المكونات في للتمكن من احتواء مهيكلةتكون الرياضية ,Ph-spi لغة ال فيالرسائل بناء , كما أن

, المتناظر غير والتشفير الرقمي التوقيع البعثرة، ودالة الزمني، الطابعمن كلعلى شملتكما أنها . رسالة رمزية واحدة

 .الحقيقية التطبيقية بروتوكولاتجميع ال في الحال هو كما

XII

IMPROVED SPI CALCULUS FOR REASONING

ON CRYPTOGRAPHIC PROTOCOLS

Abstract

Most of cryptographic protocols are subjects to very subtle attacks. Therefore, many

researchers have developed tools to model and analyze protocols to guarantee their security

properties.

Among these developed tools, the spi calculus has proved to be a powerful formal

methods have useful for analyzing and reasoning on cryptographic protocols.

However, such research work assumed that the environment will be restricted to

some predefined rules and assumptions without solving the case of interacting with real

systems that matched with such restrictions.

In this thesis, we introduced an improved version of spi calculus called the Ph-spi

calculus. Such calculus provides the ability for evaluating each action in the running

processes and making suitable decision to be more suitable with open environment.

Therefore, we have enhanced the evaluation function to make it capable for making

suitable decisions to handle the open and changeability in environment behaviors as well as

evaluating and validating every action in protocol processes for proving the main security

properties as authentication and confidentiality.

In the Ph-spi calculus, the message is structured to be the same as in real protocols

that have a tuple of messages. Also, it includes all operators needed for such protocols such

as timestamp, hash function, digital signature and asymmetric key cryptosystem. Hence, Ph-

spi calculus ready is to be used for real protocols such as e-commerce protocols.

Keywords: Cryptographic protocol, Cryptographic protocol analysis, spi calculus,

evaluation function, testing equivalence.

Chapter I:

INTRODUCTION

2

1.1 Background

The Handbook of Applied Cryptography defines communication protocol as a multi-

party algorithm, defined by a sequence of steps precisely specifying the actions required

of two or more parties in order to achieve a specified objective (A. Alfred, et al. 2001).

Over the years, the problems of network security have become more and more

complex. Solving these problems usually requires the design of protocols that rely on

cryptographic systems to hide some secret information: these protocols are

“cryptographic.”

The use of cryptographic protocols is widely spread – Transport Layer Security

(TLS, formerly SSL) and Secure Shell (SSH) are common cryptographic protocol used

to secure connections over the Internet. However, they assumed to be secured by

protocols using cryptographic methods as encryption or digital signatures, promising

security properties as secrecy or authentication.

Establishing security in these applications can be divided into two main areas,

cryptography which is the art and science of writing a text encrypted by a key to prevent

an attacker from the ability to access and modify the plaintext. The second area is the

cryptographic protocol, also known as security protocols, that is used to achieve the

authentication of agents or nodes, establishing session keys between nodes, ensuring

secrecy, integrity, non-repudiation, and authentication properties. These protocols

involved on the exchange of messages between nodes, often requiring the participation

of a trusted third party or session server. Typically they make liberal use of various

cryptosystems, such as symmetric and asymmetric encryption, hash functions, and

digital signatures and timestamps are also used.

3

1.2 Cryptographic Protocols

Cryptographic protocols are protocols that use cryptography to distribute keys and

authenticate principals and data over a network. The network is usually assumed to be

hostile, in that it may contain intruders who can read, modify, and delete traffic, and

who may have control of one or more network principals. A cryptographic protocol

must be able to achieve its goals in face of these hostile intruders. Because of this, such

protocols are often subject to nonintuitive attacks which are not easily apparent even to

a careful inspector. Many of these attacks do not depend upon any flaws or weaknesses

in the underlying cryptographic algorithm, and can be exploited by an attacker who is

able to do no more than the basic operations listed above, but in any arbitrary order.

Other attacks may depend upon subtle properties of the cryptographic algorithms, or on

statistical analysis of message traffic, or on some combination of the above.

Designing and analyzing cryptographic protocols is a very challenging problem.

In open environment, such as the Internet, protocols should work even under worst-case

assumptions, namely messages may be eavesdropped or tampered with by an attacker

(also called the intruder or adversary) or dishonest or careless principals. Surprisingly,

severe attacks can be conducted even without attacking and breaking cryptography, but

rather by attacking communication itself. These attacks exploit weaknesses in the

protocol’s design whereby protocols can be defeated by cleverly manipulating and

replaying messages in ways not anticipated by the designer. (S. Matsuo et al. 2009) This

includes attacks such as: man-in-the-middle attacks, where an attacker is involved in

two parallel executing sessions and passes messages between them; replay attacks,

where messages recorded from previous sessions are played in subsequent ones;

reflection attacks, where transmitted information is sent back to the originator; and type

flaw (confusion) attacks, where messages of different types are substituted into a

protocol (e.g., replacing a name with a key). Typically, these attacks are simply

overlooked, as it is difficult for humans, even by a careful inspection of simple

protocols, to determine all the complex ways that different protocol sessions could be

interleaved together, with possible interferences coming from a malicious intruder (S.

Matsuo et al. 2009).

4

Historically, the security analysis of cryptographic protocols has consisted of

testing their resistance to different attacks imagined by the designer. A protocol could

be believed very secure at the start and, after that, modified several times because of the

discovery of some weaknesses. This type of analysis does not prove the protocol

security. Recently, some methods for formally verifying the security of cryptographic

protocols have begun to be researched but, in most cases, they can only be applied to

special kinds of protocols (I. Fléchais. 2005).

What is needed are methods to speed up the development and analysis of

cryptographic protocols. Moreover, if these methods are to be used to certify protocols,

then they must be mathematically precise, so that exact statements are possible about

the scope and significance of the analysis results. This role can be filled by formal

methods.

Over the last two decades, the security community has made substantial

advances in developing formal methods for analyzing cryptographic protocols and

thereby preventing the kinds of attacks mentioned above.

In recent years, formal methods have been proven to be a useful in the area of

analysis cryptographic protocols because its allow one to do overall analysis which

covers different paths the attackers can take.

1.3 Formal Methods

A formal method owes much to the security community among other fields of

appliances. In the United States, the National Security Agency was a major source of

funding in the 70s and early 80s for formal methods research and development. Results

included the development of formal security models, tools for reasoning about security,

and applications of these tools to proving systems secure. In return, security provided a

challenging research application for the formal methods utilization.

5

Until the late 1980s, cryptographic protocols were only analyzed by informal

reasoning. If a protocol claimed to achieve the goal of confidentiality, researches were

prompted to study the protocol in detail and decided whether this is true (M. Tschantz

and J. Wing. 2009).

 The literature shows that formal approaches can significantly help to detect

protocol flaws, as well as to yield general principles of secure protocol design. Some

approaches lack expressiveness or automation; others are just too complicated to use on

realistic protocols. Informal reasoning indeed retains its importance: it is crucial to

grasp the semantics of a protocol design beyond its bare representation as a sequence of

messages; it may find simple flaws and minor weaknesses of a protocol more quickly

than formal reasoning; it is easier to follow for a non-experienced audience; it helps to

develop formal approaches. For more details concerning the process algebra and

oprtational semantics you can refer to Appendix A.

1.4 Process Environment

Many research works have been attempted to develop an operational semantics to

evaluate the interactions between protocol processes and the environment. Some of

them had built their work to fit with closed environment with special case protocols (R.

Focardi and M. Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010) others

construct their work with a predefined environment (restricted environment) (H. Al-

Refai 2009, J. Borgstrom, 2009). Unfortunately, no work assumed the open

environment.

This section provides a detail definition for each type of these environments and

what protocols are suitable to use.

6

1.4.1 Closed Environment

The processes cannot trigger any action out of their scope or boundary. This means that

the channels are initiated to be in that boundary and no one outsider can interact with

these channels. Figure-1.4.1.1 shows such environment.

Figure 1.4.1.1 Closed Environment

Here, the sender A, the server S and the receiver B used restricted channels chAS. chAB

and chSB between them. These channels cannot be accessed by outsiders.

1.4.2 Restricted Environment

It differs from the closed environment by that the outsiders can get access to the

channels but with predefined rules and assumptions. Means that there is a possible

channels used to allow the processes in the protocol to interact with the environment out

of the scope or boundary. Figure-1.4.2.1 shows such case.

S

B A

7

Figure-1.4.2.1 Restricted Environment

1.4.3 Open Environment

From the environment types mentioned above, it seem clear that the security controls

can achieved easily, since the environment are already defined and the interactions with

the outsider is not allowed or restricted.

In the case of an open environment the channels are public as in real protocols

used in the Internet. Means they are interacts with all processes in the environment

without closing or restricting them. Such type of environment needs for additional

functions to be built in the syntax and the operational semantics to trace each action

taken by the processes then to decide wither to proceeds or terminate that process in

case of any attack. Figure-1.4.3.1 show that the interactions with the environment is

open and channels are public for use of all.

S

B A

8

Figure 1.4.3.1 Open Environment

The behaviors of such type of environment are changeable where the knowledge

can be observed from the process actions in the protocol.

These protocols often rely on special security tokens such as numbers used only

once, called nonces, or fresh keys generated by principals of the protocol the

environment assumed to unknown them. In closed and restricted environment, this case

is approved since all actions are controlled in that environment.

Moreover, as the size of the messages exchanged in such a protocol and thus the

recursion depth of the principals’ computations is not explicitly bounded by the

protocol’s description that needs a mechanism to provide the principals with the

possibility to generate an unbounded number of nonces and fresh keys.

In coming section (1.5), we will give a simple example to show how protocol

processes can be described by π-calculus. We use π-calculus as a basis to spi calculus.

S

B A

9

1.5 Simple Example using π-calculus

The π-calculus is a model of computation for concurrent systems (R. Milner et al,

1992). The syntax of π-calculus lets represent processes, parallel composition of

processes, synchronous communication between processes through channels, creation

of fresh channels, replication of processes, and nondeterminism.

We will give the definitions of these processes, then a simple example will be

used to show their roles.

A process is an abstraction of an independent thread of control. A channel is an

abstraction of the communication link between two processes. Processes interact with

each other by sending and receiving messages over channels.

Let P and Q denote processes. Then

 P | Q denotes a process composed of P and Q running in parallel.

 denotes a process that waits to read a value x from the channel a and

then, having received it, behaves like P.

 denotes a process that first waits to send the value x along the channel a

and then, after x has been accepted by some input process, behaves like P.

 ensures that a is a fresh channel in P. (Read the Greek letter “nu” as

“new.”)

 denotes an infinite number of copies of P, all running in parallel.

 denotes a process that behaves like either P or Q.

 0 denotes the inert process that does nothing.

All concurrent behavior that you can imagine would have to be written in terms of

just the above constructs.

01

S

A

B

1. new Channel 2. new Channel

3. data on new Channel

The coming example had been used by (M. Abadi and A. Gordon 1997, 1998).

Channels can be established in different ways. In this example we describe the Wide

Mouthed Frog protocol as the abstract level, which has the basic structure shown in

Figure 1.5.1.

Figure 1.5.1: The Wide Mouthed Frog protocol

This version is abstract in that we deal with channels instead of keys; it is simplified

in that channel establishment and data communication happen only once. In chapter III

we show how to treat keys and how to allow many instances of the protocol, with an

arbitrary number of messages.

Informally, we may write this protocol as follows:

Message 1

Message 2

Message 3

00

Here is a channel that A and S share initially, is a channel that S and B share

initially, and is a channel that A creates for communication with B. After passing the

channel to B through S, A sends a message M on . Note that S does not use the

channel, but only transmits it.

Using π-calculus, we formulate this protocol as follows:

)B|S|)M(A()c()c(::)M(Inst

)y(F.)y(x.)x(c::B

)x(c.)x(c::S

)c(on)c(c)c(::)M(A

SBAS

SB

SBAS

ASABASAB

Here, we write F(y) to represent what B does with the message y that it receives.

The restrictions on the channels ASc , SBc , and ABc reflect the expected privacy

guarantees for these channels. The most salient new feature of this specification is the

use of scope extrusion: A generates a fresh channel ABc , and then sends it out of scope

to B via S.

For discussing authenticity, we introduce the following specification:

))M(B|S|)M(A()c()c(::)M(Inst

)M(F.)y(x.)x(c::B

)x(c.)x(c::S

Mc.)c(c)c(::)M(A

Spec
SBAS

Spec

SB
Spec

SBAS

ABABASAB

02

According to this specification, the message M is communicated “magically": the

process F is applied to the message M that A sends independently of whatever happens

during the rest of the protocol run.

Proposition 1.5.1: We obtain the following authenticity and secrecy properties (M.

Abadi and A. Gordon, 1998):

Authenticity:

Secrecy:

Again, these properties hold because of the scoping rules of the π-calculus.

We believe that the example just given is rather encouraging. It indicates that the π-

calculus is a natural language for describing some security protocols. In particular, the

restriction operator and scope extrusion allow convenient representations for the

possession and communication of channels.

We do not wish to claim that the π-calculus did not enable us to describe all security

protocols, even at an abstract level. For example, some protocols rely on asymmetric

channels (channels of the kind implemented with public-key cryptography). It may be

possible to represent such asymmetric channels in the π-calculus but extending the π-

calculus may be simpler and more effective. However, the restriction operator and

scope extrusion should be useful for describing security protocols even in extensions of

the π-calculus.

.Mallfor,)M(Inst)M(Inst
Spec

.MandMallfor,)M(F)M(Fif)M(Inst)M(Inst

03

Nevertheless, the π-calculus is yet too abstract to explicitly represent cryptographic

operations that are an important ingredient of security protocols. To fill this gap, the spi

calculus (M. Abadi and A. Gordon, 1998) defined as an extension of the π-calculus with

primitives for encryption and decryption.

The spi calculus introduced by M. Abadi and A. Gordon as an extension of the

π-calculus with cryptographic primitives has been used for cryptographic protocols

modeling. In the spi calculus the protocols are stated as processes and the properties are

proven using notions of protocols equivalence, (Abadi and Gordon 1998).

Many researchers tried to enhance the original work of Abadi and Gordon (M.

Abadi and A. Gordon 1998) such as (R. Focardi and M. Maffei, 2004, Y. Gu et al, 2005,

A. Tiu and J. Dawson, 2010) but their works cannot be applied on real protocols but on

research cases protocols, where the most researchers for spi calculus focused on these

types of protocols.

In this thesis, we have introduced a improved version of spi calculus; which we

called Ph-spi calculus, with an enhanced syntax and semantics that is capable of

representing real protocol running in an open environment.

The analysis of protocols in such type of environment cannot be built according

to pre-defined assumptions and restrictions that enforce the interactions between the

processes presenting the protocol and processes presenting such environment to be

bounded to these definitions.

However, most of the research works in the analysis of cryptographic protocols

(R. Focardi and M. Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010);

including the research work in spi calculus, assumed the environment as an arbitrary

process to run in restricted mode, while the real environment is inherently open by

04

nature; providing equal availability of knowledge; without restriction of freedom of

thought or information. Also, such environment is more complex to be managed or

controlled by set of restriction and assumption.

The closed and restricted environments consider the correspondence between

two different process pairs for their equivalence to prove the confidentiality and

integrity properties without considering the unexpected behavior in the real case of

environment including the number of transitions and the expanding in running

processes. From the work in the literature, what they have to do is to restrict that

environment to behave as their model needs without solving the case of interacting with

real systems that matched with such restricted assumptions. Some of these restrictions

concern the used channels where the channel cannot be restricted to only specific

participants or couldn’t be assumed as a same for all of them. Also, during the

expansion of the processes, the processes concern generation of a fresh names for

replacing all free occurrences in internal actions taken in transition, these names

assumed to be generated for once, in case of extended process the names should be

freshly generated with each extend and evaluated everywhere they can be used.

Some of resent works had been attempt to conjugate the role of the environment

with the running processes to integrate a protocol as a system. Hence, a process pair of

(P, Q) is drawn to be further analyzed in terms of the triples (e, P, Q) of process pair

and an environment argument.

Therefore, when two processes can resist the same attacks from the

environment, they argue that they are testing equivalent and should in some way be

indistinguishable to the attackers that is to prove the confidentiality and integrity

properties. But still the environment defined according to their set of assumptions.

So, the improved Ph-spi calculus use to construct an automated function in order

to evaluate each action in the running processes for deciding a suitable reaction for any

05

emerged changes in the knowledge of the environment, this evaluation function help us

to get free from these restrictions that exist in previous works and give the Ph-spi

calculus the ability of running in an environment where the behavior of such

environment is unpredictable.

1.6 Research Motivation

The current spi calculus did not proved to be suitable for real protocols or even capable

to interact with an open environment.

Therefore, our motivation is to introduce an improved version of spi calculus

called Ph-spi calculus capable to reasoning on the real protocols running in an open

environment. For that, we have constructed an evaluation function that used for

evaluating and validating every action in protocol processes and making suitable

decisions during the interaction with open environment. Also it is a powerful descriptive

calculus for proving the main security properties as authentication and confidentiality .

The improved calculus ready to be used for real protocols such as e-commerce

protocols, which it includes all operators needed for such protocols such as timestamp,

hash function, digital signature and asymmetric key cryptosystem as well as the

messages are structured to be same as in real protocols that have a tuple of messages. It

is used to trace and analysis such protocols for deciding there correctness.

1.7 The Problem Statement

Current spi calculus suffered from several limitations, these limitations due to number

of restrictions and assumptions they have built in their work in order to reach specific

06

approaches for a specific type of environment and protocols. Theses limitations are

briefly discussed by the following:

I. The current spi calculus dealt with transferring a single unstructured message for

sending each message in a single action, where a tuple of messages is mostly

needed in implementing real protocols. Such as, for sending timestamp, user

identity, user certificate and its validation date from the user to the merchant all

in one output action.

II. The encryption/decryption operations assumed to not disclose any of their

knowledge to the environment. This assumption in case of closed and restricted

environment.

III. The current researchers (H. Al-Refai, 2009, J. Borgstrom, 2009) did not provide

suitable solutions for input transitions, not even for finite processes. The tracing

and evaluation for each of those inputs is not considered.

IV. The freshness of generated names and variables (such as channels, variables

used in mapping for substitution, keys, timestamp …etc.) assumed to be bonded

in a running process. This in case of dealing with known environment (closed or

restricted) and they restrict these names and variables to be bounded without any

evaluation to validate if the environment observe or learn any knowledge for

those names and variable. This case will be discussed in chapter III Definitions

(3.2.1.1), (3.2.1.4), (3.2.1.5), (3.2.1.6) and (3.2.1.7).

V. Some researchers added a Boolean guard, but they did not evaluate the formula

to guarantee its correctness (H. Al-Refai, 2009, J. Borgstrom, 2009).

07

The limitations shown above define the following set of problems:

1. Current spi calculus presented by different researchers (R. Focardi and M.

Maffei, 2004, Y. Gu et al, 2005, A. Tiu and J. Dawson, 2010) is not suitable for

open environment.

2. Current researches in spi calculus are incapable of evaluating the actions in the

running processes and couldn't make suitable decisions with a changeable

behavior of the open environment. Their works didn’t have any ability for

deciding the validity of protocol processes running in open environment that

needs for automated function for evaluating each action taken by the processes.

3. Some researchers built an evaluation function (H. Al-Refai, 2009, J. Borgstrom,

2009), but they didn’t overcome the complicated message structures that involve

hash functions, timestamp and public key cryptography which are mostly needed

for open environment in applicable protocols. They did not support tuple of

messages (series of messages) such case of sending multi-messages in a single

transaction. They did not evaluate the freshness of generated keys and names.

4. Complexity of the nested encryption/ decryption operations.

1.8 Objective of the Research:

Our main objective is to build an improved version of Spi calculus, Ph-spi calculus, to

solve all mentioned problems.

08

I. The needs from this improved version of Spi calculus to give the ability for

evaluating each action in the running processes and making suitable decision to

be more suitable with open environment.

II. We need this improved version of calculus to be a step toward automated

symbolic language with an evaluation functions.

III. We need this improved version of calculus to solve the problem of tuple (series)

of messages we built partial map function then apply the evolution function on

it.

IV. Also, we need this improved version of calculus to include special functions that

mostly used in real cryptographic protocols such as timestamp, hash function,

and digital signature.

1.9 Research Methodology:

 Based on most of the related work in reasoning on cryptographic protocols.

 Then, we apply the current spi calculus on one of the real protocols, to define the

lack of current versions of the calculus spi to be appropriate for such

real protocols.

 Then, after we introduce a needed parameters and operators to build an

improved version of the spi calculus to make it a step toward automated

symbolic language with an evaluation function. Also, to give this calculus the

ability for evaluating each action in the running processes and making suitable

decision to be more suitable with open environment.

09

 Finally, we used this improved calculus to analyze and reasoning on

cryptographic protocol intended to prove the soundness and correctness using

case study.

Figure 1.9.1 Research Methodology

1.10 Overview of the Thesis:

This thesis organized as follows:

Chapter II will cover research undertaken in the related literature with some analysis

and comparisons and at the end we will give a comparisons table between them. In

Chapter III we will introduce our enhanced calculus called Ph-spi calculus with the

evaluation function. Chapter IV will present an example and a case study to prove the

functionality of this enhanced calculus. And in the last Chapter V, we will conclude this

thesis by summarizing the results and findings from the test collections. It also provides

suggestions for further research work.

Chapter II:

LITERATURE REVIEW

21

2.1 Introduction

Most of research works in formal methods has been focused on analysis of discrete

system. This is understandable with regard to the fact that many security problems in

protocol analysis can be formulated in terms of the properties of a discrete system.

Secure data exchanges between several principals are often subject to attack by an

intruder. Such an intruder can do any sequence of a finite set of operations such as

intercepting data, concatenating and non-concatenating data, encrypting and decrypting

data, and so forth. However, some sort of discrete formal analysis can enable us to

avoid attacks especially since attacks are often non-intuitive, exploitations of protocol.

For this reason, formal methods are useful for the analysis of the security of

cryptographic protocols. They allow one to do a thorough analysis of the different paths

intruders can take, and to specify precisely the environmental assumptions that have

been made.

In 1997, the spi calculus introduced as a new approach to formal cryptographic

protocol analysis, the spi calculus proposed as an extension of the -calculus (R.

Milner. 1992). The spi calculus is a process calculus designed for the description and

formal verification of cryptographic protocols. The spi calculus enables us to consider

cryptographic issues in more detail. In spi calculus, protocols represented as processes

and state their security properties in terms of protocol equivalence.

In this chapter, we will cover research undertaken in the areas related to the

scope of the framework of this thesis and reviewed in the previous chapter.

22

2.2 Spi Calculus Literature

The spi calculus presented in (M. Abadi and A. Gordon 1998) as an extension of the π-

calculus used to analyze and formally verify of cryptographic protocol. They present

simple and poor language where restriction and scope extrusion play a central role on

this version of spi calculus, so their work can be applied only on simple case study

protocol.

Many researchers tried to enhance spi calculus by made it applicable to specific

techniques or protocols. Others tried to solve the problems of the language requirements

to be suited for use in an open environment. The following is summary of the most

recent work:

- Gordon and Jeffrey introduced an enhanced version of spi-calculus (A. Gordon

and A. Jeffrey 2003), they used type and effect system to prove the authenticity

properties for cryptographic protocols based on asymmetric cryptography, the

idea behind their work is to identify formally via subtyping separately the

notions of public and tainted types, this identification formalize the way nonces

increase the degree of trust in data and support different styles of nonce

handshake via challenge/ response types. However, their work suffered from

several limitations; such that the authors define a type for the nested encryption

operation, this type cannot model some form of nested encryption; such as

“sign-then-encrypt” or “encrypt-then-sign”. Also, their model did not solve the

problem of input transition; they considered any opponent to be untrusted and

did not include some of cryptographic operations such as hash function, digital

signature and timestamp. Also, the authors assume that cryptographic algorithms

provide perfect integrity and confidentially properties this assumption makes the

model incapable to detect key-compromise attacks.

- (C.Bodei et al. 2003), the authors presented LYSA calculus as an enhanced

version of the spi calculus that used one global communication channel where

23

all the processes had access to this channel to eliminate any unjustified

protection provided by the restricted channels. On the other hand, LYSA

calculus only supported symmetric cryptography protocols and its syntax did not

support other cryptographic function such, asymmetric cryptography, hash

function and timestamp. Also, the authors had taken in their mined perfect view

of cryptography so, their language cannot detect key-compromise attacks.

- (R. Focardi and M. Maffei, 2004), the authors introduced to enhance spi

calculus, the authors proposed -spi calculus as a combining of the original Spi

calculus (M. Abadi and A. Gordon, 1998) with some feature of LYSA-calculus

(C.Bodei et al, 2003). The authors added tags to the calculus to index the

message exchange, and provide primitive for declaring process identities and

long-term keys. On the other hand, the authors argue that the analysis of flawed

protocols in -spi calculus failed when validating suggesting possible attacks.

Also, the syntax of the -spi calculus did not include some basic cryptographic

operators that used in most of real cryptographic protocols such as; hash

function, digital signature, and message digest.

- (Y. Gu et al, 2005), the authors introduced a new version of the spi calculus,

called SPC calculus as an executable model for description and analysis of the

security protocols. Security properties like secrecy and authenticity can be

formulated as equations, where equality is interpreted as bisimulation

equivalence on abstractions. However, their works suffers of set of problems

concerning the structure of output messages and they argue that their work is

simple and do not consider the active environment possesses infinite messages.

Also, their work is not ready to take into account the symbolic method.

- (C. Haack A. Jeffrey, 2006a), the authors presented Pattern-matching spi

calculus, by using pattern-matching as a primitive their language is capable of

describing complex data dependencies, their work considered one way to solve

24

some of the problem mentioned in Chapter I, but the using of type system

caused a huge complexity to their language, this made pattern-matching spi

calculus inapplicable on real protocols.

- (C. Haack and A. Jeffrey, 2006b), Haack and Jeffrey proposed another work to

enhance the spi calculus, the authors presented the timed-spi calculus their work

gave the ability of reading global clock by adding timestamp to a simple typed

spi calculus for detecting key-compromise attacks. But, their model cannot

distinguish between the times needed for the attacker to crack short term keys

and the amount of time that takes to timeout, the authors assumed that the

timeout is less than the time needed for the intruder can crack this key. Also,

their work suffer from several limitation, where timed spi calculus allows only

representations of symmetric encryption and it did not support other

cryptographic techniques such as public key, hash function, message digest and

digital signature.

- (J. Borgstrom, 2009), the author introduce an enhanced version of spi calculus

sound with respect to concrete hedged bisimilarity, also, he introduced a smooth

extension of the message algebra of the spi calculus, treating complex keys and

public-key cryptography in a uniform fashion. On the other hand, his work did

not solve the problem of complexity of composite messages and the way of

applying encryption/decryption for these messages in a nested fashion which is

needed for most transaction in real protocol in open environment and he didn’t

include validation function that validate all the processes in the protocol. Also,

he argues that the issues of finding appropriate decompositions and deciding

symbolic consistency still remain.

- (H. Al-Refai, 2009), the author presented Spi-H-calculus as an extension of the

spi calculus, and he had introduced evaluation function to validate the actions on

the running processes. The Spi-H-calculus was built to be compatible with evade

25

bisimulation as enhancement of framed bisimulation. However, his model could

not be applied on real protocols such as e-commerce protocols; he did not

include all operators needed for such protocols such as timestamp, hash

function, digital signature and asymmetric key cryptosystem. Finally, the

messages in the Spi-H-calculus are not structured messages to be same as in real

protocols that have a tuple of messages.

- (A. Tiu and J. Dawson, 2010), the authors consider a version of the spi calculus

where the message language allows only representations of symmetric

encryption and pairing. They argue that their work and proof methods used to

establish the correctness of those procedures can be extended uprightly to cover

more complicated message structures which involve simple

constructor/destructor languages such as natural numbers, hash functions and

public key cryptography. Also, their work did not coincide with open

bisimulation and they argue that: their decision procedure is complex and cannot

fit with dynamic change in an open environment. Also, their work is

implemented just to fit with restricted case study protocols (not real

implemented protocols) and to be used in bisimulation techniques for finite spi

processes.

2.3 Conclusion

Many researchers (R. Focardi M. Maffei, 2004, C. Haack A. Jeffrey, 2006a, 2006b, J.

Borgstrom, 2009, A. Tiu and J. Dawson, 2010) had been attempted to enhance spi

calculus based on (M. Abadi and A. Gordon 1998) for the purpose of analyzing and

reasoning of cryptographic protocol for achieving an optimized level of security.

26

Based on our set of objectives, although analysis of related work had been

conducted. Table 2.3.1 shows the link between the current research and the statement of

the problems as discussed in the first chapter.

Table 2.3.1: Related Work

 Problems Problem-1 Problem-2 Problem-3 Problem-4

Pre. Research

A. Gordon and A. Jeffrey 2003 X X X

C. Bodei et al. 2003 X X X X

R. Focardi and M. Maffei, 2004 X X X

Y. Gu et al, 2005 X X X X

C. Haack A. Jeffrey, 2006a X X

C. Haack A. Jeffrey, 2006b X X X

J. Borgstrom, 2009 X X X

H. Al-Refai, 2009 X X X

A. Tiu and J. Dawson, 2010 X X X X

T. Kahsai, 2006 X X X X

Chapter III:

CONTRIBUTION:

THE Ph-SPI CALCULUS

28

3.1 Introduction

Spi calculus was introduced in (M. Abadi and A. Gordon. 1998) as an approach for

description and analysis of cryptographic protocols. It is an extension of -calculus

(Milner 1992).

Such spi calculus provides more detailed descriptions of cryptographic protocols

than π-calculus. While π-calculus enables the representation of channels, spi calculus

also enables the representation of the channel implementations in terms of

cryptography. So, the main difference between -calculus and spi calculus is that the

latter includes cryptographic primitives such as encryption and decryption.

In spi calculus, the protocols are stated as processes and their properties are

proved using notions of protocols equivalence, (Abadi and Gordon 1998). For instance,

we can say that a protocol keeps a piece of data X secret by stating that the protocol with

X is equivalent to the protocol with X , for every X . Here, equivalence means

equivalence in the eyes of the environment. The environment can interact with the

protocol, attempting to create confusion between different messages or sessions. This

definition of equivalence yields the desired properties for most of the security

applications.

In this chapter, we will introduce an improved version of spi calculus called Ph-

spi calculus, as a step toward automated symbolic language with evaluation functions.

This function is capable for making suitable decisions to handle the open environment

as well as evaluating and validating every action in protocol processes for proving the

main security properties as authentication and confidentiality.

Here, Ph-spi calculus is ready to be used for real protocols; it includes all

operators needed for such protocols such as timestamp, hash function, digital signature

and asymmetric key cryptosystem. The message is structured to be same as in real

protocols that have a tuple of messages.

29

3.2 The Ph-Spi Calculus

This section gives the syntax and operational semantics of the Ph-Spi calculus to

improve the original works of (M. Abadi and A. Gordon. 1998) followed by the work of

(H. Al-Refai. 2009) that includes an evaluation function.

3.2.1 Syntax

This section introduces the language of Ph-spi calculus. Names and operators are the

basic constructs the syntax of Ph-spi calculus. Other structures are built based on them.

Protocol model, is representative structure of Ph-Spi-calculus. In this structure

messages, expressions, logical formula and processes define the attributes needed to

express all the objects and the activities driven in establishing protocols. Tables 3.1.a

and 3.1.b summarize the syntax of Ph-spi calculus as given in (H. Al-Refai. 2009). The

bolded expressions, guards and processes are newly added.

Names N range over communication channels, data (variables or clear texts and

a message) or keys. Along the declaration, names are used alternatively through the

syntax regardless of their representations. Any name would be tagged to the type by its

appearance order.

Notation 1: We reserve the lower case letters a, b, ch to denote channels and k, l to

denote keys and m, n to denote messages.

30

__

)decryption(inzlet|

)ilityadecomposais(:|

|

)namefreeais(:|

)equality(|

guards||tt,

messages}M{
k

Enc|
2

M,
1

M|aN,M

|)(
2

|)(
1

|
2

,
1

|

|a,

namesz,y,x...,n,m,l,k...,c,b,a

M

N

sexpression

N

M

Calculus theofSyntax The :3.1.a TABLE

name)bounda(isN:ζ

::

::

)
i

ζ(#

)
i

(ζ
η

Enc|)
i

(ζ
η

Dec|)
i

(ζ
η

Dec|)
i

(ς
η

Enc::

Expressions are those descriptions that are obtained by applying encryption,

decryption, paring and projection operators to names and ciphertext. For example, the

expression is a plaintext, when it is encrypted using the value as a key, the overall

actions would be given by)(Enc , yielding that as a plaintext is encrypted under the

key , conversely the decryption action Dec{} stands to decrypt the ciphertext using

the value of as a key. We assume that a key should be a name and the encryption

action uses shared key in a simple and nested modes.

31

__

)decryption/encryption(Pinzlet|

)guardboolean(P|

)nrestrictio(P)nv(|

)nreplicatio(P!|

)choice(QP|

)compositonparallel(Q|P|

|

|

)null(0|

ΡprocessesR,Q,P

__

| Timestamp)(P:ηlet

prefix)(output.P
n

ζ..,..........,
1

ζη

prefix)(input).P
n

x.,..........,
1

η(x

::

Calculus theofSyntax The 3.1.b TABLE

Definition 3.2.1.1: Let P represent the running process, Q for any other process running

in the environment, and e represent the knowledge of the environment then the set of

all free names known to the environment is defined by , such that,

 .

32

Definition 3.2.1.2: Let P represent the running process, Q for any other process running

in the environment, and e represent the knowledge of the environment then the set of

all free variable known to the environment is defined by , such that,

 .

Logical formulae generalize the usual equality operator of the -calculus by

conjunction and negation. Moreover we introduce some new predicates let η :P ,

]:[N ,]:[M and N: . The predicate let η:P means η time is evaluated as a valid

current time of process P, and the predicate]:[N which tests for the format of the

argument , whether it evaluates to a name or not, and the predicate]:[M which test

for the argument , whether it evaluates to a compound ciphertext or not, and with

“Let” construct that binds the value of some expression to a name z, and N:

which tests for the format of the argument , if it is bounded in the process P and not

belong to names in any other processes in the environment, such as

)()((QbnPfn .

There are other expressions denote hash function and the encryption/ decryption

using public and private keys:

 Hash function:

 hashing of

. The hashing function assumed to be perfect

and noninvertible.

 Encrypt the structured message

 using a public key .

 Encrypt the structured message

 using a secret key .

 Encrypt the structured message

 that signed digitally by public

key .

33

Definition 3.2.1.3: A finite set of terms, T = {t1, t2,…., tn}. (H. Al-Refai, 2009).

Following the work of (H. Al-Refai. 2009), the difference to the old version of

spi calculus is that we assumed the set T to be defined, so that we can associate each

state to a term t. In order to define the notion of state we have to introduce the definition

of finite multisets.

Definition 3.2.1.4: A finite multiset over a set L is a map such that

 - 1
(M 1) is finite. We define the following operations on finite multisets: (H. Al-Refai,

2009).

(a) The difference of the multisets and is the multiset | where

(|)(l) = max (0, (l) - (l));

(b) The union of two multisets and is the multiset where

()(l) = (l) + (l);

(c) We say that l > iff (l) > 0.

We define formally our notion of state as follows:

Definition 3.2.1.5: We define a state, Ttt , to be a family of multisets indexed

by the terms, where each t represents the local state of the term t. We denote the set of

all states by from (H. Al-Refai. 2009).

A first approach to the definition of state would be a family of sets. If we

consider each t as a set, we were restricting the possibility of a principal to have many

copies of the same term. We want to deal with the possibility of existing several inputs

of the terms and verify that our system has the desired properties for input transitions.

Definition 3.2.1.6: The participant only accepts the fresh key generated by

S as server.

34

If two processes can be made equal by conflict-free renaming of bound names

then they are alpha-equivalent. Substitutions are mappings x from names x to

messages , following the usual assumption that name-capture is avoided through

implicit alpha conversion. Substitutions are applied to processes, expressions and

guards very simply as for example, P x

replace all free occurrence of x in P by ,

possibly renaming bound names in P avoiding name capture.

Definition 3.2.1.7: A substitution is a finite partial map from the set of names N to the

set of messages M; {Mi /xi }.

The definition shows the effect of applying a substitution to a process P. This

is essentially to replace each free occurrence of each name (i.e.; x) in P by (xi) = Mi ,

for some xi and Mi . The mapping must, however, be done in such a way that unintended

capture of names by binders is avoided. Substitutions are applied to processes,

expressions and guards in straightly, i.e. P ii xM

replace all free occurrence of xi in P

by Mi , possibly renaming bound names in P avoiding name capture.

Definition 3.2.1.8: (-convertibility)

1. If the name w does not occur in the process P, then P{w/z} is the process

obtained by replacing each free occurrences of z in P by w.

2. A change of bound names in a process P is the replacement of a subterm x(z).Q

of P by x(w).Q{w/z}, or the replacement of subterm vz Q of P by vw Q{w/z},

where in each case w does not occur in Q.

3. Processes P and Q are -convertible, P = Q, if Q can be obtained from P by a

finite number of changes of bound names.

Remark: we have use the symbol ‘=’ for -convertibility because we intend to identify

-convertibility processes. In our spi calculus, the entities of interest are the

equivalence classes of processes modulo -convertibility.

35

The domain and co-domain of are denoted as dom() and range() respectively

.Let n()=)M(n)(dom
)(rangeM

 When a tuple of distinct names

),...,,(21 nxxxx

 and a tuple of messages),...,,(21 nMMMM

 are given , the

substitutions mapping of each xi to Mi will be convenient. Usually, a tuple is a set of its

component. xM

 is the substitution which represents union of and xM

 .

Such case is referred to as extends .

Processes are diverse forms of processes that have a distinct function for each. A

process could be built using a set of operators that include standard -calculus (Milner

et al. 1992) and four new ones; symmetric and asymmetric cryptosystem, Boolean

guards, timestamp and structured message. However, process forms are used to explain

the following:

 0, is a null process that dose nothing.

 An input process; (n1 , , ...).P represents input of a generic message x along

the channel : the only useful case is when is a name , otherwise the whole

process is stuck .

 An output process P).,(n1 , ... represents out of along the channel .The only

useful case is when is a name and is a message, otherwise the whole process

is stuck.

 Non-deterministic choice P + Q: can behave either as P or Q; the choice might

either be triggereazd by the environment, or by internal computations of P or Q.

 Parallel composition P | Q; is the parallel execution of P and Q.

 Restriction (n)P: creates a new name a which is only known to P.

 Replication !P behaves like many unbounded copies of P running in parallel,

i.e. P | P | P | …. .

36

 Boolean Guard P behaves like P if the formula is logically true, otherwise is

stuck.

 Encryption/Decryption let z = (1 , ….., 2) in P: referring to definitions

3.2.2.6, 3.2.1.6 and 3.2.1.7 attempts evaluation of : if the evaluation succeeds,

the result bound to z within P, in other words, the process will attempts to

encrypt/decrypt z with the key ᶯ.If z has the form {M1, …, Mn}k, then the process

behaves as the process P, where each i has been replaced by Mi, ie. as the process

P{M1/x1, ……., Mn/xn}.otherwise the whole process is stuck.

 Timestamp: the process let T:P means T time is evaluated as a valid current time

of process P.

Usual calculus abbreviate (a)(b) P into (a, b) P, and)(NM .0 into)(NM . In

the Ph-spi calculus, processes are identified up to renaming of bound names. Bound

names are the entities that are enclosed within a process definition P, and not those that

have explicitly been tagged with any other outside the process. So the closed process

will then be defined as the process that has no free variables; Proc is used to define a set

of closed processes. For that we will propose in our operational semantics an evaluation

function to validate if the bound names did not disclosed with an environment out of the

process definition.

Let fn(P) denote the set of free names in P and fv(P) is the set of free variables in

P , and alpha-equivalence arises as expected , n(P) is fn(P) bn(P). In this context,

similar notations are used for formulae, expressions and messages.

37

3.2.2 Operational Semantics

In (Abadi and Gordon 1998), there are two operational semantics presented for spi-

calculus - the reaction relation and the commitment relation. The reaction relation is an

adaptation of a similar idea introduced by Milner. The definition of reaction is rather

elegant, but not convenient for proofs (because it relies on an auxiliary notion of

structural equivalence). Therefore, an alternative characterization of reaction is provided

defining the commitment relation, in style of (R. Milner 1999). We will present both as

in (Abadi and Gordon 1998). For more details see appendix A.1.

However, to provide a calculus to be toward automation, this needs for two main

evaluation functions are used (H. Al-Refai. 2009). The first is utilized for expressions

while the second is used for Boolean Guards. These two evaluations are denoted as

follows:

- For an expression)(: MsymboldistinctaiswhereM , where (.)

is represent an expression.

- For an evaluation of a Guard .oninductionbydefinedis,ff,tt: where

is represent guard.

The evaluation function is defined recursively according to tables 3.2, and 3.3.

We have introduced one new expression { } and four Boolean guards {

 } evaluations. In these two tables, it is

obvious that expression evaluations rely on the implementation of let and guard only.

Hence, the decryption is bounded along this evaluation scheme.

The evaluation function performs a tracing to every process action in the

protocol for deciding either to proceed or terminate that process. The role of each

function is indicated in the tables. For example:

38

.otherwise

kandMif)M(
k

Enc
)(Enc

NM

Evaluated as: the plaintext η is evaluated as a message and belong to the defined

set of messages M and the key evaluated as a name and belong to the defined set of

names N, if these conditions success the operation evaluated to be valid otherwise

terminate the process.

TABLE 3.2: Expression evaluation in the Ph-spi calculus

otherwise

(#(#andif
)

i
(#

otherwise

2
Mand

1
Msomefor,

2
M,

1
Mif

i
M

)(
i

,2,1ifor

otherwise

2
M

1
M

,
2

M
2

and
1

M
1

if
2

M,
1

M

2
,

1

otherwise

kand)M(
k

EncifM
)(Dec

.otherwise

kandMif)M(
k

Enc
)(Enc

aa

1

iiiii))M)M(#

M

M

M

NM

NM

andsomefor

39

TABLE 3.3 Boolean Guard evaluation in the Ph-spi calculus

Table 3.4 shows, most of the operational semantics of the Ph-Spi-calculus used

in our work is similar to the work of (H. Al-Refai, 2009). Let and guard items are used

as primitive rules driven to decrypt messages. A process P behaves like P provided

otherwise ff

if tt
] [

otherwise ff

if tt
] : [

otherwise ff

) (bn (.) fn if tt

] : [

otherwise ff

if tt
] : [

otherwise ff

 if Tt

 P : let

otherwise ff

 (bn (.) fn N x and

M if
i

x
i

M

in
i i

z let

tt tt

) P ((fn N

M

M

 and N

N

N
N

M

40

that evaluates to true, otherwise, P is stuck. A process let z = (1 , ….., 2) in P

provided that the evaluation of succeeds; otherwise, let z = (1 , ….., 2) in P is

stuck. If z has the form {M1, …, Mn}k, then the process behaves as the process P, where each i

has been evaluated by Mi, ie. as the process P{M1/x1, ……., Mn/xn}.otherwise the whole

process is stuck.

Rule (E-OUT) details the case when the environment receives a message M and

updates its knowledge accordingly, and for the sake of a transition to occur, all channels

are supposed to be well announced to the environment.

Rule (E-INP) details the case, when the environment sends a message M to the

process. Message m is not arbitrary and the expression describes how this message is

built out of the environment and of the names b

to define M. Creation of new names b

is recorded by xb

, and in this case a must belong to the knowledge of the

environment to explain its announcement.

In table 3.4, the evaluation function is built in the operational semantic to strengthens

the validation rules of the language. For more details see appendix A.1.

41

TABLE 3.4 The Operational Semantics of the Ph-Spi calculus

if
in

if

fn(if

nif

if

fnbnif

NMN

PPzlet

P}z{P
)LET(tt

PP

PP
)GUARD(

0)P}b{
)Q|

x
MP)(bv(

T
Q|P

Q
Ma)bv(

QP
Ma

P
)COM(

},{c)M(c

P
)()vc(

P)vc(

P
)()(

P
)OPEN(

)(nc
P)cv(P)cv(

PP
)RES(

0)Q()(
Q|PQ|P

PP
)PAR(

QP

QPQQ
)ALPH(

PP!

PP!|P
)REP(

PQP

PP
)SUM(

xMP
aM

P).x(
)INP(

P
Ma

P.
)OUT(

a]:[M]:[a]:[

42

3.3 Conclusion:

In this chapter, we have introduced an improved calculus that called Ph-spi calculus it is

a symbolic language that to be toward an automated language. Therefore, we have built

an evaluation function to validate the process actions in each step of the protocol. In the

next chapter, this improved calculus will be used to formulate a simple example that had

been used by many researchers such as (M. Abadi A. Gordon. 1998), then a case study

will be given, using kerberos protocol.

Chapter IV:

PROOFS AND CASE STUDY

44

4.1 Introduction

In previous chapter, we have presented the Ph-spi calculus that supports real protocols

such as e-commerce protocols running within open environment. Our calculus includes an

evaluation function that used for validating process actions and all operators needed such

as timestamp, hash function, digital signature and asymmetric key cryptosystem. The

message is structured to be same as in real protocols that have a tuple of messages.

In this chapter, we will apply our proposed Ph-spi calculus to an example that is

used in many research works to prove the soundness of our proposed calculus (R. Focardi

and M. Maffei, 2004, H. Al-Refai, 2009, A. Tiu and J. Dawson, 2010). Then, in the next

section we will apply our proposed calculus on kerberos protocol with a tuple of

messages as a case study.

Example 4.1.1:

The first example with cryptographic is extremely basic. In this example, we

consider two principals A and B that share a key ; in addition, we assume there is a

public unsecure channel cAB that A and B can use for communication. The protocol simply

depicts that A sends a message M under the key to B, on a channel η.

 shared key between A and B.

 Message M.

A B : on channel η

44

In Ph-spi calculus:

In this example, the freshness of the generated key is guaranteed by the

evolution μ to be bounded in process P and not disclosed out of the scope of P. this can be

by the use of the evaluation function for bound names as:

 to means that μ is a name bounded by P and

Now, after proving the freshness of the key , we have to evaluate the

encryption process doing that using the evaluation at the encryption defined

in our evaluation function, such as : the evaluation will check if evaluated as

 M to mean that should be constructed as a message and the key μ

evaluated as N means that the key should be a name, otherwise the whole

process will stack ┴.

Form the above example, and by comparing it with the same one in abadi work

(M. Abadi, A. Gordon 1998), we found that, by using our version of spi calculus we can

solve some of the earlier problems concerning the freshness of generated names and

guarantee of the bound names to be closed in the process domain.

44

Note, the old versions of spi calculus use the same example, but they assume the

channel is restricted to be used only by A and B.

For B attempts to evaluate as: if the evaluation succeeds; the process will behave

as{M/x} where M and N , where (.) for any other

processes running in the open environment, then the result bound to z within P, otherwise

the whole process stack ┴.

Now, we use the following specification.

And we obtain the properties:

Authenticity: , for all and '.

For more details and proof, reader can refer to Appendix A.1.

44

4.2 Case Study: The KERBEROS Protocol

The Kerberos protocol (Figure 4.2.1) is a key distribution protocol between a client and

an applied server which is based on Needham- Schroeder protocol. We only consider a

version taken for this protocol proposed in (M. Burrow et al. 1990) and (M. Boreale et al.

2000). We consider such protocol which has a structured message that contains set of

elements in a single transaction to prove one of our contributions. That is, one of the

improvements for the language we have introduced in this work concern such case.

Figure 4.2.1: Kerberos protocol

The system in our case has two agents (initiator) and λ (responder) that each one

of them share long term key with a server S , where communicate with

the server S to establish new connection with λ. The symbols used in our case study are

shown in Table 4.2.1.

44

Table 4.2.1 Case study symbols

Symbol Represent

 Initiator

 Responder

 Initiator ID

 Responder ID

 Is a Message

 Is a key

 Is a timestamp

 Responder Certificate

 Public channel

Informally, this protocol is shown below:

Message 1 :

Message 2 :

Message 3 :

Message 4 :

First of all, to implement such protocol in Ph-spi calculus we consider the run of

the protocol under the hypothesis that the old session key possible has been released to

the environment. So, the new generated keys should not release any of this knowledge to

the environment till the running session completely finished and evaluate the knowledge

gained previously by the environment for old keys in previous sessions.

44

In the following we present some notational shorthand, in order of convenience,

which define the outputted messages that will be sent through public channels:

 denotes the old message including the old timestamp (nonce) and session

key μ supposed to be known by the environment. indicates that it is a new

certificate awarded by the Kerberos server S to the initiator .

The specifications are similar to (M. Boreale et al. 2000). Firstly, we have to describe

the implementation of this protocol in the Ph-spi calculus in order to formally give the

specification.

45

Where: x derived from the partial-map function as:

The evaluation function will verify the freshness of all generated nonces, as well

as the encryption/decryption operations and validate the structure of messages, the bound

names projection of structured messages; all of these empower the analysis and tracing of

the protocol. As well as prove later in this chapter. Therefore, the specification will be

followed simply for verifying authentication and secrecy as we will prove later in this

chapter.

The specification of kerb is formally described as:

45

Proof:

To prove the authentication property, the set of names should be all distinct from each

other and not known by the environment. For example we can prove the validity of

,

such as:

 Firstly, we evaluate the freshness nonce as a timestamp by and

 that means ιs is freshly generated as a name and bounded in the running

process. Such that, the is valid timestamp if N and

for the running process P and any other process Q in the environment.

 The same for evaluating by for is valid if N and

 for the running process P and any other process Q in the

environment.

The encryption process evaluated as
 that is, it valid if

 and N and

for P is a running process and for any other process Q in the environment.

According the definition 4.2.1, and by evaluating for the input transactions

we can observe that

 and each x of them is distinct from the

others.

Now, the evaluation of all actions in and S in kerb can verify the

authentication property for kerb and .

Definition 4.2.1: The participant only accept the fresh key generated by S.

45

For any case, where the evaluation function result an error that will signal to break

the process .

This will prove that kerb and are testing equivalence (≃) which mean

that the authentication property proved.

Definition 4.2.2: Secrecy: the keys and are never released.

Formally, it holds that

 ≃

Where represent "eavesdropping", for whom passively grab or learned from the

messages known to the environment.

Mean that contains all free names and all names collected previously from all

sessions possibly learned or disclosed accidently by the environment excluding the bound

names generated to be closed in running process. For more details, reader can refer to

Appendix A.1.

Chapter V:

CONCLUSION AND FUTURE WORK

45

Cryptographic protocol is a protocol that used to protect computer systems and network

transactions from malicious attacks. The design of such protocols had been known to be

very hard due to their complexity.

However, cryptographic protocols are subject to many subtle attacks, so many

researchers attempts to develop tools to model and analyze these protocol to check if it

can guaranty the security properties. Formal method proved to be a useful method for

the analyzing such protocols because its allow one to do overall analysis of the different

path the intruders can take, and the ability of formal analysis to reveal previously

unknowing attack, and precisely specify the environmental assumptions. In this thesis

we will concern on enhancement of the spi calculus, which is formal tool used to

analyze security protocols.

Many researchers tried to enhance the original work of Abadi and Gordon (M.

Abadi and A. Gordon 1998), but most of their works built over some restriction and

assumption that made the language fit to specific protocols.

In this thesis, we presented an improved version of spi calculus called Ph-spi

calculus to be step toward symbolic automated language with evaluation function. This

function is capable for making suitable decisions to handle the open and changeability

in environment behaviors as well as evaluating and validating each action in the running

processes and making suitable decision to prove the main security properties as

authentication and confidentiality.

The Ph-spi calculus ready to be used for real protocols such as e-commerce

protocols, it includes all operators needed for such protocols such as timestamp, hash

function, digital signature and asymmetric key cryptosystem. The message is structured

to be same as in real protocols that have a tuple of messages.

44

In future work, we plan to apply the Ph-spi calculus on real protocol that based

on asymmetric key. Also, we are planning to apply one of the bisimulation techniques,

such as framed bisimulation, evade bisimulation … etc, to prove the soundness of our

calculus.

References

75

A. Gordon A. Jeffrey� (2003). Types and effects for asymmetric cryptographic protocols.

Submission to Journal of Computer Security. This material is based upon work

supported by the National Science Foundation under Grant No. 0208549.

A. Tiu and J. Dawson. (2010). Automating Open Bisimulation Checking for the Spi

Calculus. 23rd IEEE Computer Security Foundations Symposium.

B. Blanchet, M. Abadi, and C. (2008). Fournet. Automated verification of selected

equivalences for security protocols. Journal of Logic and Algebraic

Programming, 75(1):3–51.

C. Albrechts. (2006). Automatic Analysis of Recursive Cryptographic Protocols. Master

Thesis.

C. A. R. Hoare. (1980). Communicating sequential processes. In R. McKeag and A.

Macnaghten, editors, On the construction of programs – an advanced course,

pages 229–254. Cambridge University Press, 1980.

C. Bodei M. Buchholtz P. Degano F. Nielson H. Riis Nielson. (2003). Automatic

Validation of Protocol Narration. Supported in part by the Information Society

Technologies programme of the European Commission, Future and Emerging

Technologies

C. Haack A. Jeffrey. (2006). Pattern-Matching Spi-Calculus. presented at the IFIP

workshop on Formal Aspects of Security and Trust in Toulouse.

C. Haack and A. Jeffrey. (2006). Timed Spi calculus with Types for Secrecy and

Authenticity. This material is based upon work supported by the National

Science Foundation under Grant. No. 0208459.

C. V´eronique. D. St´ephanie. (2009) A method for proving observational equivalence.

22nd IEEE Computer Security Foundations Symposium, pages 266- 276, 2009.

D. Dolev, A.C. Yao. (1981). On the security of public key protocols, In Proceedings of

the 22nd Symp. On Foundations of Computer Science, pages 350-357,

Nashville, Tennessee, USA. IEEE Computer Society Press.

75

G. Zheng; X. Li; L .Li; J. Wu. (2009). Process algebra for web servers with timed-

priority executing policy Proceedings – 2009 International Conference on

Computational Intelligence and Software Engineering, CiSE 2009, Wuhan

China.

H. Al-Refai; T. Sembok; M. Yusoff. (2004). Decidablity of Cryptographic Protocol

Properties through Framed bisimulation. Proc. International conference on

Informatics. 2(1): 779-796.

H. Al-Refai (2009) Evaluation Technique in the Spi-Calculus for Cryptographic

Protocols. Third International Symposium on Innovation in Information

Communication Technology- ISIICT.

H. Hermanns and M. Rettelbach. (1994). Syntax, Semantics, Equivalences, and Axioms

for MTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop

on Process Algebras and Performance Modelling, Erlangen-Regensberg, July

1994. IMMD, Universitat Erlangen-Nurnberg.

H. Huttel. (2002). Deciding framed bisimulation. In Proc. 4th Int. Workshop on

Verification of Infinite State Systems (INFINITY’02).

I. Fléchais. (2005). Designing Secure and Usable Systems. PhD thesis. University of

London.

J. Borgstrom. (2009). A Complete Symbolic Bisimilarity for an Extended Spi Calculus.

Published by Elsevier Science B. V.

L. Durante, R. Sisto, and A. Valenzano. (2003). Automatic testing equivalence

verification of spi calculus specifications. ACM Transactions on Software

Engineering and Methodology, 12(2):222–284.

M. Abadi A. Gordon. (1997). A calculus for cryptographic protocols: The Spi Calculus.

Proc. Zurich, Switzerland Computer and Communications Security. pp. 36–47.

M. Abadi A. Gordon. (1997). Reasoning about cryptographic protocols in the Spi

Calculus. Proc. of the CONCUR’97, 8th International Conference on

Concurrency Theory, 1243: 59-73. Springer-Verlag.

75

M. Abadi A. Gordon. (1998). A calculus for cryptographic protocols: The Spi Calculus.

Research Report 149, Digital Systems Research Center, Palo Alto, CA, USA.

M. Abadi and A. Gordon. (1998). A bisimulation method for cryptographic protocols.

Nordic Journal of Computing, 5(4):267–303.

M. Abadi, A. D. Gordon. (1999). A calculus for cryptographic protocols: The spi-

calculus. In Fourth ACM Conference on Computer and Communication

Security, pages 36-47, ACM Press, 1999.

M. Baudet. (2005). Deciding security of protocols against off-line guessing attacks. In

Proc. 12th Conference on Computer and Communications Security (CCS’05).

ACM Press, 2005.

M. Borcale, R. De Nicola. and Rosario Pugiiese. (2000). Process algebraic analysis of

cryptographic protocols lFlP Conference Proceedings Vol. 183: 375-392.

M. Boreale. Symbolic analysis of cryptographic protocols in the spi calculus. in:

Proceedings of LICS '99, IEEE (1999),

R. Amadio, D. Lugiez. (2000). On the reachability problem in cryptographic protocols,

In Proceedings of the 12th International Conference on Concurrency Theory

(CONCUR’00), 2000.

R. Focardi, M. Maffei (2004). The -spi Calculus at Work: Authentication Case

Studies. Work partially supported by MIUR project ‘Modelli formali per la

sicurezza’ and EU Contract IST-2001-32617 ‘Models and Types for Security in

Mobile Distributed Systems’ (MyThS).

R. Milner. (1980). A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer-Verlag, New York, NY, USA, 1980.

R. Milner. (1989) Communication and Concurrency. Prentice Hall.

06

R. Milner, J. Parrow, and D. Walker. (1992). A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–40, 41–77, September 1992.

R. Milner. Communicating and Mobile Systems: The -Calculus. Cambridge University

Press, June 1999.

S. Delaune, S. Kremer, and M. D. Ryan. (2007). Symbolic bisimulation for the applied

pi-calculus. In Proc. 27th Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS’07), pages 133–145.

S. Matsuo, K. Miyazaki, A. Otsuka, and D. Basin. (2009) How to Evaluate the Security

of Real-life Cryptographic Protocols? The cases of ISO/IEC 29128 and

CRYPTREC.

S. Schneider. (1997) Verifying authentication protocols with CSP, In Proceedings of the

10th Computer Security Foundations Workshop (CSFW’97), Rockport,

Massachusetts, USA. IEEE Computer Society Press.

T. Kahsai. (2006). Towards semi automated equivalence checking of spi calculus

processes. Master Thesis.

Y. Gu, Y. Fu and Guoqiang Li. (2005). A Simple Process Calculus for the analysis of

Security Protocols. Proceedings of the Sixth International Conference on Parallel

and Distributed Computing, Applications and Technologies (PDCAT’05) 0-

7695-2405-2/05 © 2005 IEEE

X. Li; G. Zheng; L. Li; J. Wu; W. Chen. (2009). Stochastic extension for real time

process algebra with urgency executing policy Proceedings - 2009 International

Conference on Computational Intelligence and Software Engineering, CiSE

2009, pp.1 - 4.

Appendix

26

Appendix A.1

Details of Process Algebra and Operational Semantic

A.1.1 Process Algebra

Process algebras are executable specification languages for the description of

concurrent systems, or processes. Their behavior is represented by a set of atomic

Input ,Output and Silent actions that they can perform, each independently and in

interaction with each other. A specification composes these actions via a few basic

operators, like sequentialization (or prefix), parallel composition, and

nondeterministic choice usually allowing communications. Furthermore there are

some scope operators, such as restrictions and hiding. Process algebras are, usually,

interpreted on an interleaving model, making concurrency not directly observable.

In computer science, the process calculi (or process algebras) are a diverse

family of related approaches for formally modeling concurrent systems. Process

calculi provide a tool for the high-level description of interactions, communications,

and synchronizations between a collection of independent agents or processes. They

also provide algebraic laws that allow process descriptions to be manipulated and

analyzed, and permit formal reasoning about equivalences between processes (e.g.,

using bisimulation).

Process algebras have been often given an operational semantics in SOS

(Structural Operational Semantics) style. The behavior and evolution of a program

(process) are described through a transition system. So, computations are formally

defined as paths in the transition system. (for more details, refers to Appendix A).

Classical process algebras (among the others CCS (Milner 1989), CSP

(Brookes et al. 1984), ACP (Bergstra and Klop 1984), Meije (Austry and Boudol

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Concurrent_system
http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Bisimulation

26

1984)) have been successively extended to cope with the possibility to exchange

names (name passing) and processes (Higher Order calculi) in communications.

These features express mobility, i.e. the dynamic change of the control structure of

processes, and are present in the π-calculus (Milner et al. 1992), HO-π (Saniorgi

1992), the join calculus (Fournet et al. 1996), the ambient calculus (Nielson et al.

1999), the spi-calculus (Abadi and Gordan 1998) and many others.

A protocol is described as a process in process algebra, such as CSP and CCS,

or, more recently in the π-calculus (Milner 1999; Milner et al. 1992) and the spi-

calculus (Abadi and Gordan 1998). The desired security property is then studied by

checking its specification on all its computations.

Remarkably, the semantics of process algebras is often given in a logical style,

by defining a transition system (akin to a graph with labeled arcs, whose nodes

represent states). So computations are formally defined as paths in the transition

system. Moreover, the transition system associated with a protocol has often a finite

number of states, in which case the analysis is mechanizable and provides complete

answers. Considerable research has been done in recent years using various process

algebras (without mobility) and equivalences, e.g., to establish properties about the

information flow and to detect flows in protocols (Focardi and Gorrieri 1997). More

recent work extends the above to study the foundations of secure mobile code; e.g. the

works on the spi-calculus (Abadi and Gordan 1998).

Process algebras offer a pure framework to study concurrent and distributed

systems and, in turn, the security issues connected to them. Systems are specified as

expressions of the calculus, called processes. Processes are obtained by combining via

a few operators (sequential and parallel composition, nondeterministic choice,

declarations) the basic actions of sending and of receiving messages between

processes along channels. Furthermore, there are some scope operators, such as

restrictions and hiding.

26

By focusing on the essence of interactions among processes, these calculi

make their well-established theory available to inquiry the subtle aspects of

communications, in which security problems or flaws often hide. In this aspect,

process algebras furnish a common background, where comparing different

formulations and models for the same property is possible.

Among process algebras, the π-calculus (Milner 1999; Milner et al. 1992), a

foundational calculus based on the notion of name passing, seems particularly suitable

to address security problems, especially to model the usage of secret information. In

its setting, names - that represent values, or messages, and also channels - can be

created and passed. Processes can only communicate on the channels they know: for

them, learning the name of a channel amounts to possessing the capability to

communicate on the channel. A process can extend its communication possibilities,

via an explicit mechanism of the calculus, called scope extrusion, which enlarges the

scope of names. Consequently, the semantic rules may explicitly control the access to

channels and to data.

Nevertheless, the π-calculus is yet too abstract to explicitly represent

cryptographic operations, which are an important ingredient of security protocols. To

fill this gap, Abadi and Gordon defined the spi-calculus (Abadi and Gordan 1998), an

extension of the π-calculus with primitives for encryption and decryption.

The π-calculus is a model of computation for concurrent systems. The syntax

of π-calculus lets you represent processes, parallel composition of processes,

synchronous communication between processes through channels, creation of fresh

channels, replication of processes, and non-determinism.

26

A.1.2 Operational Semantics

The operational semantics gives one of the major approaches, to the formal semantics.

Introduced in the sixties, (McCarthy 1963; Lucas 1971), it describes the meaning of a

programming language in terms of elementary steps on an abstract machine,

formalized as transitions between states. Behaviors are graphically represented as

transition systems, i.e. oriented graphs, where nodes represent states (or

configurations) and arcs represent transitions between states. Transitions may be

labeled by additional information on the activity performed.

Operational semantics provides quite a natural and intuitive way to understand how a

program behaves. This aspect, joint with the simplicity of its mathematical basis,

makes operational semantics helpful both in the design and implementation phases.

The main drawback is instead that the meaning of programs is not directly modeled,

because it necessarily passes through their execution sequences. Therefore it is more

difficult to reason about programs themselves, without concern of implementation and

execution problems. This may lead to a lack of structure and of compositionality, i.e.

the possibility to give the semantics of a construct in terms of the semantics of its

components. Compositionality, essential for making the semantic definitions finite,

appears in this framework only in the seventies, (De Bakker 1972), leading Plotkin

(1981) to propose a structural approach.

A.1.2.1 Structural Approach

The introduction of Structural Operational Semantics or SOS (Plotkin 1981) arises

from the cross-fertilization with denotational techniques, borrowing from them

notions such as compositionality and abstract syntax. The semantics of compound

constructs is defined in terms of the semantics of their components, following the

various syntactic possibilities, i.e. it is syntax-directed. Transitions are deduced in a

logically - based way, by inducing on the syntactic constructs. Transitions themselves

are defined using axioms and inference rules of the form

22

Conclusion

Premises

where, if the premises are satisfied, so does the conclusion. From a formal point of view, this

amounts to having a logically - based proof system, that, in particular, provides a reliable

support to the development of automatic tools. (for more details, refers to Appendix A)

The structural operational semantics, still preserving the simplicity of the

traditional operational semantics, exploits compositionality, making specifications

modular and modules suitable for re-use.

Finally, it is sufficiently general to allow tuning the level of abstraction,

without drastically changing the method.

A.1.2.2 Enhanced Operational Semantic

Descriptions of systems need to be more detailed and concrete in the implementation

phase. They require considering also information on the external environment,

concerning architecture and topology. Aspects, such as locality or causality, become

of interest, from this point of view. In particular, locality-based semantics model

distributed systems according to their physical or geographical distribution, localizing

each activity in the site it is performed.

To capture this kind of low-level information, one often resorts to true

concurrent models, because the interleaving ones only capture more extensional

aspects. Unfortunately, the non-interleaving approach presents a more difficult formal

treatment (Reisig 1985). This little excursus shows that both approaches are essential

to understand distributed systems, for complementary reasons.

26

Different strategies have been used to integrate the two philosophies (e.g.

(Degano & Montanari 1987)). Some extensions to transition systems towards true

concurrency have been presented, among which that of Proved transition systems

(Degano & Priami 1992, 1999, 1996) (See Section 3.2). A proved transition is labeled

by an encoding of its deduction tree or proof term. Proved transition systems can be

considered as a sort of logogrammatic representation of computations, containing all

the possible encodable information. From this concrete and unifying model,

interleaving in style, it is possible to retrieve a large number of different semantic

models by abstracting from undesired information (Bodei et al. 1998; Bodei & Priami

1997; Degano & Priami 1999). Aspects like causality or locality may be retrieved in

this way. This approach has the advantage that the theory, the techniques and the tools

valid for the interleaving models are still applicable.

A.1.3 The Reaction Relation

Based on (Abadi and Gordan 1998), we define the reaction relation in three phases.

In the first one, we have the definition of the reduction relation, >. In the second one,

we define what is called structural equivalence of two processes, ≡, whereas in the

third one, we present the definition of the reaction relation, →.

Definition A.1.3.1 The reduction relation, > Proc× Proc, is defined as the least

relation on closed processes defined by the following rules:

(RedRepl) !P > P | !P

(RedMatch) [M is M] .P > P

(RedPair) let (x, y) = (M, N) in P > P[M/x][N/y]

26

(RedZero) case 0 of 0: x suc(P): Q > P

(RedSuc) case suc(n) of 0: x suc(P): Q > Q[n/x]

(RedDecrypt) case {t}k of {x}k in P > P[t/x]

Informally, we say that two processes are structural equivalent if one can be

transformed into the other using the rules below.

Definition A.1.3.2 The structural equivalence, ≡ Proc×Proc, is defined as the least

relation on closed processes that satisfies the following equations and rules:

(StructNil) P | 0 ≡ P

(StructComm) P | Q ≡ Q | P

(StructAssoc) P | (Q | R) ≡ (P | Q) | R

(StructSwitch) (m) (n) P ≡ (n) (m) P, if mn

(StructDrop) (m) 0 ≡ 0

26

(StructExtrusion) (m) (P | Q) ≡ P | (m)Q, if m fn(P)

 StructResStructPar

sStructTranStructSymm

StructReflStructRed

PmPm

PP

QPQP

PP

RP

RQQP

PQ

QP

PPQP

QP

 |||

We are now ready to define the reaction relation of two closed processes. The

previous relations were defined to allow the rearrangement of processes so that the

reaction could be possible.

Definition A.1.3.3 The reaction relation on closed processes, → Proc × Proc, is

defined as the least relation on closed processes that satisfies the following axiom,

 xMQPQxcPMc |.|. (ReactInter), and the following rules:

 ReactResReactPar

tReactStruc

PnPn

PP

QPQP

PP

QP

QQQPPP

||

67

A.1.4 Commitment Relation in the Spi-calculus

In order to define the commitment relation, we need two new syntactic forms -

abstractions and concretions. An abstraction is an expression of the form (x).P where

x is a bound variable and P is a process. When F is the abstraction (x).P and M is a

term, we write F(M) for P[M/x].

A concretion is an expression of the form (n

)
PM

 where M is a term; P is

a process and n

 are names that are bound in M and P. We will use C and D for

concretions.

We define an agent as an abstraction, a concretion or a process. We will use

the variables A and B when representing agents, and define fv(A) and fn(A) as the sets

of free variables and free names of an agent A, respectively. The definitions of fv(A)

and fn(A) are the expected extensions of the Notation 1, Definitions 3.2.1.1 and

3.2.1.3.

We now have to extend restriction and composition to arbitrary agents. We

will do this using the following rules:

67

 0|::|

,

::

|.::.|

;::.

RfnnifPRMnPMnR

otherwisePmMn

MfnmifPMnm

PMnm

RfvxifPRxPxR

PmxPxm

In the first and third equations, we also suppose that . We define

the dual composition A | R symmetrically.

The interactions of an abstraction F = (x).P and a concretion C = (n

)
PM

, F@C and C@F, are defined as the processes:

 .xMP|Qn::F@C

;Q|xMPn::C@F

Intuitively, these processes represent the interaction of P and Q. It is the same

as P and Q running in parallel and communicating using the same channel c.

We will now define how transitions work in Spi-calculus.

 nm

66

Definition A.1.4.1 We say that is a barb if it is a name m (representing an input) or

a co-name m (representing an output). We say that is an action if it is a barb or the

silent action .

Now we are able to introduce the commitment relation as in (Abadi and

Gordan 1998).

Definition A.1.4.2 The commitment relation, →, is written AP
, where P is a

closed process, is an action and A is a closed agent, and is defined inductively by

the following rules:

 dReCommL
AP

AQQP

CommLPar
Q|AQ|P

AP

2CommInter
F@CQ|P

FQCP

1CommInter
C@FQ|P

CQFP

P.MP.Mm

P.xmP.xm

mm

mm

m

CommOut

CommIn

66

 sReCommL
AmPm

m,mAP

CommLPar
Q|AQ|P

AP

CommRPar
A|PQ|P

AP

Whenever AP

, and the action is a name, then A is an abstraction,

when is a co-name, A is a concretion, and when is , A is a process. Therefore

the commitment relation indexed by is a binary relation on Proc. We write

QP

when there exists a process R such that QRand
 RP .

Proposition A.1.4.1 QPiffonlyandifQP

.

Proof:

For the backwards direction suppose RP

 and QR , then RP and then

QP by (React Struct). We can show that QP implies that there exists R such

that RP

 and QR by induction on the derivation of QP . The only

interesting case is (React Struct). Suppose that QP follows from

QQandQP,PP . By induction hypothesis, QP

 with QQ .

By Definition A.1.4.2, structural equivalence is a strong bisimulation, so

RP

 for R such that QR . This with the previous equation gives QR as

required.

